首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Physical and chemical limnology of a wind-swept tropical highland reservoir   总被引:2,自引:0,他引:2  
Valle de Bravo (VB) is a tropical reservoir located (19°21′30″ N, 100°11′00″ W) in the highlands of Mexico. The reservoir is daily swept by strong (7.4 m s−1 mean speed) diurnal (12:00–19:00 h) winds that blow along its two main arms. As expected from its fetch (6.9 km) and its depth (21.1 m mean), the reservoir behaves as a warm monomictic water body. During 2001, VB was stratified from February to October, and well mixed from November to January. Its mean temperature was 19.9°C; the maximum found was 23.8°C in the epilimnion, while a minimum of 17.8°C was registered during mixing. VB exhibited a thermal regime similar to other water bodies of the Mexican tropical highlands, except for a steady increase of its hypolimnetic temperature during stratification, which is attributed to entrainment of epilimnetic water into the hypolimnion. During stratification, the hypolimnion was anoxic, while the whole water column remained under-saturated (60%) during mixing. The flushing time is 2.2 years. Mineralization and total alkalinity are low, which allows strong changes in pH. Ammonia remained low (2.4 μmol l−1 mean) in the epilimnion, but reached up to 60 μmol l−1 in the hypolimnion. Soluble reactive phosphorous had a mean of 0.28 μmol l−1 in the epilimnion and a mean of 1.25 μmol l−1 in the hypolimnion. Nitrate exhibited maxima (up to 21 μmol l−1) during mixing, and also in the metalimnion (2 μmol l−1) during stratification. Low dissolved inorganic nitrogen indicated nitrogen limitation during stratification. Eutrophication is an emerging problem in VB, where cyanobacteria dominate during stratification. At VB chlorophyll a is low during mixing (mean of 9 μg l−1), and high during stratification (mean 21 μg l−1), when blooms (up to 88 μg l−1) are frequent. This pattern is similar to that found in other eutrophic tropical water bodies. We propose that in VB the wind regime causes vertical displacements of the thermocline (0.58–1.10 m hr−1) and boundary mixing, enhancing the productivity during the stratification period in this tropical reservoir.  相似文献   

3.
Stratified eutrophic lakes often suffer from hypolimnetic oxygen depletion during summer. This may lead to low redox conditions and accumulation of phosphate and ammonia in the hypolimnion. Hypolimnetic oxygenation has been used as a lake management strategy to improve the water quality in five eutrophic dimictic Danish lakes where oxygenation was conducted for 4–20 years. In one lake, the hypolimnetic oxygen concentration clearly improved by oxygenation, whereas the other four lakes still exhibited low mean summer levels (<2.2 mg O2 l−1). Oxygenation generally increased the hypolimnetic water temperature by 0.5–2°C, but in one lake it increased by 4–6°C. In all lakes, oxygenation significantly reduced the hypolimnetic concentrations of phosphorus and ammonia during stratification. The accumulation of phosphorus and ammonia typically decreased by 40–88%. In two lakes oxygenation was stopped for 1–2 years and here hypolimnion concentrations of both phosphorus and ammonia increased again. Surface water quality only improved in one lake, but was likely also influenced by simultaneously occurring changes in external nutrient loading. Overall, it is concluded that hypolimnetic oxygenation reduces the hypolimnetic accumulation of phosphorus and ammonia and may prevent anoxia in the deeper parts of the lake. However, long-term oxygenation is required and it is uncertain whether the overall lake water quality can be improved by oxygenation. Reduction of the external nutrient loading is still essential to improve lake water quality. Handling editor: Luigi Naselli-Flores  相似文献   

4.
5.
6.
Catches of the economically important Nile tilapia (Oreochromis niloticus L.) from two eutrophic tropical lakes in Uganda, Lake Mburo and Murchison Bay, Lake Victoria, were examined to determine the presence of microcystins (MCs) in gut, liver and muscle of the fish. Analysis for MCs (RR, LR and YR) in both fish and water samples was by liquid chromatography coupled with mass spectroscopy (LC-MS) method. Physico-chemical parameters were also measured to establish the status of both lakes. MC-RR was the most prominent MC detected in Lake Mburo and Murchison Bay samples, there was no evidence of significant seasonal variation in the concentration of MCs in fish tissue. MCs were detected in all water samples from both study lakes. The mean concentration of MCs in water was found higher in dry times for Lake Mburo (P < 0.05) and higher in wet times for Murchison Bay (P < 0.05). MC concentrations in the fish guts were positively related with MC concentrations in water samples from Murchison bay (P < 0.05), no such correlation was found in Lake Mburo. In eutrophic tropical lakes, fish seem to have a high tolerance to the toxicity of cyanotoxins including MCs. However, there is a possibility of accumulating these toxins in their tissue with the threat of transferring them higher up in the food chain. Due to a low sample size and short sampling period, the results can only serve to highlight the potential risk of MC accumulation in Nile tilapia in these lakes. Further studies are needed for the purpose of risk assessment.  相似文献   

7.
Observations indicating gliding motility in the gas-vacuolate, filamentous organism Peloploca were made using microcapillary tubes. Tubes containing semi-solid agar, incubated in sediment cores gave good enrichments of Peloploca spp. The organisms, which had the form of helical bundles of filaments, were seen to corkscrew through the agar at up to 2–3 m s-1.The vertical distribution of Peloploca spp. in the sediment and water column of a eutrophic lake was examined periodically during summer stratification. The organisms were confined to anoxic conditions in the sediment prior to stratification. With increasing anoxia in the hypolimnion, the population shifted upwards in the sediment, and towards the end of stratification, in the most reducing conditions, appeared in the lower hypolimnion. Anaerobically incubated sediment cores also showed the movement of the Peloploca population from sediment into the overlying water.It is suggested that the gliding motility and helical morphology of Peloploca bundles enable them to migrate through sediment in response to oxygen and Eh gradients, in addition to their use of gas vacuoles to adjust their position in the water column. The taxonomic implications of gliding motility in Peloploca spp. are discussed.  相似文献   

8.
Oxygen demand and long term changes of profundal zoobenthos   总被引:3,自引:3,他引:0  
The paper attempts to combine the low oxygen content of the hypolimnion during stratification and the oxygen uptake of zoobenthos. Data of declining oxygen content in the hypolimnion and critical limits of respiration are combined for Chironomus anthracinus, Potamothrix hammoniensis and three species of Pisidium, P. casertanum, P. subtruncatum and P. henslowanum. The respiratory adaptation to low oxygen content influences both growth and population dynamics of the different species. The results have important bearing on eutrophication of the Lake Esrom ecosystem and temperate eutrophic lakes in general as well as the composition of profundal zoobenthos and its population dynamics.Publication No. 389 from Freshwater-Biological Laboratory, University of Copenhagen.  相似文献   

9.

Lakes and reservoirs globally are experiencing unprecedented changes in land use and climate, depleting dissolved oxygen (DO) in the bottom waters (hypolimnia) of these ecosystems. Because DO is the most energetically favorable terminal electron acceptor (TEA) for organic carbon mineralization, its availability controls the onset of alternate TEA pathways (for example, denitrification, manganese reduction, iron reduction, sulfate reduction, methanogenesis). Low DO concentrations can trigger organic carbon mineralization via alternate TEA pathways in the water column and sediments, which has important implications for greenhouse gas production [carbon dioxide (CO2) and methane (CH4)]. In this study, we experimentally injected supersaturated DO into the hypolimnion of a eutrophic reservoir and measured concentrations of TEAs and terminal electron products (TEPs) in the experimental reservoir and an upstream reference reservoir. We calculated the electron equivalents yielded from each TEA pathway and estimated the contributions of each TEA pathway to organic carbon processing in both reservoirs. DO additions to the hypolimnion of the experimental reservoir promoted aerobic respiration, suppressing most alternate TEA pathways and resulting in elevated CO2 accumulation. In comparison, organic carbon mineralization in the reference reservoir’s anoxic hypolimnion was dominated by alternate TEA pathways, resulting in both CH4 and CO2 accumulation. Our ecosystem-scale experiments demonstrate that the alternate TEA pathways that succeed aerobic respiration in lakes and reservoirs can be manipulated at the ecosystem scale. Moreover, changes in the DO dynamics of freshwater lakes and reservoirs may result in concomitant changes in the redox reactions in the water column that control organic carbon mineralization and greenhouse gas accumulation.

  相似文献   

10.
11.
Distribution patterns of the larvae of Chironomidae are compared in three water systems in The Netherlands, which vary in trophic state and oxygen regimes. The life cycles and flying periods of some dominant chironomid species in two of the investigated lakes, Lakes Maarsseveen I and II, are determined by comparing data on the seasonal variations in larval densities with existing literature on Chironomidae in the Maarsseveen lakes. In the oligo-mesotrophic Lake Maarsseveen I (LM I), hypoxic or anoxic conditions in the hypolimnion are observed only at the end of the stratification period. A clear zonation of the chironomid fauna is present in this lake. The littoral zone is dominated byCladotanytarsus gr.mancus andStictochironomus sticticus, the littoriprofundal zone byTanytarsus bathophilus, and the profundal zone byChironomus anthracinus. In comparison with the other species in LM I,T. bathophilus larvae show the most variable distribution patterns over time. Larvae are found in all depths from July to September, but disappear from the hypolimnion as soon as oxygen conditions deteriorate. In the eutrophic Lake Maarsseveen II (LM II), oxygen depletion of the hypolimnion starts immediately after the onset of the thermal stratification in June, and continues until autumnal turnover in November. In this lake, the chironomid community consists primarily ofS. sticticus andCl. gr.mancus, and is confined to the narrow littoral zone. No chironomid larvae are found in the deeper parts of the lake. The eutrophic Lake Gijster in the Brabantse Biesbosch is a deep, man-made reservoir, that is artificially destratified during the summer. In this lakeTanytarsus bathophilus is found in the profundal sediments, whereas almost noChironomus is found in this zone. It is concluded that oxygen conditions existing in the deeper regions of the investigated lakes in large part determine the occurrence and distribution of chironomid species. The distribution ofT. bathophilus is limited by unfavorable oxygen conditions and not by the trophic state of the lake. These findings are part of a thesis (HEINIS, 1993).  相似文献   

12.
A small eutrophic New Hampshire lake was artificially circulated from July 16 to September 12, 1968. Artificial circulation destratified Kezar Lake completely; the stability of stratification was reduced to zero when the lake became isothermous. Mixing caused an increase in the heat budget. Water transparency also increased after mixing.Inverse clinograde distributions of Fe, Mn, ammonia-N, CO2, alkalinity and conductivity were ameliorated after mixing by reoxygenation of stagnant bottom water. The chemical nutrients Ca, Mg, K, Cl, and SiO2 were little influenced, but a marked increase in total-P occurred when artificial circulation transferred suspended organic detritus into the water column from agitated profundal muds. The effects of mixing on Na, Cu, Zn, NO2-N, NO3- N, organic-N and orthophospate are also discussed. Most chemical nutrients were distributed isometrically in the water column after mixing. The supply of chemical nutrients was sufficient to support large populations of phytoplankton.During stagnation a dense bloom ofAphanizomenon flos-aquae occurred. Mixing caused a uniform vertical distribution of this alga and its large population eventually dissipated. The phytoplankton then became dominated by chlorophycean taxa. The variations in chlorophyll-a followed closely changes in phytoplankton abundance. Chlorophyll-a levels are shown to be typical of other eutrophic lakes. Primary production in surface waters decreased markedly subsequent to destratification, but it increased at lower depths in agreement with vertical expansion of the euphotic zone.  相似文献   

13.
Most stratified sulfidic holomictic lakes become oxygenated after annual turnover. In contrast, Lake Rogoznica, on the eastern Adriatic coast, has been observed to undergo a period of water column anoxia after water layer mixing and establishment of holomictic conditions. Although Lake Rogoznica''s chemistry and hydrography have been studied extensively, it is unclear how the microbial communities typically inhabiting the oxic epilimnion and a sulfidic hypolimnion respond to such a drastic shift in redox conditions. We investigated the impact of anoxic holomixis on microbial diversity and microbially mediated sulfur cycling in Lake Rogoznica with an array of culture-independent microbiological methods. Our data suggest a tight coupling between the lake''s chemistry and occurring microorganisms. During stratification, anoxygenic phototrophic sulfur bacteria were dominant at the chemocline and in the hypolimnion. After an anoxic mixing event, the anoxygenic phototrophic sulfur bacteria entirely disappeared, and the homogeneous, anoxic water column was dominated by a bloom of gammaproteobacterial sulfur oxidizers related to the GSO/SUP05 clade. This study is the first report of a community shift from phototrophic to chemotrophic sulfide oxidizers as a response to anoxic holomictic conditions in a seasonally stratified seawater lake.  相似文献   

14.

Global warming may intensify eutrophication of shallow lakes by affecting nutrient loading, evaporation rates, and water level and thus produce major changes in food webs. We investigated to what degree food webs in tropical humid lakes differed from those in more eutrophic semi-arid lakes of the same latitude. Our results indicate that the catchment area-to-lake area ratio, nutrients, chlorophyll a, suspended solids, abundances of phytoplankton, zooplankton, and omnivorous fish as well as total fish catch per unit effort were all higher in the semi-arid lakes, whereas inlet water-to-evaporation ratio (proxy for water balance), water transparency, percentage macrophytes cover, and the piscivores:omnivores ratio were higher in the humid lakes. Our results suggest that reduced inlet water-to-evaporation ratio will increase lake eutrophication, which, in turn, as in temperate regions, will alter trophic structure of the freshwater community.

  相似文献   

15.
Pelagic rotifer plankton was studied in four stratified lakes with different degrees of human impact from June to July 2001 and throughout 2002. Rotifer species diversity was closely correlated to temperature and oxygen concentration (correlation coefficients were 0.90 and 0.87, respectively) in the water column of the hypertrophic Lake Kruglik. In the mesotrophic lakes, the correlation coefficients were much lower and their reduction was related to decreasing human impact on the lakes. Species richness was similar in Lakes Kruglik and S. Volos, but the spatial structure of the community differed greatly. The maximum rotifer density was observed in the epilimnion of Lake Kruglik, with densities dropping sharply towards the hypolimnion. In the mesotrophic lakes, the highest rotifer density was recorded in the meta- and hypolimnion. A comparative analysis of the morphometric characteristics of Keratella cochlearis showed that (1)␣the lorica length of ovigerous females increased in all four lakes with decreasing temperature; (2) the shortest lorica length was in Lake Kruglik at the same temperature; (3) in the mesotrophic lakes a significant increase in lorica length occurred as the temperature decreased from 14.2 °C to 4.2 °C. There is the similar relationship in rotifers of the genus Filinia. Hypoxia in the clino- and hypolimnion of Lake Kruglik reduced the diversity of spatial niches created by thermal stratification. As a result, the number of non-overlapping niches for rotifers in Lake Kruglik is reduced by a factor of 2–5 compared to that in mesotrophic lakes, but the mean value of the overlapping index is significantly higher.  相似文献   

16.
In order to adequately assess the ecological status of thermally stratified lakes based on chlorophyll, the sampling must cover all productive layers of the water column. Missing the deep chlorophyll maxima (DCM) that often occur in the meta- or hypolimnion of transparent lakes supported by sufficient illumination and good nutrient availability may cause serious underestimation of the productivity and lead to misclassification of the lake ecological status. There is no commonly accepted sampling design for stratified lakes, and various monitoring guides suggest controversial designs. Our aim was to find some robust criteria to assess the probability of occurrence of a DCM and estimate the differences in measured mean chlorophyll concentrations caused by various sampling designs. Our theoretical model showed that the probability of occurrence of a DCM increases with increasing water transparency and decreasing lake size. Empirical data from Italian and Estonian stratified lakes confirmed the results. Testing of different sampling designs on lakes with full measured chlorophyll profiles available showed that taking only surface layer samples will lead with a high probability to an underestimation of the chlorophyll concentration in the trophogenic layer. In order not to miss the Chl peak in stratified lakes, in most cases it would be more precautious not to limit the sampling to the well-mixed epilimnion but to extend it to the whole euphotic layer. Sampling the epilimnion instead of the euphotic zone could cause up to a 70% underestimation of the chlorophyll concentration, an error that would cause a misclassification of the lake by one or even two status classes in a 5-class assessment system. In most cases, the 2.5 * Secchi depths proved a suitable criterion of the sampling depth and only in the case of surface scums, would sampling of a 3 * Secchi depth layer be recommended in order not to miss the deep chlorophyll maximum.  相似文献   

17.
Bark  A. W.  Goodfellow  J. G. 《Hydrobiologia》1985,124(2):177-188
An investigation into the spatial distribution of hypolimnetic ciliates in three small eutrophic lakes during the period of summer stratification was carried out. Peak ciliate densities were found to occur at the oxic/anoxic boundary, ciliate numbers declining with increasing depth within the hypolimnion. The ciliates only occurred in aerobic water where oxygen levels were less than about 0.5 mgl–1 Laboratory experiments demonstrated that the ciliates swim upwards under anaerobic conditions but swim rapidly downwards under aerobic conditions. Further laboratory experiments showed that although the bulk of the population occured within anaerobic water, the hypolimnetic ciliates are aerobes and cannot survive indefinite anoxia. Despite the demonstrable toxicity of high levels of ammonia and sulphide, it was probably excesive distance from an available source of oxygen that excluded the ciliates from the lowest levels of the hypolimnion. Possible mechanisms which allowed these aerobic ciliates to colonise anaerobic water are considered.  相似文献   

18.
Based on microstructure measurements of temperature and horizontalcurrent velocity the physical structure in the water column of Lake Kinneretwascharacterized as a five layer system consisting of a surface mixed layer, lowerepilimnion, metalimnion, upper hypolimnion and benthic boundary layer. Usingoxygen and hydrogen sulfide as natural chemical tracers, the time scale ofchemical change was identified in relation to advection, mixing and biologicalprocesses. Rapid changes due to advection that took place on an hourly timescale were removed by referring the data back to the temperature of the water.Biological activity dominated the hydrochemical changes observed in the meta-and upper hypolimnion. These were expressed by DO depletion rates of 2.0 and0.4g m–2 d–1, respectively.Verticaland horizontal mixing were shown to occur on a seasonal time scale. Once thechemical stratification process was completed the slow mixing through thebenthic boundary layer became the limiting factor for subsequent reactions inthe water column.  相似文献   

19.
Deemer  Bridget R.  Harrison  John A. 《Ecosystems》2019,22(7):1618-1632
Ecosystems - In eutrophic lakes and reservoirs, reduced mixing during stratified conditions limits oxygen (O2) supply to the hypolimnion (that is, bottom waters). In the absence of an O2 supply,...  相似文献   

20.
Temporal and spatial distributions of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), chlorophyll-a and inorganic nitrogen were investigated in two small mountainous lakes (Lake Hongfeng and Baihua), on the Southwestern China Plateau, based on almost 2 years’ field observation. DOC concentrations ranged from 163 μM to 248 μM in Lake Hongfeng and from 143 μM to 308 μM in Lake Baihua, respectively, during the study period. DON concentrations ranged from 7 μM to 26 μM in Lake Hongfeng and from 14 μM to 47 μM in Lake Baihua. DOC showed vertical heterogeneity with higher concentrations in the epilimnion than in the hypolimnion during the stratification period. The DON concentration profiles appeared to be more variable than the DOC profiles. Apparent DON maxima occurred in the upper layer of water. In Lake Hongfeng, DOC concentration in the surface water was highest at the end of spring and early summer. DON concentration was 2–5 μM higher in May 2003 and in June 2004 than in adjacent months. DOC and chlorophyll-a concentrations were significantly correlated (r = 0.79, P < 0.05). The period of highest concentrations of DOC in Lake Hongfeng was also the season of concentrated rainfall. Algae activity and allochthonous input might result in an increase of DOC and DON concentrations together. In Lake Baihua, the maximum concentrations of DOC and DON in the surface water occurred simultaneously in May 2003 and February 2004. DOC concentrations were significantly correlated with DON (r = 0.90, P < 0.01), indicating the common sources. Allochthonous input, biological processes, stratification and mixing were the most important factors controlling the distributions and cycling of dissolved organic matter (DOM) and inorganic nitrogen in these two lakes. Inference from the corresponding vertical distributions of DOM and inorganic nitrogen indicated that DOM played potential roles in the internal loading of nitrogen and metabolism in the water body in these small lakes. The carbon/nitrogen (C/N) ratio showed a potential significance for tracing the source and biogeochemical processes of DOM in the lakes. These results are of significance in the further understanding of biogeochemical cycling and environmental effects of DOM and nitrogen in lake ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号