首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein N-glycosylation begins with the assembly of a lipid-linked oligosaccharide (LLO) on the endoplasmic reticulum (ER) membrane. The first two steps of LLO biosynthesis are catalyzed by a functional multienzyme complex comprised of the Alg7 GlcNAc phosphotransferase and the heterodimeric Alg13/Alg14 UDP-GlcNAc transferase on the cytosolic face of the ER. In the Alg13/14 glycosyltransferase, Alg14 recruits cytosolic Alg13 to the ER membrane through interaction between their C-termini. Bioinformatic analysis revealed that eukaryotic Alg14 contains an evolved N-terminal region that is missing in bacterial orthologs. Here, we show that this N-terminal region of Saccharomyces cerevisiae Alg14 localize its green fluorescent protein fusion to the ER membrane. Deletion of this region causes defective growth at 38.5°C that can be partially complemented by overexpression of Alg7. Coimmunoprecipitation demonstrated that the N-terminal region of Alg14 is required for direct interaction with Alg7. Our data also show that Alg14 lacking the N-terminal region remains on the ER membrane through a nonperipheral association, suggesting the existence of another membrane-binding site. Mutational studies guided by the 3D structure of Alg14 identified a conserved α-helix involved in the second membrane association site that contributes to an integral interaction and protein stability. We propose a model in which the N- and C-termini of Alg14 coordinate recruitment of catalytic Alg7 and Alg13 to the ER membrane for initiating LLO biosynthesis.  相似文献   

2.
N-linked glycosylation requires the synthesis of an evolutionarily conserved lipid-linked oligosaccharide (LLO) precursor that is essential for glycoprotein folding and stability. Despite intense research, several of the enzymes required for LLO synthesis have not yet been identified. Here we show that two poorly characterized yeast proteins known to be required for the synthesis of the LLO precursor, GlcNAc2-PP-dolichol, interact to form an unusual hetero-oligomeric UDP-GlcNAc transferase. Alg13 contains a predicted catalytic domain, but lacks any membrane-spanning domains. Alg14 spans the membrane but lacks any sequences predicted to play a direct role in sugar catalysis. We show that Alg14 functions as a membrane anchor that recruits Alg13 to the cytosolic face of the ER, where catalysis of GlcNAc2-PP-dol occurs. Alg13 and Alg14 physically interact and under normal conditions, are associated with the ER membrane. Overexpression of Alg13 leads to its cytosolic partitioning, as does reduction of Alg14 levels. Concomitant Alg14 overproduction suppresses this cytosolic partitioning of Alg13, demonstrating that Alg14 is both necessary and sufficient for the ER localization of Alg13. Further evidence for the functional relevance of this interaction comes from our demonstration that the human ALG13 and ALG14 orthologues fail to pair with their yeast partners, but when co-expressed in yeast can functionally complement the loss of either ALG13 or ALG14. These results demonstrate that this novel UDP-GlcNAc transferase is a unique eukaryotic ER glycosyltransferase that is comprised of at least two functional polypeptides, one that functions in catalysis and the other as a membrane anchor.  相似文献   

3.
Endoplasmic reticulum (ER) homeostasis requires transfer and subsequent processing of the glycan Glc3Man9GlcNAc2 (G3M9Gn2) from the lipid-linked oligosaccharide (LLO) glucose3mannose9N-acetylglucosamine2-P-P-dolichol (G3M9Gn2-P-P-Dol) to asparaginyl residues of nascent glycoprotein precursor polypeptides. However, it is unclear how the ER is protected against dysfunction from abnormal accumulation of LLO intermediates and aberrant N-glycosylation, as occurs in certain metabolic diseases. In metazoans phosphorylation of eukaryotic initiation factor 2α (eIF2α) on Ser51 by PERK (PKR-like ER kinase), which is activated by ER stress, attenuates translation initiation. We use brief glucose deprivation to simulate LLO biosynthesis disorders, and show that attenuation of polypeptide synthesis by PERK promotes extension of LLO intermediates to G3M9Gn2-P-P-Dol under these substrate-limiting conditions, as well as counteract abnormal N-glycosylation. This simple mechanism requires eIF2α Ser51 phosphorylation by PERK, and is mimicked by agents that stimulate cytoplasmic stress-responsive Ser51 kinase activity. Thus, by sensing ER stress from defective glycosylation, PERK can restore ER homeostasis by balancing polypeptide synthesis with flux through the LLO pathway.  相似文献   

4.
Chen  Tianshu  Zhang  Huchen  Niu  Guanting  Zhang  Shuo  Hong  Zhi 《Plant molecular biology》2020,103(4-5):581-596
Key message

N-glycans play a protective or monitoring role according to the folding state of associated protein or the distance from structural defects.

Abstract

Asparagine-linked (Asn/N-) glycosylation is one of the most prevalent and complex protein modifications and the associated N-glycans play crucial roles on protein folding and secretion. The studies have shown that many glycoproteins hold multiple N-glycans, yet little is known about the redundancy of N-glycans on a protein. In this study, we used BRI1 to decipher the roles of N-glycans on protein secretion and function. We found that all 14 potential N-glycosylation sites on BRI1 were occupied with oligosaccharides. The elimination of single N-glycan had no obvious effect on BRI1 secretion or function except N154-glycan, which resulted in the retention of BRI1 in the endoplasmic reticulum (ER), similar to the loss of multiple highly conserved N-glycans. To misfolded bri1, the absence of N-glycans next to local structural defects enhanced the ER retention and the artificial addition of N-glycan could help the misfolded bri1-GFPs exiting from the ER, indicating that the N-glycans might serve as steric hindrance to protect the structure defects from ER recognition. We also found that the retention of misfolded bri1-9 by lectins and chaperones in the ER relied on the presence of multiple N-glycans distal to the local defects. Our findings revealed that the N-glycans might play a protective or monitoring role according to the folding state of associated protein or the distance from structural defects.

  相似文献   

5.
Glycosylation of proteins is a key function of the biosynthetic‐secretory pathway in the endoplasmic reticulum (ER) and Golgi apparatus. Glycosylated proteins play a crucial role in cell trafficking and signaling, cell‐cell adhesion, blood‐group antigenicity, and immune response. In addition, the glycosylation of proteins is an important parameter in the optimization of many glycoprotein‐based drugs such as monoclonal antibodies. In vitro glycoengineering of proteins requires glycosyltransferases as well as expensive nucleotide sugars. Here, we present a designed pathway consisting of five enzymes, glucokinase (Glk), phosphomannomutase (ManB), mannose‐1‐phosphate‐guanyltransferase (ManC), inorganic pyrophosphatase (PmPpA), and 1‐domain polyphosphate kinase 2 (1D‐Ppk2) expressed in E. coli for the cell‐free production and regeneration of GDP‐mannose from mannose and polyphosphate with catalytic amounts of GDP and ADP. It was shown that GDP‐mannose is produced at various conditions, that is pH 7–8, temperature 25–35°C and co‐factor concentrations of 5–20 mM MgCl2. The maximum reaction rate of GDP‐mannose achieved was 2.7 μM/min at 30°C and 10 mM MgCl2 producing 566 nmol GDP‐mannose after a reaction time of 240 min. With respect to the initial GDP concentration (0.8 mM) this is equivalent to a yield of 71%. Additionally, the cascade was coupled to purified, transmembrane‐deleted Alg1 (ALG1ΔTM), the first mannosyltransferase in the ER‐associated lipid‐linked oligosaccharide (LLO) assembly. Thereby, in a one‐pot reaction, phytanyl‐PP‐(GlcNAc)2‐Man1 was produced with efficient nucleotide sugar regeneration for the first time. Phytanyl‐PP‐(GlcNAc)2‐Man1 can serve as a substrate for the synthesis of LLO for the cell‐free in vitro glycosylation of proteins. A high‐performance anion exchange chromatography method with UV and conductivity detection (HPAEC‐UV/CD) assay was optimized and validated to determine the enzyme kinetics. The established kinetic model enabled the optimization of the GDP‐mannose regenerating cascade and can further be used to study coupling of the GDP‐mannose cascade with glycosyltransferases. Overall, the study envisages a first step towards the development of a platform for the cell‐free production of LLOs as precursors for in vitro glycoengineering of proteins.  相似文献   

6.
O'Reilly MK  Zhang G  Imperiali B 《Biochemistry》2006,45(31):9593-9603
The biosynthesis of asparagine-linked glycoproteins utilizes a dolichylpyrophosphate-linked glycosyl donor (Dol-PP-GlcNAc(2)Man(9)Glc(3)), which is assembled by the series of membrane-bound glycosyltransferases that comprise the dolichol pathway. This biosynthetic pathway is highly conserved throughout eukaryotic evolution. While complementary genetic and bioinformatic approaches have enabled identification of most of the dolichol pathway enzymes in Saccharomyces cerevisiae, the roles of two of the mannosyltransferases in the pathway, Alg2 and Alg11, have remained ambiguous because these enzymes appear to catalyze only two of the remaining four unannotated transformations. To address this issue, a biochemical approach was taken using recombinant Alg2 and Alg11 from S. cerevisiae and defined dolichylpyrophosphate-linked substrates. A cell-membrane fraction isolated from Escherichia coli overexpressing thioredoxin-tagged Alg2 was used to demonstrate that this enzyme actually carries out an alpha1,3-mannosylation, followed by an alpha1,6-mannosylation, to form the first branched pentasaccharide intermediate of the pathway. Then, using thioredoxin-tagged Alg2 for the chemoenzymatic synthesis of the dolichylpyrophosphate pentasaccharide, it was thus possible to define the biochemical function of Alg11, which is to catalyze the next two sequential alpha1,2-mannosylations. The elucidation of the dual function of each of these enzymes thus completes the identification of the entire ensemble of glycosyltransferases that comprise the dolichol pathway.  相似文献   

7.

Background  

Members of the Kinesin-3 family of kinesin-like proteins mediate transport of axonal vesicles (KIF1A, KIF1Bβ), distribution of mitochondria (KIF1Bα) and anterograde Golgi to ER vesicle transport (KIF1C). Until now, little is known about the regulation of kinesin-like proteins. Several proteins interact with members of this protein family. Here we report on a novel, KIF1 binding protein (KBP) that was identified in yeast two-hybrid screens.  相似文献   

8.
The PDZ (PSD-95/Drosophila discs-large protein/zonula occludens protein) domain-containing proteins Na+/H+ exchanger regulatory factor 1 (NHERF1) and NHERF2 interact with the glutamate transporter GLAST. To characterize the roles of these NHERF proteins in the plasma membrane targeting of GLAST, we examined the interaction of green fluorescent protein (EGFP)-tagged GLAST with epitope-tagged NHERF proteins in human embryonic kidney (HEK) 293T cells. Co-expression of either NHERF protein increased the cell surface expression of EGFP-GLAST. Deletion of the C-terminal PDZ domain-binding motif caused an increase in EGFP-GLAST with immature endoglycosidase H-sensitive N-linked oligosaccharides, suggesting impaired exit of EGFP-GLAST from the endoplasmic reticulum (ER). Immunoprecipitation experiments revealed that NHERF1 predominantly bound EGFP-GLAST containing immature N-glycans, whereas NHERF2 co-precipitated EGFP-GLAST with mature N-glycans. Expression of a dominant-negative mutant of the GTPase Sar1 increased the interaction of EGFP-GLAST with NHERF1 in the ER. By contrast, immunofluorescence microscopy showed that NHERF2 co-localized with EGFP-GLAST in ER–Golgi intermediate compartments (ERGICs), at the plasma membrane and in early endosomes, but not in the ER. These results suggest that NHERF1 interacts with GLAST during ER export, while NHERF2 interacts with GLAST in the secretory pathway from the ERGIC to the plasma membrane, thereby modulating the cell surface expression of GLAST.  相似文献   

9.
ABSTRACT

The endoplasmic reticulum (ER) is dedicated to import, folding and assembly of all proteins that travel along or reside in the secretory pathway of eukaryotic cells. Folding in the ER is special. For instance, newly synthesized proteins are N-glycosylated and by default form disulfide bonds in the ER, but not elsewhere in the cell. In this review, we discuss which features distinguish the ER as an efficient folding factory, how the ER monitors its output and how it disposes of folding failures.  相似文献   

10.
N-linked glycosylation begins in the endoplasmic reticulum with the synthesis of a highly conserved dolichol-linked oligosaccharide precursor. The UDP-GlcNAc glycosyltransferase catalyzing the second sugar addition of this precursor consists in most eukaryotes of at least two subunits, Alg14 and Alg13. Alg14 is a membrane protein that recruits the soluble Alg13 catalytic subunit from the cytosol to the face of the endoplasmic reticulum (ER) membrane where this reaction occurs. Here, we investigated the membrane topology of Saccharomyces cerevisiae Alg14 and its requirements for ER membrane association. Alg14 is predicted by most algorithms to contain one or more transmembrane spanning helices (transmembrane domains (TMDs)). We provide evidence that Alg14 contains a C-terminal cytosolic tail and an N terminus that resides within the ER lumen. However, we also demonstrate that Alg14 lacking this TMD is functional and remains peripherally associated with ER membranes, suggesting that additional domains can mediate ER association. These conclusions are based on the functional analysis of Alg13/Alg14 chimeras containing Alg13 fused at either end of Alg14 or truncated Alg14 variants lacking the predicted TMD; protease protection assays of Alg14 in intact ER membranes; and extraction of Alg14-containing ER membranes with high pH. These yeast Alg13-Alg14 chimeras recapitulate the phylogenetic diversity of Alg13-Alg14 domain arrangements that evolved in some protozoa. They encode single polypeptides containing an Alg13 domain fused to Alg14 domain in either orientation, including those lacking the Alg14 TMD. Thus, this Alg13-Alg14 UDP-GlcNAc transferase represents an unprecedented example of a bipartite glycosyltransferase that evolved by both fission and fusion.  相似文献   

11.
BackgroundThe modus operandi for an anti-cancer drug must allow for an efficient discrimination system between tumorigenic and non-tumorigenic cells. Targeting ER stress and mitochondrial function in cancer cells appears to be a suitable option, as these processes are dysregulated in tumor cells. AECHL-1, a novel triterpenoid, exhibits potent anticancer activity against an array of cancer cell lines however, its mechanism of action remains elusive.MethodsMolecular targets of AECHL-1 were investigated using breast adenocarcinoma cells MCF-7, MDA-MB-231 and mammary epithelial cell line MCF 10A in vitro and xenograft tumors in SCID mice in vivo. Western blotting, flow cytometry, and immunohistochemical studies were employed to delineate the molecular pathways.ResultsAECHL-1 caused a transient elevation of ER stress proteins along with a prolonged phosphorylation of eIF2α in breast cancer cells. This was accompanied by a simultaneous release of calcium from ER stores and subsequent mitochondrial accumulation. These effects could be reversed by using ER stress inhibitors. AECHL-1 brings about mitochondria mediated, caspase independent cell death via AIF in MCF-7 cells; MDA-MB-231 succumbed to caspase dependent extrinsic pathway. Xenograft studies closely echoed our in vitro results. AECHL-1 did not alter cellular and molecular parameters in MCF 10A.ConclusionThese findings reveal that, AECHL-1 targets the Achilles Heel of cancer cell, namely dysfunctional ER and mitochondria while being non toxic to normal parenchyma and can thus be further explored as a potential chemotherapeutic intervention.General significanceAggravation of ER stress by AECHL-1 uncovers a novel pathway for selective elimination of cancer cells.  相似文献   

12.
13.
N-Linked glycosylation involves the ordered, stepwise synthesis of the unique lipid-linked oligosaccharide precursor Glc3Man9 GlcNAc2-PP-Dol on the endoplasmic reticulum (ER), catalyzed by a series of glycosyltransferases. Here we characterize Alg2 as a bifunctional enzyme that is required for both the transfer of the α1,3- and the α1,6-mannose-linked residue from GDP-mannose to Man1GlcNAc2-PP-Dol forming the Man3GlcNAc2-PP-Dol intermediate on the cytosolic side of the ER. Alg2 has a calculated mass of 58 kDa and is predicted to contain four transmembrane-spanning helices, two at the N terminus and two at the C terminus. Contradictory to topology predictions, we prove that only the two N-terminal domains fulfill this criterion, whereas the C-terminal hydrophobic sequences contribute to ER localization in a nontransmembrane manner. Surprisingly, none of the four domains is essential for transferase activity because truncated Alg2 variants can exert their function as long as Alg2 is associated with the ER by either its N- or C-terminal hydrophobic regions. By site-directed mutagenesis we demonstrate that an EX7E motif, conserved in a variety of glycosyltransferases, is not important for Alg2 function in vivo and in vitro. Instead, we identify a conserved lysine residue, Lys230, as being essential for activity, which could be involved in the binding of the phosphate of the glycosyl donor.Asparagine-linked glycosylation is an essential protein modification highly conserved in eukaryotes (14), and several features of this pathway even occur in prokaryotes (57). In eukaryotes, biosynthesis of N-glycans starts with the assembly of the common core oligosaccharide precursor Glc3Man9 GlcNAc2-PP-Dol, the glycan moiety of which is subsequently transferred onto selected Asn-Xaa-(Ser/Thr) acceptor sites of the nascent polypeptide chain by the oligosaccharyl-transferase complex (810). The initial steps of the dolichol pathway up to Man5GlcNAc2-PP-Dol take place on the cytosolic site of the endoplasmic reticulum (ER),2 using sugar nucleotides as glycosyl donors. Upon translocation of the heptasaccharide to the luminal site, which is facilitated by Rft1 (11) and another not yet identified protein (12), it is extended by four mannose and three glucose residues deriving from Man-P-Dol and Glc-P-Dol. It has been demonstrated that the pathway operates sequentially in an ordered fashion based on differences in the substrate specificity of the various glycosyltransferases (13). In the yeast Saccharomyces cerevisiae, alg mutants (for asparagine-linked glycosylation) have been isolated, defective in lipid-linked oligosaccharide (LLO) assembly (1417), and shown to be invaluable to define the pathway as well as to isolate the genes encoding the respective glycosyltransferases by complementing a particular phenotype characteristic of the respective mutant. Likewise various mutant cell lines from mammalian origin have been described that produce truncated lipid-linked oligosaccharides (1820).One of the temperature-sensitive alg mutants, alg2, was shown to accumulate lipid-linked Man2GlcNAc2 at the restrictive temperature (15), indicating that alg2 might have a defect in the glycosyltransferase catalyzing the transfer of the third, α1,6-linked mannose, i.e. in the formation of the branched pentasaccharide Man3GlcNAc2-PP-Dol (see Fig. 8). On the other hand, biochemical studies in human fibroblasts from a patient with a defect in the human ALG2 ortholog, causing congenital disorder of glycosylation type CDG1i, pointed to a role in the transfer of the second, α1,3-linked mannose residue, because no elongation of Man(1,6)ManGlcNAc2-PP-Dol occurred (21). In contrast, control fibroblasts were able to do so, albeit with reduced efficiency when compared with Man(1,3)ManGlcNAc2-PP-Dol as glycosyl acceptor. Because a bioinformatic approach of the yeast data base did not reveal an unknown open reading frame that might encode an additional putative mannosyltransferase being involved in LLO synthesis, we reasoned that ALG2 may have a dual function, i.e. synthesizing both Man2GlcNAc2-PP-Dol and Man3GlcNAc2-PP-Dol. While the current study was in progress, evidence was presented that a membrane fraction from Escherichia coli, expressing ALG2 from yeast, is able to carry out an α1,3- and α1,6-mannosylation to form the branched pentasaccharide intermediate (22). However, the contribution of native E. coli enzymes could not entirely be ruled out. So far Alg2 has not been studied biochemically in yeast. Here, we confirm and extent this finding by investigating Alg2 in yeast. We first established a radioactive in vitro assay and demonstrate that Alg2, immunoprecipitated from detergent extracts of yeast microsomal membranes, is indeed sufficient to catalyze both elongation of Man1GlcNAc2-PP-Dol to Man2GlcNAc2-PP-Dol and subsequently to Man3GlcNAc2-PP-Dol. Furthermore we investigated the membrane topology of Alg2 mannosyltransferase. Evidence will be presented that Alg2 is composed only of the two N-terminal of four predicted transmembrane domains (TMDs), whereas the C-terminal hydrophobic sequences contribute to ER localization merely in a nontransmembrane manner. Surprisingly, none of the four domains is essential for Alg2 activity because deletion of either the two N-terminal or C-terminal domains gives rise to an active transferase. Finally, we perform a mutational analysis of Alg2 and identify amino acids required for its activity.Open in a separate windowFIGURE 8.Early steps of lipid-linked oligosaccharide formation on the cytosolic side of the ER membrane. Biosynthesis starts with the transfer of a GlcNAc-phosphate to dolichol phosphate with formation of the pyrophosphate bond, catalyzed by Alg7. The second step is catalyzed be the dimeric Alg14/Alg13 complex, whereby membrane-bound Alg14 recruits cytosolic Alg13 to the membrane with formation of the active GlcNAc transferase. Following the addition of the β1,4-linked mannose by Alg1, Alg2 catalyzes, as demonstrated here, both the transfer of the α1,3- and α1,6-linked mannose. The two final α1,2-mannose residues are transferred by Alg11, before the Man5GlcNAc2-PP heptasaccharide is translocated across the ER membrane to the lumen, where further elongation takes place to the full-length core saccharide. All of the sugar residues are donated by sugar nucleotides.  相似文献   

14.
An enzymatic in vitro alginate polymerization assay was developed by using 14C-labeled GDP-mannuronic acid as a substrate and subcellular fractions of alginate overproducing Pseudomonas aeruginosa FRD1 as a polymerase source. The highest specific alginate polymerase activity was detected in the envelope fraction, suggesting that cytoplasmic and outer membrane proteins constitute the functional alginate polymerase complex. Accordingly, no alginate polymerase activity was detected using cytoplasmic membrane or outer membrane proteins, respectively. To determine the requirement of Alg8, which has been proposed as catalytic subunit of alginate polymerase, nonpolar isogenic alg8 knockout mutants of alginate-overproducing P. aeruginosa FRD1 and P. aeruginosa PDO300 were constructed, respectively. These mutants were deficient in alginate biosynthesis, and alginate production was restored by introducing only the alg8 gene. Surprisingly, this resulted in significant alginate overproduction of the complemented P. aeruginosa Δalg8 mutants compared to nonmutated strains, suggesting that Alg8 is the bottleneck in alginate biosynthesis. 1H-NMR analysis of alginate isolated from these complemented mutants showed that the degree of acetylation increased from 4.7 to 9.3% and the guluronic acid content was reduced from 38 to 19%. Protein topology prediction indicated that Alg8 is a membrane protein. Fusion protein analysis provided evidence that Alg8 is located in the cytoplasmic membrane with a periplasmic C terminus. Subcellular fractionation suggested that the highest specific PhoA activity of Alg8-PhoA is present in the cytoplasmic membrane. A structural model of Alg8 based on the structure of SpsA from Bacillus subtilis was developed.  相似文献   

15.
The polyene macrolide antibiotic nystatin, produced commercially by the bacterium Streptomyces noursei, is an important antifungal agent used in human therapy for treatment of certain types of mycoses. Early studies on nystatin biosynthesis in S. noursei provided important information regarding the precursors utilised in nystatin biosynthesis and factors affecting antibiotic yield. New insights into the enzymology of nystatin synthesis became available after the gene cluster governing nystatin biosynthesis in S. noursei was cloned and analysed. Six large polyketide synthase proteins were implicated in the formation of the nystatin macrolactone ring, while other enzymes, such as P450 monooxygenases and glycosyltransferase, were assumed responsible for ring decoration. The latter data, supported by analysis of the polyene mixture synthesised by the nystatin producer, helped elucidate the complete nystatin biosynthetic pathway. This information has proved useful for engineered biosynthesis of novel nystatin analogues, suggesting a plausible route for the generation of potentially safer and more efficient antifungal drugs.  相似文献   

16.
Several molecular mechanisms are involved in the genetic code interpretation during translation, as codon degeneration for the incorporation of rare amino acids. One mechanism that stands out is selenocysteine (Sec), which requires a specific biosynthesis and incorporation pathway. In Bacteria, the Sec biosynthesis pathway has unique features compared with the eukaryote pathway as Ser to Sec conversion mechanism is accomplished by a homodecameric enzyme (selenocysteine synthase, SelA) followed by the action of an elongation factor (SelB) responsible for delivering the mature Sec-tRNASec into the ribosome by the interaction with the Selenocysteine Insertion Sequence (SECIS). Besides this mechanism being already described, the sequential events for Sec-tRNASec and SECIS specific recognition remain unclear. In this study, we determined the order of events of the interactions between the proteins and RNAs involved in Sec incorporation. Dissociation constants between SelB and the native as well as unacylated-tRNASec variants demonstrated that the acceptor stem and variable arm are essential for SelB recognition. Moreover, our data support the sequence of molecular events where GTP-activated SelB strongly interacts with SelA.tRNASec. Subsequently, SelB.GTP.tRNASec recognizes the mRNA SECIS to deliver the tRNASec to the ribosome. SelB in complex with its specific RNAs were examined using Hydrogen/Deuterium exchange mapping that allowed the determination of the molecular envelopes and its secondary structural variations during the complex assembly. Our results demonstrate the ordering of events in Sec incorporation and contribute to the full comprehension of the tRNASec role in the Sec amino acid biosynthesis, as well as extending the knowledge of synthetic biology and the expansion of the genetic code.  相似文献   

17.
We are interested in asparagine-linked glycans (N-glycans) of Plasmodium falciparum and Toxoplasma gondii, because their N-glycan structures have been controversial and because we hypothesize that there might be selection against N-glycans in nucleus-encoded proteins that must pass through the endoplasmic reticulum (ER) prior to threading into the apicoplast. In support of our hypothesis, we observed the following. First, in protists with apicoplasts, there is extensive secondary loss of Alg enzymes that make lipid-linked precursors to N-glycans. Theileria makes no N-glycans, and Plasmodium makes a severely truncated N-glycan precursor composed of one or two GlcNAc residues. Second, secreted proteins of Toxoplasma, which uses its own 10-sugar precursor (Glc3Man5GlcNAc2) and the host 14-sugar precursor (Glc3Man9GlcNAc2) to make N-glycans, have very few sites for N glycosylation, and there is additional selection against N-glycan sites in its apicoplast-targeted proteins. Third, while the GlcNAc-binding Griffonia simplicifolia lectin II labels ER, rhoptries, and surface of plasmodia, there is no apicoplast labeling. Similarly, the antiretroviral lectin cyanovirin-N, which binds to N-glycans of Toxoplasma, labels ER and rhoptries, but there is no apicoplast labeling. We conclude that possible selection against N-glycans in protists with apicoplasts occurs by eliminating N-glycans (Theileria), reducing their length (Plasmodium), or reducing the number of N-glycan sites (Toxoplasma). In addition, occupation of N-glycan sites is markedly reduced in apicoplast proteins versus some secretory proteins in both Plasmodium and Toxoplasma.Animals, fungi, and plants synthesize Asn-linked glycans (N-glycans) by means of a lipid-linked precursor containing 14 sugars (dolichol-PP-Glc3Man9GlcNAc2) (26). Recently we used bioinformatics and experimental methods to show that numerous protists are missing sets of glycosyltransferases (Alg1 to Alg14) and so make truncated N-glycan precursors containing 0 to 11 sugars (46). For example, Entamoeba histolytica, which causes dysentery, makes N-glycan precursors that contain seven sugars (Man5GlcNAc2) (33). Giardia lamblia, a cause of diarrhea, makes N-glycan precursors that contain just GlcNAc2 (41). N-glycan precursors may be identified by metabolic labeling with radiolabeled mannose (Entamoeba) or glucosamine (Giardia) (46). Unprocessed N-glycans of each protist may be recognized by wheat germ agglutinin 1 (WGA-1) (GlcNAc2 of Giardia) or by the antiretroviral lectin cyanovirin-N (Man5GlcNAc2 of Entamoeba) (2, 33, 41).N-glycans are transferred from lipid-linked precursors to sequons (Asn-Xaa-Ser or Asn-Xaa-Thr, where Xaa cannot be Pro) on nascent peptides by an oligosaccharyltransferase (OST) (28). For the most part, transfer of N-glycans by the OST is during translocation, although there are human and Trypanosoma OSTs that transfer N-glycans after translocation (34, 45).N-glycan-dependent quality control (QC) systems for protein folding and endoplasmic reticulum (ER)-associated degradation (ERAD), which are present in most eukaryotes, are missing from Giardia and a few other protists that make truncated N-glycans (5, 26, 53). There is positive Darwinian selection for sequons (sites of N-glycans) that contain Thr in secreted and membrane proteins of organisms that have N-glycan-dependent QC (12). This selection occurs for the most part by an increased probability that Asn and Thr will be present in sequons rather than elsewhere in secreted and membrane proteins. In contrast, there is no selection on sequons that contain Ser, and there is no selection on sequons in the secreted proteins of organisms that lack N-glycan-dependent QC.For numerous reasons, we are interested in the N-glycans of Plasmodium falciparum and Toxoplasma gondii, which cause severe malaria and disseminated infections, respectively.(i) There has been controversy for a long time as to whether Plasmodium makes N-glycans. While some investigators identified a 14-sugar Plasmodium N-glycan resembling that of the human host (29), others identified no N-glycans (6, 22).(ii) There is also controversy concerning whether the N-glycans of Toxoplasma, after removal of Glc by glucosidases in the ER lumen, contain either 7 sugars (Man5GlcNAc2), like Entamoeba (32, 33), or 11 sugars (Man9GlcNAc2), like the human host (16, 19, 26). If it is Man5GlcNAc2, then Toxoplasma uses the dolichol-PP-linked glycan predicted by its set of Alg enzymes (32, 46). If it is Man9GlcNAc2, then Toxoplasma uses the dolichol-PP-linked glycan of the host cell (16, 19, 26).(iii) Both Plasmodium and Toxoplasma are missing proteins involved in N-glycan-dependent QC of protein folding (5).(iv) We hypothesize that there may be negative selection against N-glycans in Plasmodium and Toxoplasma, because the N-glycans added in the ER lumen during translocation will likely interfere with threading of nucleus-encoded apicoplast proteins into a nonphotosynthetic, chloroplast-derived organelle called the apicoplast (21, 35, 37, 48, 52, 54). Nucleus-encoded apicoplast proteins have a bipartite signal at the N terminus, which targets proteins first to the lumen of the ER and second to lumen of the apicoplast. This bipartite signal has been used in transformed plasmodia where green fluorescent protein (GFP) is targeted to the apicoplast with the bipartite signal of the acyl carrier protein (ACPleader-GFP), to the secretory system with the signal sequence only (ACPsignal-GFP), and to the cytosol with the organelle-targeting transit peptide only (ACPtransit-GFP) (55). Similar constructs have been used to characterize signals that target nucleus-encoded proteins of Toxoplasma to the apicoplast (11, 25).Here we use a combination of bioinformatic, biochemical, and morphological methods to characterize the N-glycans of Plasmodium and Toxoplasma and to test our hypothesis that there is negative selection against N-glycans in protists with apicoplasts.  相似文献   

18.
A plasma membrane amino acid transporter B0,+ (ATB0,+), encoded by the SLC6A14 gene, is specific for neutral and basic amino acids. It is up-regulated in several types of malignant cancers. Neurotransmitter transporters of the SLC6 family interact with specific SEC24 proteins of the COPII complex along their pathway from the endoplasmic reticulum (ER) to Golgi. This study focused on the possible role of SEC24 proteins in ATB0,+ trafficking. Rat ATB0,+ was expressed in HEK293 cells, its localization and trafficking were examined by Western blot, deglycosylation, immunofluorescence (co-localization with ER and trans-Golgi markers) and biotinylation. The expression of ATB0,+ at the plasma membrane was decreased by dominant negative mutants of SAR1, a GTPase, whose activity triggers the formation of the COPII complex. ATB0,+ co-precipitated with SEC24C (but not with the remaining isoforms A, B and D). This interaction was confirmed by immunocytochemistry and the proximity ligation assay. Co-localization of SEC24C with endogenous ATB0,+ was also observed in MCF-7 breast cancer cells. Contrary to the endogenous transporter, part of the overexpressed ATB0,+ is directed to proteolysis, a process significantly reversed by a proteasome inhibitor bortezomib. Co-transfection with a SEC24C dominant negative mutant attenuated ATB0,+ expression at the plasma membrane, due to proteolytic degradation. These results support a hypothesis that lysine at position +2 downstream of the ER export “RI” motif on the cargo protein is crucial for SEC24C binding and for further trafficking to the Golgi. Moreover, there is an equilibrium between ER export and degradation mechanisms in case of overexpressed transporter.  相似文献   

19.
DNA MTases (methyltransferases) catalyse the transfer of methyl groups to DNA from AdoMet (S-adenosyl-L-methionine) producing AdoHcy (S-adenosyl-L-homocysteine) and methylated DNA. The C5 and N4 positions of cytosine and N6 position of adenine are the target sites for methylation. All three methylation patterns are found in prokaryotes, whereas cytosine at the C5 position is the only methylation reaction that is known to occur in eukaryotes. In general, MTases are two-domain proteins comprising one large and one small domain with the DNA-binding cleft located at the domain interface. The striking feature of all the structurally characterized DNA MTases is that they share a common core structure referred to as an 'AdoMet-dependent MTase fold'. DNA methylation has been reported to be essential for bacterial virulence, and it has been suggested that DNA adenine MTases (Dams) could be potential targets for both vaccines and antimicrobials. Drugs that block Dam could slow down bacterial growth and therefore drug-design initiatives could result in a whole new generation of antibiotics. The transfer of larger chemical entities in a MTase-catalysed reaction has been reported and this represents an interesting challenge for bio-organic chemists. In general, amino MTases could therefore be used as delivery systems for fluorescent or other reporter groups on to DNA. This is one of the potential applications of DNA MTases towards developing non-radioactive DNA probes and these could have interesting applications in molecular biology. Being nucleotide-sequence-specific, DNA MTases provide excellent model systems for studies on protein-DNA interactions. The focus of this review is on the chemistry, enzymology and structural aspects of exocyclic amino MTases.  相似文献   

20.
Abstract

Translocation into the endoplasmic reticulum (ER) is the first biogenesis step for hundreds of eukaryotic secretome proteins. Over the past 30 years, groundbreaking biochemical, structural and genetic studies have delineated one conserved pathway that enables ER translocation- the signal recognition particle (SRP) pathway. However, it is clear that this is not the only pathway which can mediate ER targeting and insertion. In fact, over the past decade, several SRP-independent pathways have been uncovered, which recognize proteins that cannot engage the SRP and ensure their subsequent translocation into the ER. These SRP-independent pathways face the same challenges that the SRP pathway overcomes: chaperoning the preinserted protein while in the cytosol, targeting it rapidly to the ER surface and generating vectorial movement that inserts the protein into the ER. This review strives to summarize the various mechanisms and machineries which mediate these stages of SRP-independent translocation, as well as examine why SRP-independent translocation is utilized by the cell. This emerging understanding of the various pathways utilized by secretory proteins to insert into the ER draws light to the complexity of the translocational task, and underlines that insertion into the ER might be more varied and tailored than previously appreciated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号