首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
广西甘蔗根际高效联合固氮菌的筛选及鉴定   总被引:6,自引:0,他引:6  
胡春锦  林丽  史国英  汪茜  王钱崧  李杨瑞 《生态学报》2012,32(15):4745-4752
对广西主要甘蔗产区的根际联合固氮细菌进行了收集和评价,拟筛选获得对甘蔗具有潜在促生性能的联合固氮菌,为甘蔗生产节肥减耗提供依据。结合nifH基因扩增和固氮酶活性分析方法筛选获得36个固氮细菌菌株;进一步对所获得固氮菌株的固氮能力、溶磷性、分泌植物生长素IAA的特性等促进植物生长潜能进行评价,获得了5个同时具有较强固氮能力、降解无机磷和分泌植物生长激素IAA的功能菌株;通过Biolog鉴定系统和16S rRNA序列分析对5个具有较好应用潜力的固氮菌进行分类鉴定。结果表明这5个菌株分别属于Klebsiella sp.、Bacillus megaterium、Pseudomonas sp.、Pantoea sp.和Burkholderia sp.。本研究结果表明广西甘蔗根际联合固氮菌具有较大的开发利用潜力。  相似文献   

2.
【背景】生产上过高的氮肥投入是我国农业可持续发展的重要限制因子之一。利用生物固氮是减少氮肥施用量最为有效的途径,植物内生固氮菌资源的挖掘和利用对我国农业可持续发展具有重要实践意义。【目的】筛选高效甘蔗内生固氮菌,并对其联合固氮效率及促生长功能进行评价。【方法】从广西甘蔗茎基部组织分离筛选到一株内生固氮菌株NN08200,利用乙炔还原法测定固氮酶活性,通过菌落PCR扩增nif H基因确定菌株为固氮菌;通过菌株培养性状和菌体形态观察、Biolog细菌鉴定系统和16SrRNA基因序列分析确定该菌株的分类;采用盆栽接种测定菌株对甘蔗的实际促生长作用,并利用15N同位素稀释法测定其相对固氮效率。【结果】菌株NN08200的固氮酶活性达到2445nmolC2H4/(h·m L),菌株的nif H基因长度为339bp,与甘蔗内生固氮醋酸杆菌Gluconacetobacter diazotrophicus PAL5菌株的nif H相似性达99%;根据菌株培养性状和菌体形态观察、Biolog细菌鉴定系统和16SrRNA基因序列分析结果,菌株NN08200属于泛菌属(Pantoeasp.)细菌;盆栽接种菌株NN08200能显著提高甘蔗幼苗的株高和干重,15N同位素分析结果表明接种该菌株甘蔗植株的根、茎和叶从空气中获得氮素的百分率分别为7.49%、15.02%和10.79%,其联合固氮效率显著优于甘蔗内生固氮模式菌株G. diazotrophicus PAL5,利用后者接种的甘蔗根、茎和叶从空气中获得氮的百分率分别为3.53%、9.44%和4.87%。【结论】菌株Pantoea sp. NN08200是高效甘蔗内生固氮菌,其固氮促生长效果明显高于G. diazotrophicus PAL5菌株,可望研发成为优良固氮微生物肥料生产菌种,并可进一步用于甘蔗联合固氮菌作用机理的相关研究。  相似文献   

3.
【背景】我国甘蔗生产中氮肥过量施用严重,导致生产成本居高不下,充分发挥甘蔗与内生固氮菌的联合固氮作用,减少氮肥施用量,对促进我国甘蔗产业可持续发展具有重要意义。【目的】筛选优势甘蔗内生固氮菌,对其基本特性、联合固氮效率及促生长功能进行评价。【方法】从甘蔗根系分离到一株内生固氮菌GXS16,利用乙炔还原法测定固氮酶活性,通过PCR扩增nifH基因确定菌株为固氮菌;通过形态观察、Biolog检测和16S rRNA基因序列分析等对菌株进行分类;通过接种盆栽甘蔗检测菌株的促生长作用,采用15N同位素稀释法检测菌株相对固氮效率。【结果】菌株GXS16固氮酶活性为2.42μmol-C2H4/(h·mL),根据菌株培养性状和菌体形态观察、Biolog检测、16S rRNA、nifH、acdS基因序列分析结果,菌株GXS16属于伯克氏菌属(Burkholderia);菌株GXS16还具有1-氨基环丙烷-1-羧酸脱氨酶(1-Aminocyclopropane-1-Carboxylate Deaminase,ACC)活性及合成生长素吲哚乙酸...  相似文献   

4.
为评估甘蔗生物固氮量,采用15N同位素稀释法,以木薯为参比植物,进行温室桶栽试验.结果表明:甘蔗全生育期植株固氮11.3514% Ndfa,固氮量每桶0.9269 g.甘蔗根、茎、叶的固氮百分率和固氮量大小依序为叶>茎>根.叶的固氮百分率(13.2668% Ndfa)略高于植株,但两者差异不显著.甘蔗植株全氮量中来自空气氮(生物固氮)、肥料氮和土壤氮的比例分别为11.3514%、7.6857%、80.9629%.甘蔗的氮肥利用率为58.7583%.甘蔗根、茎、叶各部位均有固氮现象,生产上可以用叶代替植株来评估甘蔗的生物固氮量.  相似文献   

5.
The process of nitrogen (N) fixation by plant-associated bacteria plays an indispensable role in the development of novel agricultural solutions worldwide. In this sense, it is of extreme importance to identify and understand the properties of efficient plant-growth-promoting bacteria (PGPB) that are able to fix N. In this study, the characterization and detailed genomic analysis of the diazotrophic bacterium Kosakonia radicincitans MUSA4, isolated from the internal leaf tissues of a banana tree in Brazil, were undertaken.K. radicincitans MUSA4 presented several plant-growth-promoting traits, including indoleacetic acid, siderophore, acetoin and polyamine biosynthesis, phosphate solubilization, and nitrogen fixation. The strain was able to increase cucumber plant growth significantly, demonstrating its potential in beneficial interactions with plant hosts. Detailed genomic analysis of strain MUSA4 revealed the abundant presence of genes involved in plant colonization, stress resistance and plant-growth-promoting abilities. Moreover, the genome harbored the nif and anf gene clusters, encoding the Fe-Mo nitrogenase and Fe-Fe nitrogenase systems, respectively. Comparative genomic analysis also showed that strain MUSA4 possessed several strain-specific genes, which could be related to its evolutionary history in Brazilian mangrove environments.The results obtained in the present study revealed the plant beneficial role and biotechnological potential of K. radicincitans MUSA4, and provided new insights into plant colonization and plant growth promoting mechanisms employed by diazotrophic Kosakonia.  相似文献   

6.
为探究具有高固氮酶活性的变栖克雷伯氏菌DX120E回接甘蔗后的固氮能力和促生效应,以甘蔗品种B8和GT21的无菌组培苗为材料,采用根部接种的方法,研究固氮菌DX120E在甘蔗体内的定殖数量及其对甘蔗组培苗植株生长、氮代谢关键酶活性和硝态氮含量及矿质元素吸收的影响.结果表明: 固氮菌DX120E能在甘蔗根和地上部分组织内生存和定殖;接种固氮菌DX120E可以有效促进甘蔗植株生长和对矿质营养的吸收;显著提高甘蔗植株体内的硝酸还原酶(NR)活性,同时也能在一定程度上提高植株体内谷氨酰胺合成酶(GS)活性,增加硝态氮含量.表明变栖克雷伯氏菌DX120E对甘蔗具有明显的促生效应,在生物固氮肥开发方面具有较大的应用前景.  相似文献   

7.
Different experiments have estimated that the contribution of biological nitrogen fixation (BNF) is largely variable among sugarcane cultivars. Which bacteria are the most important in sugarcane-associated BNF is unknown. However, Gluconacetobacter diazotrophicus has been suggested as a strong candidate responsible for the BNF observed. In the present study, bacteria-free micropropagated plantlets of five sugarcane cultivars were inoculated with three G. diazotrophicus strains belonging to different genotypes. Bacterial colonization was monitored under different nitrogen fertilization levels and at different stages of plant growth. Analysis of the population dynamics of G. diazotrophicus strains in the different sugarcane varieties showed that the bacterial populations decreased drastically in relation to plant age, regardless of the nitrogen fertilization level, bacterial genotype or sugarcane cultivars. However, the persistence of the three strains was significantly longer in some cultivars (e.g., MEX 57-473) than in others (e.g., MY 55-14). In addition, some strains (e.g., PAl 5T) persisted for longer periods in higher numbers than other strains (e.g., PAl 3) inside plants of all the cultivars tested. Indeed, the study showed that the inoculation of G. diazotrophicus may be beneficial for sugarcane plant growth, but this response is dependent both on the G. diazotrophicus genotype and the sugarcane variety. The most positive response to inoculation was observed with the combination of strain PAl 5T and the variety MEX 57-473. Although the positive effect on sugarcane growth apparently occurred by mechanisms other than nitrogen fixation, the results show the importance of the sugarcane variety for the persistence of the plant–bacteria interaction, and it could explain the different rates of BNF estimated among sugarcane cultivars.  相似文献   

8.
Nitrogen‐fixing rhizobacteria can promote plant growth; however, it is controversial whether biological nitrogen fixation (BNF) from associative interaction contributes to growth promotion. The roots of Setaria viridis, a model C4 grass, were effectively colonized by bacterial inoculants resulting in a significant enhancement of growth. Nitrogen‐13 tracer studies provided direct evidence for tracer uptake by the host plant and incorporation into protein. Indeed, plants showed robust growth under nitrogen‐limiting conditions when inoculated with an ammonium‐excreting strain of Azospirillum brasilense. 11C‐labeling experiments showed that patterns in central carbon metabolism and resource allocation exhibited by nitrogen‐starved plants were largely reversed by bacterial inoculation, such that they resembled plants grown under nitrogen‐sufficient conditions. Adoption of S. viridis as a model should promote research into the mechanisms of associative nitrogen fixation with the ultimate goal of greater adoption of BNF for sustainable crop production.  相似文献   

9.
Pseudomonas sp. strain 267 isolated from soil promoted growth of different plants under field conditions and enhanced symbiotic nitrogen fixation in clover under gnotobiotic conditions. This strain produced pyoverdine-like compound under low-iron conditions and secreted vitamins of the B group. The role of fluorescent siderophore production in the beneficial effect of strain 267 on nodulated clover plants was investigated. Several non-fluorescent (Pvd-) Tn5 insertion mutants of Pseudomonas sp. strain 267 were isolated and characterized. The presence of Tn5 insertions was confirmed by Southern analysis of EcoRI digested genomic DNA of each derivative strain. The siderophore-negative mutants were compared to the parental strain with respect to their growth promotion of nodulated clover infected with Rhizobium leguminosarum bv. trifolii 24.1. We found that all isolated Pvd- mutants stimulated growth of nodulated clover plants in a similar manner to the parental strain. No consistent differences were observed between strain 267 and Pvd- derivatives strains with respect to their plant growth promotion activity under gnotobiotic conditions.Dr Deryto died in august 1994  相似文献   

10.
Nitrogen fixing endophytic Serratia sp. was isolated from rice and characterized. Re-colonization ability of Serratia sp. in the rice seedlings as endophyte was studied under laboratory condition. For detecting the re-colonization potential in the rice seedlings, Serratia sp. was marked with reporter genes (egfp and Kmr) using transposon mutagenesis. The conjugants were screened for re-colonization ability and presence of nif genes using PCR. Further, the influence of flavonoids and growth hormones on the endophytic colonization and in planta nitrogen fixation of Serratia was also investigated. The flavonoids, quercetin (3 microg/ml) and diadzein (2 microg/ml) significantly increased the re-colonization ability of the endophytic Serratia, whereas the growth hormones like IAA and NAA (5 microg/ml) reduced the endophytic colonization ability of Serratia sp. Similarly, the in planta nitrogen fixation by Serratia sp. in rice was significantly increased due to flavonoids. The inoculation of endophytic diazotrophs increased the plant biomass and biochemical constituents.  相似文献   

11.
基于基因组的一株土壤固氮菌分离菌株鉴定及其促生作用   总被引:2,自引:1,他引:1  
[目的] 为获得高效固氮菌株,充分研究利用土壤固氮菌资源。[方法] 选取固氮能力较高的紫色土发育水稻土,采用富集纯化法分离固氮微生物菌株。通过16S rRNA基因系统发育分析和全基因组相关指数比较对新分离菌株进行物种鉴定。采用乙炔还原法和15N2示踪法定量测定新分离菌株的固氮能力,通过培养特性和接种效果初步研究固氮菌株的促生作用。[结果] 从紫色土发育水稻土中分离得到1株可在无氮培养基上快速生长的菌株P208。基于16S rRNA基因和基因组92个核心基因的系统发育分析结果表明,新分离菌株P208与Azotobacter chroococcum IAM 12666T(=ATCC 9043T)系统发育距离最近(16S rRNA基因相似度为99.79%)。菌株P208与A.chroococcum ATCC 9043T的基因组平均核苷酸一致性(ANI)、平均氨基酸一致性(AAI)和数字DNA-DNA杂交值(dDDH)高于物种分类阈值(ANI>95%-96%,AAI>95%-96%,dDDH>70%),最大唯一匹配指数(MUMi)低于物种分类阈值(<0.33),得出新分离菌株P208为褐球固氮菌(A.chroococcum)。A.chroococcum P208固氮活性为模式菌株A.chroococcum ATCC 9043T的2.61倍。除固氮能力外,A.chroococcum P208具有IAA生成、溶磷活性和铁载体生成等促进植物生长潜力的培养特性,室内培养条件下接种A.chroococcum P208能够促进水稻、小麦幼苗根系的生长。[结论] 从固氮能力较强的水稻土中分离纯化得到1株具有较强固氮、促生潜力的固氮菌,具有潜在的开发应用价值,可为研究利用生物固氮提供微生物资源。  相似文献   

12.
We report the isolation of nitrogen fixing, phytohormone producing bacteria from sugarcane and their beneficial effects on the growth of micropropagated sugarcane plantlets. Detection of the nitrogen fixing bacteria by ARA-based MPN (acetylene reduction assay-based most probable number) method indicated the presence of up to 106 bacteria per gram dry weight of stem and 107 bacteria per gram dry weight of root of field-grown sugarcane. Two nitrogen fixing bacterial isolates were obtained from stem (SC11, SC20) and two from the roots (SR12, SR13) of field-grown plants. These isolates were identified as Enterobacter sp. strains on the basis of their morphological characteristics and biochemical tests. The isolate SC20 was further characterized by 16S rRNA sequence analysis, which showed high sequence similarity to the sequence of Enterobacter cloacae and Klebsiella oxytoca. All the isolates produced the phytohormone indoleacetic acid (IAA) in pure culture and this IAA production was enhanced in growth medium containing tryptophan. The bacterial isolates were used to inoculate micro-propagated sugarcane in vitro where maximum increase in the root and shoot weight over control was observed in the plantlets inoculated with strain SC20. By using the15N isotope dilution technique, maximum nitrogen fixation contribution (28% of total plant nitrogen) was detected in plantlets inoculated with isolate SC20.  相似文献   

13.
The promotion of sugarcane growth by the endophytic Pantoea agglomerans strain 33.1 was studied under gnotobiotic and greenhouse conditions. The green fluorescent protein (GFP)-tagged strain P. agglomerans 33.1::pNKGFP was monitored in vitro in sugarcane plants by microscopy, reisolation, and quantitative PCR (qPCR). Using qPCR and reisolation 4 and 15 days after inoculation, we observed that GFP-tagged strains reached similar density levels both in the rhizosphere and inside the roots and aerial plant tissues. Microscopic analysis was performed at 5, 10, and 18 days after inoculation. Under greenhouse conditions, P. agglomerans 33.1-inoculated sugarcane plants presented more dry mass 30 days after inoculation. Cross-colonization was confirmed by reisolation of the GFP-tagged strain. These data demonstrate that 33.1::pNKGFP is a superior colonizer of sugarcane due to its ability to colonize a number of different plant parts. The growth promotion observed in colonized plants may be related to the ability of P. agglomerans 33.1 to synthesize indoleacetic acid and solubilize phosphate. Additionally, this strain may trigger chitinase and cellulase production by plant roots, suggesting the induction of a plant defense system. However, levels of indigenous bacterial colonization did not vary between inoculated and noninoculated sugarcane plants under greenhouse conditions, suggesting that the presence of P. agglomerans 33.1 has no effect on these communities. In this study, different techniques were used to monitor 33.1::pNKGFP during sugarcane cross-colonization, and our results suggested that this plant growth promoter could be used with other crops. The interaction between sugarcane and P. agglomerans 33.1 has important benefits that promote the plant''s growth and fitness.  相似文献   

14.
Application of environmentally friendly agents to reduce the use of chemicals and to enhance growth of plants is an ultimate goal of sustainable agriculture. The use of plant growth-promoting endophytes has become of great interest as a way to enhance plant growth and additionally protect plants from phytopathogens. In this study, 135 isolates of endophytic bacteria including actinomycetes were isolated from roots of commercial sugarcane plants cultivated in Thailand and were characterized for plant growth-promoting (PGP) traits. Based on morphological and 16S rRNA sequence analysis, the endophytes were distributed into 14 genera of which the most dominant species belong to Bacillus, Enterobacter, Microbispora, and Streptomyces. Two strains of endophytic diazotrophs, Bacillus sp. EN-24 and Enterobacter sp. EN-21; and two strains of actinomycetes, Microbispora sp. GKU 823 and Streptomyces sp. GKU 895, were selected based on their PGP traits including 1-aminocyclopropane-1-decarboxylate deaminase, indole-3-acetic acid, nitrogen fixation, phosphate solubilization, and siderophore production for evaluation of sugarcane growth enhancement by individual and co-inoculation. Sixty days after co-inoculation by endophytic diazotrophs and actinomycetes, the growth parameters of sugarcane plants were significantly greater than that of individual and un-inoculated plants. The results indicated that these endophytes have high potential as PGP agents that could be applied to promote sugarcane growth and could be developed as active added value biofertilizers in the future.  相似文献   

15.
The availability of nitrogen often limits plant growth in terrestrial ecosystems. The only biological reaction counterbalancing the loss of N from soils or ecosystems is biological nitrogen fixation, the enzymatic reduction of N2 to ammonia. Some gramineous crops such as certain Brazilian sugar cane cultivars or Kallar grass can derive a substantial part of the plant nitrogen from biological nitrogen fixation. Our research on grass-associated diazotrophs focuses on endophytic bacteria, microorganisms that multiply and spread inside plants without causing damage of the host plants or conferring an ecological threat to the plant. This review summarizes the current knowledge on the diazotrophic endophyte Azoarcus sp. BH72, which is capable of colonizing the interior of rice roots, one of the globally most important crops.  相似文献   

16.
Summary Homozygous mutant lines of field bean selected for (a) improved yielding potential and (b) altered plant architecture and/or physiological response were tested for symbiotic nitrogen fixing ability under field conditions in comparison with their parent cultivar.15N-tracer techniques were applied to determine %N derived from atmosphere. Data were collected on assimilate and nitrogen accumulation and distribution among various plant parts during two stages of reproductive growth.Symbiotic nitrogen fixation was closely correlated with total plant top biomass and nitrogen yield. A similar close association was found between crop yield and nitrogen harvest index. Both harvest indices tended to be negatively correlated with stage of maturity and with the amount of N derived from air per unit of area. The generally high %N derived from symbiotic N2 fixation and its comparatively small variability implies that this parameter may be difficult to improve inVicia faba under field conditions.It is concluded, that the main genetic potential for improving the amount of biological nitrogen fixation in this crop depends upon factors that promote high photosynthetic productivity and efficient N-use under appropriate agronomic conditions and with effective rhizobial associations. The establishment of rational ideotypes with a possitive impact on yield appears to be of practical significance for increasing the amount of symbiotically fixed nitrogen.  相似文献   

17.
在农业生产中,化学氮肥的投入大幅度增加了粮食产量,然而过量或不合理的施肥措施对农业生态环境造成了严重破坏.因此,挖掘植物自身的生物学特性,寻求其他有效的氮素来源,对农业减肥增效至关重要.其中,植物与微生物之间的生物固氮作用,能为宿主提供大量的清洁氮源,在农业生产中发挥着不可替代的作用.本文以甘蔗为代表,综述了植物联合固...  相似文献   

18.
Enterobacter radicincitans sp. nov. DSM16656(T) represents a new species of the genus Enterobacter which is a biological nitrogen-fixing endophytic bacterium with growth-promoting effects on a variety of crop and model plant species. The presence of genes for nitrogen fixation, phosphorous mobilization, and phytohormone production reflects this microbe's potential plant growth-promoting activity.  相似文献   

19.
20.
It is well described that the beneficial interactions between plants and bacteria are genotype and site specific. Brazilian sugarcane varieties can obtain up to 70% of their nitrogen requirement from biological nitrogen fixation (BNF), and this contribution is related to the Brazilian breeding and selection processes, by example of the variety SP70-1143. In this study the effect of two inoculation mixtures containing diazotrophic bacteria in our earlier pot experiment was evaluated with two sugarcane varieties, a known responder, SP70-1143, and a newly selected variety, SP81-3250, to investigate the sugarcane genotype effect and the role of the mixtures. The sugarcane varieties SP70-1143 and SP81-3250 were grown under commercial field conditions at three sites with contrasting soil types: an Alfisol, an Oxisol and an Ultisol that means a low, medium and high natural fertility respectively. The stem yield and BNF contribution in response to bacterial inoculation were influenced by the strain combinations in the inoculum, the plant genotype, and the soil type and nitrogen fertilization, confirming the genetic and environmental influence in PGP-bacteria interactions. Inoculation effects on the BNF contribution and stem yield increased in the variety SP70-1143 grown in the Alfisol without nitrogen fertilization for three consecutive crops, and it was equivalent to the annual nitrogen fertilization. The plants grown in the Oxisol showed small increases in the productivity of the variety SP70-1143, and in the Ultisol the sugarcane plants presented even decreases in the stem productivity due to inoculation with diazotrophic bacteria mixtures. The results demonstrate the feasibility of the inoculation technology using diazotrophic bacteria in micropropagated sugarcane varieties grown in soils with low to medium levels of fertility. In addition, the results also indicated that specific plant – bacteria – environment combinations are needed to harness the full benefits of BNF. Section Editor: C. P. Vance  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号