首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
Lee CC  Sun Y  Huang HW 《Biophysical journal》2012,102(5):1059-1068
A leading hypothesis for the decimation of insulin-producing β-cells in type 2 diabetes attributes the cause to islet amyloid polypeptide (IAPP) for its deleterious effects on the cell membranes. This idea has produced extensive investigations on human IAPP (hIAPP) and its interactions with lipid bilayers. However, it is still difficult to correlate the peptide-lipid interactions with its effects on islet cells in culture. The hIAPP fibrils have been shown to interact with lipids and damage lipid bilayers, but appear to have no effect on islet cells in culture. Thus, a modified amyloid hypothesis assumes that the toxicity is caused by hIAPP oligomers, which are not preamyloid fibrils or protofibrils. However, so far such oligomers have not been isolated or identified. The hIAPP monomers also bind to lipid bilayers, but the mode of interaction is not clear. Here, we performed two types of experiments that, to our knowledge, have not been done before. We used x-ray diffraction, in conjunction with circular dichroism measurement, to reveal the location of the peptide bound to a lipid bilayer. We also investigated the effects of hIAPP on giant unilamellar vesicles at various peptide concentrations. We obtained the following qualitative results. Monomeric hIAPP binds within the headgroup region and expands the membrane area of a lipid bilayer. At low concentrations, such binding causes no leakage or damage to the lipid bilayer. At high concentrations, the bound peptides transform to β-aggregates. The aggregates exit the headgroup region and bind to the surface of lipid bilayers. The damage by the surface bound β-aggregates depends on the aggregation size. The initial aggregation extracts lipid molecules, which probably causes ion permeation, but no molecular leakage. However, the initial β-aggregates serve as the seed for larger fibrils, in the manner of the Jarrett-Lansbury seeded-polymerization model, that eventually disintegrate lipid bilayers by electrostatic and hydrophobic interactions.  相似文献   

2.
Amyloid deposition of human islet amyloid polypeptide (hIAPP) in the islets of Langerhans is closely associated with the pathogenesis of type II diabetes mellitus. Despite substantial evidence linking amyloidogenic hIAPP to loss of β-cell mass and decreased pancreatic function, the molecular mechanism of hIAPP cytotoxicity is poorly understood. We here investigated the binding of hIAPP and nonamyloidogenic rat IAPP to substrate-supported planar bilayers and examined the membrane-mediated amyloid aggregation. The membrane binding of IAPP in soluble and fibrillar states was characterized using quartz crystal microbalance with dissipation monitoring, revealing significant differences in the binding abilities among different species and conformational states of IAPP. Patterned model membranes composed of polymerized and fluid lipid bilayer domains were used to microscopically observe the amyloid aggregation of hIAPP in its membrane-bound state. The results have important implications for lipid-mediated aggregation following the penetration of hIAPP into fluid membranes. Using the fluorescence recovery after photobleaching method, we show that the processes of membrane binding and subsequent amyloid aggregation are accompanied by substantial changes in membrane fluidity and morphology. Additionally, we show that the fibrillar hIAPP has a potential ability to perturb the membrane structure in experiments of the fibril-mediated aggregation of lipid vesicles. The results obtained in this study using model membranes reveal that membrane-bound hIAPP species display a pronounced membrane perturbation ability and suggest the potential involvement of the oligomeic forms of hAPP in membrane dysfunction.  相似文献   

3.
Masaki Wakabayashi 《FEBS letters》2009,583(17):2854-36097
Human islet amyloid polypeptide (hIAPP) is the primary component of the amyloid deposits found in the pancreatic islets of patients with type 2 diabetes mellitus. However, it is unknown how amyloid fibrils are formed in vivo. In this study, we demonstrate that gangliosides play an essential role in the formation of amyloid deposits by hIAPP on plasma membranes. Amyloid fibrils accumulated in ganglioside- and cholesterol-rich microscopic domains (‘lipid rafts’). The depletion of gangliosides or cholesterol significantly reduced the amount of amyloid deposited. These results clearly showed that the formation of amyloid fibrils was mediated by gangliosides in lipid rafts.  相似文献   

4.
5.
Misfolding and amyloid fibril formation by human islet amyloid polypeptide (hIAPP) are thought to be important in the pathogenesis of type 2 diabetes, but the structures of the misfolded forms remain poorly understood. Here we developed an approach that combines site-directed spin labeling with continuous wave and pulsed EPR to investigate local secondary structure and to determine the relative orientation of the secondary structure elements with respect to each other. These data indicated that individual hIAPP molecules take up a hairpin fold within the fibril. This fold contains two β-strands that are much farther apart than expected from previous models. Atomistic structural models were obtained using computational refinement with EPR data as constraints. The resulting family of structures exhibited a left-handed helical twist, in agreement with the twisted morphology observed by electron microscopy. The fibril protofilaments contain stacked hIAPP monomers that form opposing β-sheets that twist around each other. The two β-strands of the monomer adopt out-of-plane positions and are staggered by about three peptide layers (∼15 Å). These results provide a mechanism for hIAPP fibril formation and could explain the remarkable stability of the fibrils. Thus, the structural model serves as a starting point for understanding and preventing hIAPP misfolding.  相似文献   

6.
Many amyloid proteins misfold into β-sheet aggregates upon interacting with biomembranes at the onset of diseases, such as Parkinson's disease and type II diabetes. The molecular mechanisms triggering aggregation depend on the orientation of β-sheets at the cell membranes. However, understanding how β-sheets adsorb onto lipid/aqueous interfaces is challenging. Here, we combine chiral sum frequency generation (SFG) spectroscopy and ab initio quantum chemistry calculations based on a divide-and-conquer strategy to characterize the orientation of human islet amyloid polypeptides (hIAPPs) at lipid/aqueous interfaces. We show that the aggregates bind with β-strands oriented at 48° relative to the interface. This orientation reflects the amphiphilic properties of hIAPP β-sheet aggregates and suggests the potential disruptive effect on membrane integrity.  相似文献   

7.
Genetic background is important in determining susceptibility to metabolic abnormalities such as insulin resistance and beta-cell dysfunction. Islet amyloid is associated with reduced beta-cell mass and function and develops in the majority of our C57BL/6J x DBA/2J (F(1)) male human islet amyloid polypeptide (hIAPP) transgenic mice after 1 yr of increased fat feeding. To determine the relative contribution of each parental strain, C57BL/6J (BL6) and DBA/2J (DBA2), to islet amyloid formation, we studied male hIAPP mice on each background strain (BL6, n = 13; and DBA2 n = 11) and C57BL/6J x DBA/2J F(1) mice (n = 17) on a 9% (wt/wt) fat diet for 1 yr. At the end of 12 mo, islet amyloid deposition was quantified from thioflavin S-stained pancreas sections. The majority of mice in all groups developed islet amyloid (BL6: 91%, F(1): 76%, DBA2: 100%). However, the prevalence (%amyloid-positive islets; BL6: 14 +/- 3%, F(1): 44 +/- 8%, DBA2: 49 +/- 9%, P < 0.05) and severity (%islet area occupied by amyloid; BL6: 0.03 +/- 0.01%, F(1): 9.2 +/- 2.9%, DBA2: 5.7 +/- 2.3%, p < or = 0.01) were significantly lower in BL6 than F(1) and DBA2 mice. Increased islet amyloid severity was negatively correlated with insulin-positive area per islet, in F(1) (r(2) = 0.75, P < 0.001) and DBA2 (r(2) = 0.87, P < 0.001) mice but not BL6 mice (r(2) = 0.07). In summary, the extent of islet amyloid formation in hIAPP transgenic mice is determined by background strain, with mice expressing DBA/2J genes (F(1) and DBA2 mice) being more susceptible to amyloid deposition that replaces beta-cell mass. These findings underscore the importance of genetic and environmental factors in studying metabolic disease.  相似文献   

8.
Abnormal aggregation of islet amyloid polypeptide (IAPP) into amyloid fibrils is a hallmark of type 2 diabetes. In this study, we investigated the initial oligomerization and subsequent addition of monomers to growing aggregates of human IAPP at the residue-specific level using NMR, atomic force microscopy, mass spectroscopy, and computational simulations. We found that in solution IAPPs rapidly associate into transient low-order oligomers such as dimers and trimers via interactions between histidine 18 and tyrosine 37. This initial event is proceeded by slow aggregation into higher-order spherical oligomers and elongated fibrils. In these two morphologically distinct types of aggregates IAPPs adopt structures with markedly different residual flexibility. Here we show that the anti-amyloidogenic compound resveratrol inhibits oligomerization and amyloid formation via binding to histidine 18, supporting the finding that this residue is crucial for on-pathway oligomer formation.  相似文献   

9.
In type 2 diabetes mellitus (T2DM), misfolded human islet amyloid polypeptide (hIAPP) forms amyloid deposits in pancreatic islets. These amyloid deposits contribute to the dysfunction of β-cells and the loss of β-cell mass in T2DM patients. Inhibition of hIAPP fibrillization has been regarded as a potential therapeutic approach for T2DM. Silibinin, a major active flavonoid extracted from herb milk thistle (Silybum marianum), has been used for centuries to treat diabetes in Asia and Europe with unclear mechanisms. In this study, we tested whether silibinin has any effect on the amyloidogenicity of hIAPP. Our results provide first evidence that silibinin inhibits hIAPP fibrillization via suppressing the toxic oligomerization of hIAPP and enhances the viability of pancreatic β-cells, therefore silibinin may serve as a potential therapeutic agent for T2DM.  相似文献   

10.
Abedini A  Raleigh DP 《Biochemistry》2005,44(49):16284-16291
The 37-residue islet amyloid polypeptide (IAPP) is the major protein component of the amyloid deposits found in type-II diabetes. IAPP is stored in a relatively low pH environment in the pancreatic secretory granules prior to its release to the extracellular environment. Human IAPP contains a single histidine at position 18. Aggregation of IAPP is considerably faster at a lower pH (4.0 +/- 0.3) than at high pH (8.8 +/- 0.3), as judged by turbidity and thioflavine-T fluorescence studies. The rate of aggregation at low pH increases drastically in the presence of salt. CD experiments show that the conversion of largely unstructured monomers to beta-sheet-rich structures is faster at high pH. TEM studies show that fibrils are formed at both pH values but are more prevalent at pH 8.8 (+/-0.3). Both the free N terminus of IAPP and His-18 will titrate over the pH range studied. An N-terminal acetylated fragment consisting of residues 8-37 of human IAPP was also studied to isolate contributions from the protonation of His-18. Previous studies have shown that this fragment forms protofibrils that are very similar to those formed by intact IAPP. The effects of varying the protonation state of His-18 in the 8-37 analogue indicate that the rate of aggregation and fibril formation is noticeably faster when His-18 is deprotonated, similar to the wild type. However, the pH-dependent effects are larger for full-length IAPP than for the disulfide-truncated, acetylated analogue. TEM studies indicate differences in the morphology of the deposits formed at high and low pH. These results are discussed in light of recent structural models of IAPP fibrils.  相似文献   

11.
Human islet amyloid polypeptide (hIAPP) forms amyloid fibrils in pancreatic islets of patients with type 2 diabetes mellitus (DM2). The formation of hIAPP fibrils has been shown to cause membrane damage which most likely is responsible for the death of pancreatic islet β-cells during the pathogenesis of DM2. Previous studies have shown that the N-terminal part of hIAPP, hIAPP1-19, plays a major role in the initial interaction of hIAPP with lipid membranes. However, the exact role of this N-terminal part of hIAPP in causing membrane damage is unknown. Here we investigate the structure and aggregation properties of hIAPP1-19 in relation to membrane damage in vitro by using membranes of the zwitterionic lipid phosphatidylcholine (PC), the anionic lipid phosphatidylserine (PS) and mixtures of these lipids to mimic membranes of islet cells. Our data reveal that hIAPP1-19 is weakly fibrillogenic in solution and not fibrillogenic in the presence of membranes, where it adopts a secondary structure that is dependent on lipid composition and stable in time. Furthermore, hIAPP1-19 is not able to induce leakage in membranes of PC/PS or PC bilayers, indicating that the membrane interaction of the N-terminal fragment by itself is not responsible for membrane leakage under physiologically relevant conditions. In bilayers of the anionic lipid PS, the peptide does induce membrane damage, but this leakage is not correlated to fibril formation, as it is for mature hIAPP. Hence, membrane permeabilization by the N-terminal fragment of hIAPP in anionic lipids is most likely an aspecific process, occurring via a mechanism that is not relevant for hIAPP-induced membrane damage in vivo.  相似文献   

12.
Efforts to clone amyloidogenic proteins in the cells often have resulted in cell death. We report successful cloning and expression of recombinant human islet amyloid polypeptide (hIAPP) in cultured mammalian cells. Amylin gets secreted, forms fibrils that are toxic to target cells like beta cells of rat and human. The study involves cloning of full-length amylin in fluorescent protein vector followed by transfection into mammalian cells. The transfected cells with recombinant human amylin, secrete the translated protein corresponding to 37-amino acid native mature IAPP. The mature IAPP secreted out of the cell is purified and characterized by MALDI-TOF/TOF-MS and Western blotting. Purified IAPP forms fibrils as seen by Thioflavin-T fluorescence and AFM, and these fibrils were cytotoxic towards pancreatic cell line RIN5mf cells.  相似文献   

13.
To identify islet amyloid polypeptide (IAPP) present in normal human pancreas, we isolated the peptide from a soluble peptide fraction of amyloid deposit-free pancreata of two non-diabetic patients by using reverse-phase high performance liquid chromatography coupled with a radioimmunoassay specific for human IAPP. IAPP(1-37) and IAPP(17-37) were isolated and their complete amino acid sequences were determined up to the C-terminus. Identification of IAPP in normal human pancreas suggests the possible biological function of IAPP as a novel pancreatic hormone in humans.  相似文献   

14.
Human islet amyloid polypeptides (hIAPP) aggregate into amyloid deposits in the pancreatic islets of Langerhans, contributing to the loss of β-cells of patients with type 2 diabetes. Despite extensive studies of membrane disruption associated with hIAPP aggregates, the molecular details regarding the complex interplay between hIAPP aggregates and raft-containing membranes are still very limited. Using all-atom molecular dynamics simulations, we investigate the impact of hIAPP aggregate insertion on lipid segregation. We have found that the domain separation of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) is enhanced upon hIAPP membrane permeabilization in the absence of cholesterol, while within our simulation timescale, we cannot provide definitive evidence regarding the impact of hIAPP insertion on domain segregation in the ternary mixture (DOPC/DPPC/cholesterol). When the lipid domains are perturbed, their restoration occurs rapidly and spontaneously in the presence of hIAPP aggregates. hIAPP insertion affects membrane thickness in its immediate surroundings. On average, hIAPP causes the fluidity of lipids to increase and even cholesterol shows enhanced diffusivity. The acyl chain packing of the lipids near hIAPP is disrupted as compared to that further away from it. Cholesterol not only modulates membrane mobility and ordering but also hIAPP aggregates' structure and relative orientation to the membrane. Our investigations on the interaction between hIAPP aggregates and raft-containing membranes could lead to a better understanding of the mechanisms of amyloid cytotoxicity.  相似文献   

15.
OBJECTIVE: Islet amyloid polypeptide (IAPP)/amylin is produced by the pancreatic islet beta-cells, which also produce insulin. To study potential functions of IAPP, we have generated transgenic mice overexpressing human IAPP (hIAPP) in the beta-cells. These mice show a diabetic phenotype when challenged with an oral glucose load. In this study, we examined the islet cytoarchitecture in the hIAPP mice by examining islet cell distribution in the neonatal period, as well as 1, 3 and 6 months after birth. RESULTS: Neonatal transgenic mice exhibited normal islet cell distribution with beta-cells constituting the central islet portion, whereas glucagon and somatostatin-producing cells constituted the peripheral zone. In contrast, in hIAPP transgenic mice at the age of 1 month, the glucagon-immunoreactive (IR) cells were dispersed throughout the islets. Furthermore, at the age of 3 and 6 months, the islet organisation was similarly severely disturbed as at 1 month. Expression of both endogenous mouse IAPP and transgenic hIAPP was clearly higher in 6-month-old mice as compared to newborns, as revealed by mRNA in situ hybridisation. CONCLUSIONS: Mice transgenic for hIAPP have islets with disrupted islet cytoarchitecture in the postnatal period, particularly affecting the distribution of glucagon-IR cells. This islet cellular phenotype of hIAPP transgenic mice is similar to that of other mouse models of experimental diabetes and might contribute to the impaired glucose homeostasis.  相似文献   

16.
Native human islet amyloid polypeptide (hIAPP) has been identified as the major component of amyloid plaques found in the pancreatic islets of Langerhans of persons affected by type 2 diabetes mellitus. Early studies of hIAPP determined that a segment of the molecule, amino acids 20-29, is responsible for its aggregation into amyloid fibrils. The present study demonstrates that the aggregation of hIAPP 20-29-Trp is a nucleation-dependent process, displaying a distinct lag time before the onset of rapid aggregation. Moreover, the lag time can be eliminated by seeding the sample of unaggregated peptide with preformed fibrils. In contrast to the expectation from the conventional model of nucleation-dependent aggregation, however, the lag time of hIAPP aggregation does not depend on peptide concentration. To explain this observation, a modified version of the standard model of nucleation-dependent aggregation is presented in which the monomeric peptide concentration is buffered by an off-aggregation-pathway formation of peptide micelles.  相似文献   

17.
Human islet amyloid polypeptide (IAPP) is the major component of amyloid deposits found in the pancreas of over 90% of all cases of type-2 diabetes. We have generated a series of overlapping hexapeptides to target an amyloidogenic region of IAPP (residues 20-29) and examined their effects on fibril assembly. Peptide fragments corresponding to SNNFGA (residues 20-25) and GAILSST (residues 24-29) were strong inhibitors of the beta-sheet transition and amyloid aggregation. Circular dichroism indicated that even at 1:1 molar ratios, these peptides maintained full-length IAPP (1-37) in a largely random coil conformation. Negative stain electron microscopy revealed that co-incubation of these peptides with IAPP resulted in the formation of only semi-fibrous aggregates and loss of the typical high density and morphology of IAPP fibrils. This inhibitory activity, particularly for the SNNFGA sequence, also correlated with a reduction in IAPP-induced cytotoxicity as determined by cell culture studies. In contrast, the peptide NFGAIL (residues 22-27) enhanced IAPP fibril formation. Conversion to the amyloidogenic beta-sheet was immediate and the accompanying fibrils were more dense and complex than IAPP alone. The remaining peptide fragments either had no detectable effects or were only weakly inhibitory. Specificity of peptide activity was illustrated by the fragments, SSNNFG and AILSST. These differed from the most active inhibitors by only a single amino acid residue but delayed the random-to-beta conformational change only when used at higher molar ratios. This study has identified internal IAPP peptide fragments which can regulate fibrillogenesis and may be of therapeutic use for the treatment of type-2 diabetes.  相似文献   

18.
Soluble oligomers of human islet amyloid polypeptide (h-IAPP) are implicated in the initiation of beta-cell apoptosis leading to type 2 diabetes mellitus (T2DM). Cleavage of the h-IAPP included in an oligomer may provide a novel method for reducing the level of h-IAPP oligomers, offering a new therapeutic option for T2DM. From the combinatorial library of triazine derivatives prepared by exploiting the Co(III) complex of cyclen as the cleavage center for peptide bonds, eight compounds were selected as cleavage agents for oligomers of h-IAPP. After reaction with cleavage agents for 36 h at 37 degrees C and pH 7.50, up to 20 mol% of h-IAPP (initial concentration: 4.0 microM) was cleaved, although the target oligomers existed as transient species. Considerable activity was manifested at agent concentrations as low as 100 nM.  相似文献   

19.
Human islet amyloid polypeptide (hIAPP) is the major component of amyloid plaques found in the pancreatic islets of persons with type 2 diabetes mellitus. HIAPP belongs to the group of amyloidogenic proteins, characterized by their aggregation and deposition as fibrillar amyloid in various body tissues. The aggregation of amyloidogenic proteins is thought to occur via a common pathway, but currently no unifying kinetic model exists. In previous work, we presented a model of amyloid fibril formation formulated from our observations of the aggregation of an amyloidogenic fragment of hIAPP, amino acids 20-29. Our model is based on nucleation-dependent aggregation, modified by the formation of off-pathway hIAPP micelles. In the present study we confirm the presence of peptide micelles, and experimentally determine the critical micelle concentration in solutions of hIAPP fragments using three different techniques: conductivity, pH, and fluorescence. All three techniques yield a critical micelle concentration of 3-3.5 micro M peptide. Furthermore, based on changes in the fluorescence intensity of a labeled peptide fragment as well as a decrease in solution pH as a result of deprotonation of the amino terminus, we conclude that the amino terminus of the fragment undergoes a significant change of environment upon micellization.  相似文献   

20.
Increasing evidence suggests that the misfolding and deposition of IAPP plays an important role in the pathogenesis of type II, or non-insulin-dependent diabetes mellitus (T2DM). Membranes have been implicated in IAPP-dependent toxicity in several ways: Lipid membranes have been shown to promote the misfolding and aggregation of IAPP. Thus, potentially toxic forms of IAPP can be generated when IAPP interacts with cellular membranes. In addition, membranes have been implicated as the target of IAPP toxicity. IAPP has been shown to disrupt membrane integrity and to permeabilize membranes. Since disruption of cellular membranes is highly toxic, such a mechanism has been suggested to explain the observed IAPP toxicity. Here, we review IAPP-membrane interaction in the context of (1) catalyzing IAPP misfolding and (2) being a potential origin of IAPP toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号