首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We measured the combined area of posterior medial barrel subfield (PMBSF) and anterior lateral barrel subfield (ALBSF) areas in four common inbred strains (C3H/HeJ, A /J, C57BL /6J, DBA/2J), B6D2F1, and ten recombinant inbred (RI) strains generated from C57BL/6J and DBA/2J progenitors (BXD) as an initial attempt to examine the genetic influences underlying natural variation in barrel field size in adult mice. These two subfields are associated with the representation of the whisker pad and sinus hairs on the contralateral face. Using cytochrome oxidase labeling to visualize the barrel field, we measured the size of the combined subfields in each mouse strain. We also measured body weight and brain weight in each strain. We report that DBA/2J mice have a larger combined PMBSF/ALBSF area (6.15 +/- 0.10 mm(2), n = 7) than C57BL /6J (5.48 +/- 0.13 mm(2), n = 10), C3H/HeJ (5.37 +/- 0.16 mm(2), n = 10), and A/J mice (5.04 +/- 0.09 mm(2), n = 15), despite the fact that DBA/2J mice have smaller average brain and body sizes. This finding may reflect dissociation between systems that control brain size with those that regulate barrel field area. In addition, BXD strains (average n = 4) and parental strains showed considerable and continuous variation in PMBSF/ALBSF area, suggesting that this trait is polygenic. Furthermore, brain, body, and cortex weights have heritable differences between inbred strains and among BXD strains. PMBSF/ALBSF pattern appears similar among inbred and BXD strains, suggesting that somatosensory patterning reflects a common plan of organization. This data is an important first step in the quantitative genetic analysis of the parcellation of neocortex into diverse cytoarchitectonic zones that vary widely within and between species, and in identifying the genetic factors underlying barrel field size using quantitative trait locus (QTL) analyses.  相似文献   

2.
We measured the combined area of posterior medial barrel subfield (PMBSF) and anterior lateral barrel subfield (ALBSF) areas in four common inbred strains (C3H/HeJ, A?/J, C57BL?/6J, DBA/2J), B6D2F1, and ten recombinant inbred (RI) strains generated from C57BL/6J and DBA/2J progenitors (BXD) as an initial attempt to examine the genetic influences underlying natural variation in barrel field size in adult mice. These two subfields are associated with the representation of the whisker pad and sinus hairs on the contralateral face. Using cytochrome oxidase labeling to visualize the barrel field, we measured the size of the combined subfields in each mouse strain. We also measured body weight and brain weight in each strain. We report that DBA/2J mice have a larger combined PMBSF/ALBSF area (6.15?±?0.10?mm2,?n?=?7) than C57BL?/6J (5.48?±?0.13?mm2,?n?=?10), C3H/HeJ (5.37?±?0.16?mm2,?n?=?10), and A/J mice (5.04?±?0.09?mm2,?n?=?15), despite the fact that DBA/2J mice have smaller average brain and body sizes. This finding may reflect dissociation between systems that control brain size with those that regulate barrel field area. In addition, BXD strains (average n?=?4) and parental strains showed considerable and continuous variation in PMBSF/ALBSF area, suggesting that this trait is polygenic. Furthermore, brain, body, and cortex weights have heritable differences between inbred strains and among BXD strains. PMBSF/ALBSF pattern appears similar among inbred and BXD strains, suggesting that somatosensory patterning reflects a common plan of organization. This data is an important first step in the quantitative genetic analysis of the parcellation of neocortex into diverse cytoarchitectonic zones that vary widely within and between species, and in identifying the genetic factors underlying barrel field size using quantitative trait locus (QTL) analyses.  相似文献   

3.
Recombinant inbred (RI) mice are frequently used to identify QTL that underlie differences in measurable phenotypes between two inbred strains of mice. Here we show that one RI strain, C57BL/6J x DBA/2J (BXD29), does not develop an inflammatory response following inhalation of LPS. Approximately 25% of F2 mice [F1(BXD29 x DBA/2J) x F1] are also unresponsive to inhaled LPS, suggesting the presence of a recessive mutation in the BXD29 strain. A genomic scan of these F2 mice revealed that unresponsive animals, but not responsive animals, are homozygous for C57BL/6J DNA at a single locus on chromosome 4 close to the genomic location of Tlr4. All progeny between BXD29 and gene-targeted Tlr4-deficient mice are unresponsive to inhaled LPS, suggesting that the mutation in the BXD29 strain is allelic with Tlr4. Moreover, the intact Tlr4 receptor is not displayed on the cell surface of BXD29 macrophages. Finally, a molecular analysis of the Tlr4 gene in BXD29 mice revealed that it is interrupted by a large insertion of repetitive DNA. These findings explain the unresponsiveness of BXD29 mice to LPS and suggest that data from BXD29 mice should not be included when using BXD mice to study phenotypes affected by Tlr4 function. Our results also suggest that the frequency of such unidentified, spontaneously occurring mutations is an issue that should be considered when RI strains are used to identify QTL.  相似文献   

4.
Among normal mouse strains, natural genetic variation offers the potential to investigate the structure and function of cell membranes. One such polymorphism between C57BL/6J and DBA/2J is a difference in erythrocyte sensitivity to osmotic lysis. The genetic basis for erythrocyte osmotic fragility differences between mouse strains C57BL/6 and DBA/2 was examined through analyses of their serial backcross progeny, recombinant inbred (ri) strains (BXD), and congenic C57BL/6 strains with allelic differences at Hbb or Fv-2. The data indicate that the fragility difference between C57BL/6 and DBA/2 is the result of allelic differences at a minimum of two segregating loci. One of these might be linked to, but is not identical with the gene encoding the beta chain of hemoglobin (Hbb). Allelic differences at Fv-2, a gene known to control the proportion of erythroid precursors in the S phase, and at Hba, the structural locus of hemoglobin alpha chain also appear to exert no major influence on red cell osmotic fragility. Furthermore, the fact that red cells from one of the RI strans (BXD-31) are strikingly more resistant than those from the resistant parental strain DBA/2 leads to the conclusion that the degree of resistance/susceptibility for either strain is determined by the combined contributions of gene effects not all of which act in the same direction. We also found that red cells from strans C57BL/6 and DBA/2 differ in their uptake of 51Cr. This result suggests the possibility that red cell osmotic fragility differences may be due in part to differences in ion metabolism or membrane transport.  相似文献   

5.
Recombinant inbred strains were used to demonstrate the existence of a major locus on chromosome 1, designated Sap, which controls the endogenous concentration of the mouse acute phase reactant, serum amyloid P-component (SAP). Levels of SAP were associated with alleles at the Ly-9 locus in two sets of RI strains: BXD (C57BL/6J × DBA/2) and BXH (C57BL/6J × C3H/HeJ). Low endogenous levels of SAP were present in the C57BL/6J progenitor strain and in most of the RI strains which inherited the Ly-9 ballele. High levels of SAP were present in the DBA/2J and C3H/HeJ progenitors and in most of the RI strains which inherited the Ly-9 aallele. In the BXD strains 91% of the genetic variation of SAP levels was accounted for by segregation at the Ly-9 locus while an additional 9% was attributed to genetic factors unlinked to Ly-9. In the BXH strains the percentage of genetic variation accounted for by Ly-9 segregation was reduced to 46%, while 54% was accounted for by other genetic factors. Because of background genetic variation it was not possible to detect any crossovers between Sap and Ly-9. However, in the BXD strains the linkage between Sap and Ly-9 appears to be quite close. The B6.C-H-25 ccongenic strain, which carries a segment of BALB/c chromosome 1 including the minor histocompatibility locus H-25 on a C57BL/6By background, had the same endogenous SAP level as the BALB/c donor strain.  相似文献   

6.
The DBA/2J inbred strain of mice is used extensively in hearing research, yet little is known about the genetic basis for its early onset, progressive hearing loss. To map underlying genetic factors we analyzed recombinant inbred strains and linkage backcrosses. Analysis of 213 mice from 31 BXD recombinant inbred strains detected linkage of auditory brain-stem response thresholds with a locus on distal chromosome 11, which we designate ahl8. Analysis of 225 N2 mice from a backcross of (C57BL/6JxDBA/2J) F1 hybrids to DBA/2J mice confirmed this linkage (LOD>50) and refined the ahl8 candidate gene interval. Analysis of 214 mice from a backcross of (B6.CAST-Cdh23 Ahl+ xDBA/2J) F1 hybrids to DBA/2J mice demonstrated a genetic interaction of Cdh23 with ahl8. We conclude that ahl8 is a major contributor to the hearing loss of DBA/2J mice and that its effects are dependent on the predisposing Cdh23 ahl genotype of this strain.  相似文献   

7.
Electroencephalographic (EEG) changes, as measured by the awake state, slow-wave sleep (SWS), rapid-eye movement (REM) patterns and ratio of REM/total sleep, were recorded in aging male mice of DBA/2J and C57BL/6J strains. Results indicate that there is a significant increase in the awake state accompanied by significant decrease in SWS with advancing age for both strains, although these changes appear more pronounced in DBA/2J mice than C57BL/6J mice. Of considerable significance is the finding that REM sleep is absent in mice of DBA/2J strain at 23.5 months of age. Based on these findings, the conclusion was reached that strain DBA/2J ages significantly faster than C57BL/6J. The difference in aging between the two strains emphasizes the need for additional studies dealing with genetic aspects of aging.  相似文献   

8.
Four genetic loci were tested for linkage with loci that control genetic resistance to lethal ectromelia virus infection in mice. Three of the loci were selected because of concordance with genotypes assigned to recombinant inbred (RI) strains of mice derived from resistant C57BL/6 and susceptible DBA/2 (BXD) mice on the basis of their responses to challenge infection. Thirty-six of 167 male (C57BL/6 x DBA/2)F1 x DBA/2 backcross (BC) mice died (22%), of which 27 (75%) were homozygous for DBA/2 alleles at Hc and H-2D. Twenty-eight percent of sham-castrated and 6% of sham-ovariectomized BC mice were susceptible to lethal mousepox, whereas 50% of gonadectomized mice were susceptible. There was no linkage evident between Hc or H-2D and loci that controlled resistance to lethal ectromelia virus infection in 44 castrated BC mice. Mortality among female mice of BXD RI strains with susceptible or intermediate male phenotypes was strongly correlated (r = 0.834) with male mortality. Gonadectomized C57BL/6 mice were as resistant as intact mice to lethal ectromelia virus infection. These results indicate that two gonad-dependent genes on chromosomes 2 and 17 and one gonad-independent gene control resistance to mousepox virus infection, that males and females share gonad-dependent genes, and that the gonad-independent gene is fully protective.  相似文献   

9.
The aromatic hydrocarbon responsiveness (Ah) locus has been correlated with genetic differences in the risk of drug toxicity, teratogenesis, chemical carcinogenesis, and mutagenesis. Hepatic cytosolic Ah receptor levels, 2-amino-5-chlorobenzoxazole (zoxazolamine) paralysis time following beta-naphthoflavone treatment and aryl hydrocarbon hydroxylase (AHH3, acetanilide 4-hydroxylase (Ac4H), and NAD(P)H:menadione oxidoreductase (NMOR)4, induction by 3-methylcholanthrene were studied in (a) the progenitors C57BL/6J (Ahb/Ahb) and DBA/2J (Ahd/Ahd) and 25 BXD recombinant inbred lines, (b) the progenitors C57BL/6N and C3H/HeN and 14 B6NXC3N recombinant inbred lines, and (c) the progenitors C57BL/6J and C3H/HeJ and 12 BXH recombinant inbred lines. The Ahb phenotype exhibits greater than 5 femtomole receptor/mg of cytosolic protein, less than or equal to 15 minutes zoxazolamine paralysis time, and twofold to 15-fold induction of these three hepatic enzyme activities; the Ahd phenotype exhibits less than or equal to 2 fmol receptor/mg protein, greater than 15 minutes zoxazolamine paralysis time, and less than 30% induction of these three activities. Among the BXD lines but especially among the B6NXC3N and BXH lines, high frequencies of recombination were found; the phenotype of each of the five parameters did not segregate with the phenotype of each of the other parameters in four or more recombinant lines. This report shows for the first time that AHH induction by 3-methylcholanthrene can occur in the Ahd phenotype mouse. These data underline the complexity of this genetic system when genes from C57BL/6 and DBA/2 are combined and particularly when genes from C57BL/6 and C3H/He inbred mouse strains are combined.  相似文献   

10.
Non-MHC loci have been shown to play an important role in the development and regulation of graft-vs-host disease (GVHD). In the murine model of GVHD under study, injection of C57BL/6 spleen cells into unirradiated (C57BL/6 x DBA/2)F1 hybrid recipient mice results in an acute form of GVHD characterized by CTL, suppressor cells, and runting. In contrast, injection of DBA/2 spleen cells into the same recipients results in a chronic form of GVHD that is characterized by a lack of CTL and hyperproduction of Ig and autoantibodies. After preliminary studies with the use of congenic mice showed that non-MHC loci were controlling GVHD responses in this model, genetic analysis of GVHD response of BXD recombinant inbred strains and (B10.D2 x DBA/2) X DBA/2 BC mice identified a single locus, Gvh, on chromosome 7 that controls whether acute or chronic GVHD results from injection of parental lymphocytes into unirradiated (C57BL/6 x DBA/2)F1 recipient mice.  相似文献   

11.
Linkage has been established between the Lyb-4 alloantigen locus and the chromosome 4 markersLyb- 2 andMup- 1 using recombinant inbred (RI) strains. Only 2 of 24 BXD RI strains possess recombinant genotypes with respect to the B cell alloantigen lociLyb- 4 andLyb- 2, for an estimated recombination frequency of 0.024 ±0.019. One additional BXD RI strain was a recombinant with respect toLyb- 4 andMup- 1 (major urinary protein locus) for an estimated recombination frequency of 0.039 ± 0.026. These linkages were confirmed and further quantitated in a (C57BL/6J × DBA/2J)F1 × C57BL/6J backcross population, in which the recombination frequency betweenLyb- 4 andMup- 1 was 0.049 ± 0.019. No recombination between the expression of Lyb-4.1 antigen and the ability of anti-Lyb-4.1 serum to suppress MLC reactivity was found, indicating that the genes controlling the antigenic determinant which is recognized with cytotoxic antibodies in anti-Lyb-4.1 serum is the same as, or is very closely linked to, the gene which is responsible for augmentation of the MLC response. In contrast, no linkage was observed between the gene controlling the Lyb-4.1 determinant andMup- 1 in RI strain and backcross mice derived from the cross of C3H/HeJ and C57BL/6J. Again, there was complete concordance between the serologically recognized determinant and the ability of anti-Lyb-4.1 serum to suppress the MLC response. Absorption of anti-Lyb-4.1 serum with C3H/HeJ, DBA/2J, and C57BL/6J lymphocytes, followed by the cytotoxic assay of the absorbed sera on lymphocytes of each of these three strains showed that serologically the Lyb-4.1 antigenic determinant on DBA/2 mice was indistinguishable from that on C3H/HeJ mice. Thus, both traits appear to be under the control of single genes in both DBA/2J and C3H/HeJ, but the C3H/HeJ gene appears to be nonallelic and unlinked to the DBA/2J gene.Abbreviations used in this paper LAD lymphocyte activating determinants - LPS lipopolysaccharide - MLC mixed lymphocyte culture - RI recombinant inbred  相似文献   

12.
13.
Variations in maternal behavior, either occurring naturally or in response to experimental manipulations, have been shown to exert long-lasting consequences on offspring behavior and physiology. Despite previous research examining the effects of developmental manipulations on drug-related phenotypes, few studies have specifically investigated the influence of strain-based differences in maternal behavior on drug responses in mice. The current experiments used reciprocal F1 hybrids of two inbred mouse strains (i.e. DBA/2J and C57BL/6J) that differ in both ethanol (EtOH) responses and maternal behavior to assess the effects of maternal environment on EtOH-related phenotypes. Male and female DBA/2J and C57BL/6J mice and their reciprocal F1 hybrids reared by either DBA/2J or C57BL/6J dams were tested in adulthood for EtOH intake (choice, forced), EtOH-induced hypothermia, EtOH-induced activity and EtOH-induced conditioned place preference (CPP). C57BL/6J and DBA/2J mice showed differences on all EtOH responses. Consistent with previous reports that maternal strain can influence EtOH intake, F1 hybrids reared by C57BL/6J dams consumed more EtOH during forced exposure than did F1 hybrids reared by DBA/2J dams. Maternal strain also influenced EtOH-induced hypothermic responses in F1 hybrids, producing differences in hybrid mice that paralleled those of the inbred strains. In contrast, maternal strain did not influence EtOH-induced activity or CPP in hybrid mice. The current findings indicate that maternal environment may contribute to variance in EtOH-induced hypothermia and EtOH intake, although effects on EtOH intake appear to be dependent upon the type of EtOH exposure.  相似文献   

14.
Identification of Hepatocarcinogen-Resistance Genes in Dba/2 Mice   总被引:6,自引:0,他引:6       下载免费PDF全文
Male DBA/2J mice are ~20-fold more susceptible than male C57BL/6J mice to hepatocarcinogenesis induced by perinatal treatment with N,N-diethylnitrosamine (DEN). In order to elucidate the genetic control of hepatocarcinogenesis in DBA/2J mice, male BXD recombinant inbred, D2B6F(1) X B6 backcross, and D2B6F(2) intercross mice were treated at 12 days of age with DEN and liver tumors were enumerated at 32 weeks. Interestingly, the distribution of mean tumor multiplicities among BXD recombinant inbred strains indicated that hepatocarcinogen-sensitive DBA/2 mice carry multiple genes with opposing effects on the susceptibility to liver tumor induction. By analyzing D2B6F(1) X B6 backcross and D2B6F(2) intercross mice for their liver tumor multiplicity phenotypes and for their genotypes at simple sequence repeat marker loci, we mapped two resistance genes carried by DBA/2J mice, designated Hcr1 and -2, to chromosomes 4 and 10, respectively. Hcr1 and Hcr2 resolved the genetic variance in the backcross population well, indicating that these resistance loci are the major determinants of the variance in the backcross population. Although our collection of 100 simple sequence repeat markers allowed linkage analysis for ~95% of the genome, we failed to map any sensitivity alleles for DBA/2J mice. Thus, it is likely that the susceptibility of DBA/2J mice is the consequence of the combined effects of multiple sensitivity loci.  相似文献   

15.
Food restriction paradigms are widely used in animal studies to investigate systems involved in energy regulation. We have observed behavioral, physiological, and molecular differences in response to food restriction in three inbred mouse strains, C57BL/6J, A/J, and DBA/2J. These are the progenitors of chromosome substitution and recombinant inbred mouse strains used for mapping complex traits. DBA/2J and A/J mice increased their locomotor activity during food restriction, and both displayed a decrease in body temperature, but the decrease was significantly larger in DBA/2J compared with A/J mice. C57BL/6J mice did not increase their locomotor activity and displayed a large decrease in their body temperature. The large decline in body temperature during food restriction in DBA/2J and C57BL/6J strains was associated with a robust reduction in plasma leptin levels. DBA/2J mice showed a marked decrease in white and brown adipose tissue masses and an upregulation of the antithermogenic hypothalamic neuropeptide Y Y(1) receptor. In contrast, A/J mice showed a reduction in body temperature to a lesser extent that may be explained by downregulation of the thermogenic melanocortin 3 receptor and by behavioral thermoregulation as a consequence of their increased locomotor activity. These data indicate that genetic background is an important parameter in controlling an animal's adaptation strategy in response to food restriction. Therefore, mouse genetic mapping populations based on these progenitor lines are highly valuable for investigating mechanisms underlying strain-dependent differences in behavioral physiology that are seen during reduced food availability.  相似文献   

16.
We identified mouse mammary tumor proviral loci in the AKR/J, C3H/HeJ, C57BL/6J, C57L/J, DBA/2J, and SWR/J inbred mouse strains and determined their segregation patterns in the AKXD, AKXL, BXD, BXH, and SWXL recombinant inbred strain sets. Two new Mtv loci, Mtv-29 and Mtv-30, were identified. Mtv-30 was genetically mapped to chromosome 12. Additionally, two previously identified Mtv loci, Mtv-14 and Mtv-23, were genetically mapped to chromosome 4 and chromosome 6, respectively.  相似文献   

17.
Theiler's virus-induced demyelinating disease results from a chronic infection in the white matter of the central nervous system and provides an excellent model for human multiple sclerosis. Like multiple sclerosis, there are genetic risk factors in disease development, including genes associated with the major histocompatibility complex and with those encoding the beta chain of the T-cell receptor. Comparisons of the susceptible DBA/2 and resistant C57BL/6 strains have indicated an important role for the H-2D locus and for a non-H-2 gene (not involving the beta chain of the T-cell receptor) in differential susceptibility. In the present report, analysis of recombinant-inbred strains (BXD) between the DBA/2 and C57BL/6 strains indicated that this non-H-2 locus is located at the centromeric end of chromosome 3 near (4 +/- 4 centimorgans) the carbonic anhydrase-2 (Car-2) enzyme locus.  相似文献   

18.
Depriving one eye of visual experience during a sensitive period of development results in a shift in ocular dominance (OD) in the primary visual cortex (V1). To assess the heritability of this form of cortical plasticity and identify the responsible gene loci, we studied the influence of monocular deprivation on OD in a large number of recombinant inbred mouse strains derived from mixed C57BL/6J and DBA/2J backgrounds (BXD). The strength of imaged intrinsic signal responses in V1 to visual stimuli was strongly heritable as were various elements of OD plasticity. This has important implications for the use of mice of mixed genetic backgrounds for studying OD plasticity. C57BL/6J showed the most significant shift in OD, while some BXD strains did not show any shift at all. Interestingly, the increase in undeprived ipsilateral eye responses was not correlated to the decrease in deprived contralateral eye responses, suggesting that the size of these components of OD plasticity are not genetically controlled by only a single mechanism. We identified a quantitative trait locus regulating the change in response to the deprived eye. The locus encompasses 13 genes, two of which--Stch and Nrip1--contain missense polymorphisms. The expression levels of Stch and to a lesser extent Nrip1 in whole brain correlate with the trait identifying them as novel candidate plasticity genes.  相似文献   

19.
Inbred mouse strains exhibit differences in susceptibility to influenza A infections. However, the molecular mechanisms underlying these differences are unknown. Therefore, we infected a highly susceptible mouse strain (DBA/2J) and a resistant strain (C57BL/6J) with influenza A H1N1 (PR8) and performed genome-wide expression analysis. We found genes expressed in lung epithelium that were specifically down-regulated in DBA/2J mice, whereas a cluster of genes on chromosome 3 was only down-regulated in C57BL/6J. In both mouse strains, chemokines, cytokines and interferon-response genes were up-regulated, indicating that the main innate immune defense pathways were activated. However, many immune response genes were up-regulated in DBA/2J much stronger than in C57BL/6J, and several immune response genes were exclusively regulated in DBA/2J. Thus, susceptible DBA/2J mice showed a hyper-inflammatory response. This response is similar to infections with highly pathogenic influenza virus and may serve as a paradigm for a hyper-inflammatory host response to influenza A virus.  相似文献   

20.
Most familial behavioral phenotypes result from the complex interaction of multiple genes. Studies of such phenotypes involving human subjects are often inconclusive owing to complexity of causation and experimental limitations. Studies of animal models argue for the use of established genetic strains as a powerful tool for genetic dissection of behavioral disorders and have led to the identification of rare genes and genetic mechanisms implicated in such phenotypes. We have used microarrays to study global gene expression in adult brains of four genetic strains of mice (C57BL/6J, DBA/2J, A/J, and BALB/c). Our results demonstrate that different strains show expression differences for a number of genes in the brain, and that closely related strains have similar patterns of gene expression as compared with distantly related strains. In addition, among the 24 000 genes and ESTs on the microarray, 77 showed at least a 1.5-fold increase in the brains of C57BL/6J mice as compared with those of DBA/2J mice. These genes fall into such functional categories as gene regulation, metabolism, cell signaling, neurotransmitter transport, and DNA/RNA binding. The importance of these findings as a novel genetic resource and their use and application in the genetic analysis of complex behavioral phenotypes, susceptibilities, and responses to drugs and chemicals are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号