首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Following cisternal injection of [3H8]LTC4 into guinea pigs, leukotriene metabolites were identified in the brain, cerebellum, perilymph, blood, liver and kidneys. LTC4 was metabolized into LTD4 and LTE4 in the cerebrospinal fluid and LTE4 was transported into the blood for general circulation and uptake into the liver and kidneys. The excretion of LTE4 from CNS to blood seemed to be the rate-limiting step in the elimination of leukotrienes from the body. Leukotrienes were also transported into the perilymph. The conversion of LTC4 into LTD4 and LTE4 was lower in perilymph as compared to the cerebrospinal fluid, suggesting a rate limiting function of the cochlear aqueduct that can be defined as a cerebrospinal fluid-labyrinth barrier.  相似文献   

2.
3.
The present study reports the effects exerted by 1,4,6-androstatriene-3,17-dione (ATD), 4-hydroxy-4-androstene-3,17-dione (4-OH-A) and 4-acetoxy-4-androstene-3,17-dione (4-Ac-A), three steroids known to inhibit the aromatization of androgens to estrogens, on the in vitro metabolism of labelled testosterone (T), dihydrotestosterone (DHT) and androstenedione (delta-4-A) in the ventral prostate of adult male rats. It has been found that ATD, in the concentration tested, does not influence the conversion of labelled T into DHT, but decreases the formation of 5 alpha-androstane-3 alpha,17 beta-diol and 5 alpha-androstane-3 beta,17 beta-diol (diols). On the contrary, 4-OH-A and 4-Ac-A simultaneously decrease the formation of DHT and the diols. When T is used as the substrate, the presence in the medium of these three steroids enhances the formation of delta-4-A and of 5 alpha-androstanedione (5 alpha-A). ATD, but not 4-OH-A and 4-Ac-A inhibits the conversion of labelled DHT into the diols. The transformation of labelled delta-4-A into 5 alpha-A is not modified by either ATD or 4-OH-A, while 4-Ac-A exerts only a small inhibition. These results suggest that the three aromatase inhibitors tested are able to profoundly modify the metabolism of T in the ventral prostate of the rat. In particular: 4-OH-A and 4-Ac-A are able to inhibit the conversion of T into DHT; ATD is able to inhibit the conversion of DHT into the diols; ATD and 4-OH-A do not inhibit the process of 5 alpha-reduction of delta-4-A into 5 alpha-A, while 4-Ac-A exerts only a minor effect. It is suggested that in the ventral prostate of the rat there are two different 5 alpha-reductase isoenzymes, one sensitive to the inhibitory effect of the steroid tested and which is responsible for the conversion of T into the 5 alpha-reduced metabolites of the 17-OH series (DHT and the diols), and a second one, insensitive to the effects of the three steroids, which affects the conversion of delta-4-A into 5 alpha-A.  相似文献   

4.
T Noguchi  H Takahashi  H Saito 《Gene》1986,44(1):133-138
We have developed an efficient method for transferring foreign genes into the T4 phage genome. Any foreign genes inserted into the T4 uvsY gene cloned on plasmids can be transferred into a cytosine-substituted T4dC(delta NB5060) phage genome by a replacement type of recombination. To achieve this, we constructed chimeric plasmids which had a chloramphenicol acetyltransferase gene (cat) derived from transposon Tn9 inserted into the Bg/II site within the T4 uvsY gene on pBR322. The cat gene was then transferred by in vivo recombination into the T4dC(delta NB5060) phage genome. Moreover, it was demonstrated that the cat gene in the hybrid T4dC phage was expressed upon phage infection and development.  相似文献   

5.
Phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), and the C4H redox partner cytochrome p450 reductase (CPR) are important in allocating significant amounts of carbon from phenylalanine into phenylpropanoid biosynthesis in plants. It has been proposed that multienzyme complexes (MECs) containing PAL and C4H are functionally important at this entry point into phenylpropanoid metabolism. To evaluate the MEC model, two poplar PAL isoforms presumed to be involved in either flavonoid (PAL2) or in lignin biosynthesis (PAL4) were independently expressed together with C4H and CPR in Saccharomyces cerevisiae, creating two yeast strains expressing either PAL2, C4H and CPR or PAL4, C4H and CPR. When [(3)H]Phe was fed, the majority of metabolized [(3)H]Phe was incorporated into p-[(3)H]coumarate, and Phe metabolism was highly reduced by inhibiting C4H activity. PAL alone expressers metabolized very little phenylalanine into cinnamic acid. To test for intermediate channeling between PAL and C4H, we fed [(3)H]Phe and [(14)C]cinnamate simultaneously to the triple expressers, but found no evidence for channeling of the endogenously synthesized [(3)H]cinnamate into p-coumarate. Therefore, efficient carbon flux from Phe to p-coumarate via reactions catalyzed by PAL and C4H does not appear to require channeling through a MEC in yeast, and instead biochemical coupling of PAL and C4H is sufficient to drive carbon flux into the phenylpropanoid pathway. This may be the primary mechanism by which carbon allocation into phenylpropanoid metabolism is controlled in plants.  相似文献   

6.
Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1   总被引:1,自引:0,他引:1  
Moon JH  Heo JS  Kim JS  Jun EK  Lee JH  Kim A  Kim J  Whang KY  Kang YK  Yeo S  Lim HJ  Han DW  Kim DW  Oh S  Yoon BS  Schöler HR  You S 《Cell research》2011,21(9):1305-1315
  相似文献   

7.
Metabolism of leukotriene A4 into C4 by human platelets   总被引:1,自引:0,他引:1  
Tritium-labelled leukotriene A4 is converted by a suspension of human platelets into leukotriene C4. The conversion is stimulated by reduced glutathione and is dependent on the platelet concentration. Formation of leukotriene C4 is temperature and time dependent and is destroyed by heating the platelets at 100 degrees C for 5 min. Verification of leukotriene C4 formation was obtained by conversion into leukotriene D4 during reaction of the HPLC-purified platelet-derived leukotriene C4 with commercial gamma-glutamyl transpeptidase. In separate experiments we incubated authentic tritiated leukotriene C4 with human platelets and we showed the formation of tritiated leukotriene D4, demonstrating the presence of gamma-glutamyl transpeptidase activity in these cells. This activity could be blocked by the presence of reduced glutathione in the incubation mixture. In contrast, erythrocytes converted tritiated leukotriene A4 almost exclusively into leukotriene B4. Although platelets have been reported to lack 5-lipoxygenase activity, our study demonstrates that platelets possess the necessary machinery to transform leukotriene A4 into leukotrienes C4 and D4. Our results suggest that an intracellular interaction between platelets and leukotriene A4-forming cells, e.g., polymorphonuclear leukocytes, could lead to the formation of these potent peptidolipids in the circulation.  相似文献   

8.
利用381A型DNA合成仪,分29个寡聚核苷酸片段化学合成了小鼠IL-4全基因,共442bp。以pUC12质粒作为载体,将所有合成片段分前后两组进行磷酸化、退火、连接和克隆,经过菌落原位杂交、酶切鉴定和质粒DNA序列分析,分别得到了含有小鼠IL-4前后两半基因片段的两种重组质粒,回收前半基因片段,插入到含有后半基因重组质粒的EcoRI和PstI酶切位点之间,成功地得到了含有小鼠IL-4全基因的重组质粒pFR101。将全合成基因插入到质粒pSM53中,得表达质粒pFR105,转化大肠杆菌TAP106,根据IL-4对CTLL细胞的作用,肯定了TAP106(pFR105)细菌中有小鼠IL-4活性蛋白的表达。  相似文献   

9.
头端延髓腹外侧区注射5—羟色胺对应激性高血粘度...   总被引:3,自引:0,他引:3  
翁可  郭学勤 《生理学报》1992,44(3):244-253
Experiments were carried out on 62 wistar rats. The hyperviscosity and elevation of blood pressure were induced by hanging and restraining the rats with their four limbs tied on a frame. It was found that microinjection of 5-HT (25 micrograms/10 microliters) into the 4th ventricle of the brain or bilateral microinjection of 5-HT (4 micrograms/0.5 microliters/site) into rostral ventrolateral medulla (rVLM) reduced stress-induced hyperviscosity (p < 0.01) and elevation of blood pressure (p < 0.01). The effect of 5-HT injected into the 4th ventricle or rVLM was blocked by bilateral microinjection of cinanserine (4 micrograms/0.5 microliter/site) into rVLM. These results suggest that microinjection of 5-HT into 4th ventricle and rVLM could reduce stress-induced hyperviscosity and elevation of blood pressure and these effects were probably mediated via 5-HT receptors in the rVLM.  相似文献   

10.
Assembly of the components of the thylakoid deltapH-dependent/Tat protein transport machinery was analyzed in vitro. Upon incubation with intact chloroplasts, precursors to all three components, Hcf106, cpTatC and Tha4, were imported into the organelle and assembled into characteristic endogenous complexes. In particular, all of the imported cpTatC and approximately two-thirds of the imported Hcf106 functionally assembled into 700 kDa complexes capable of binding Tat pathway precursor proteins. The amounts assembled into thylakoids by this procedure were moderate. However, physiological quantities of mature forms of Tha4 and Hcf106 were integrated into isolated thylakoids and a significant percentage of the Hcf106 so integrated was assembled into the 700 kDa complex. Interestingly, a mutant form of Hcf106 in which an invariant transmembrane glutamate was changed to glutamine integrated into the membrane but did not assemble into the receptor complex. Analysis of energy and known pathway component requirements indicated that Hcf106 and Tha4 integrate by an unassisted or 'spontaneous' mechanism. The functionality of in vitro integrated Tha4 was verified by its ability to restore transport to thylakoid membranes from the maize tha4 mutant, which lacks the Tha4 protein. Development of this functional in vitro assembly assay will facilitate structure-function studies of the thylakoid Tat pathway translocation machinery.  相似文献   

11.
Radioactivity from 4-(2′-carboxyphenyl)-4-oxobutyrate-[2-14C] and 4-(2′-carboxyphenyl)- 4-oxobutyrate-[3-14C] was incorporated into C-3 and C-2 respectively of phylloquinone in maize shoots. These results show that this substrate is incorporated in the same asymmetric manner into phylloquinone as it is into the bacterial menaquinones.  相似文献   

12.
The metabolism of Zn2+ in Escherichia coli infected with T4D bacteriophage and various T4D mutants has been examined. E. coli B infected with T4D, and all T4D mutants except T4D 12-, took up zinc ions at a rate identical to that of uninfected cells. E. coli B infected with T4D 12- had a markedly decreased rate of zinc uptake. The incorporation of zinc into proteins of infected cells has also been studied. T4D phage infection was found to shut off the synthesis of all bacterial host zinc metalloproteins while allowing the formation of viral-induced zinc proteins. The amount of zinc incorporated into viral proteins was affected by the absence of various T4D gene products. Cells infected with T4D 12-, and to a much less extent those infected with T4D 29-, incorporated the least amount of zinc into proteins, while cells infected with T4D 11- and T4D 51- incorporated increased amounts of zinc into the zinc metalloproteins. In cells infected with T4D 11- and 51- most of the zinc protein was found to be the product of gene 12. The marked effect of infection of E. coli with T4D 12- on both zinc uptake and zinc incorporation into protein supports the conclusion that T4D gene 12 protein is a zinc metalloprotein. Additionally, these observations have indicated that this metalloprotein interacts with host cell membrane.  相似文献   

13.
The effect of sialylated TBG and desialylated TBG on thyroxine (T4) uptake by human peripheral mononuclear cells was investigated in vitro. [125I]-T4 uptake was observed when the cells were incubated with free [125I]-T4. The uptake was inhibited in a concentration dependent manner when TBG was added. During the incubation, [125I]-T4 binding to TBG was observed. [125I]-T4 incorporation into cells was also observed when the cells were incubated with [125I]-T4-sialylated TBG or with [125I]-T4-desialylated TBG complex. The uptake was related to the temperature and length of time of the incubation. The amount of [125I]-T4 incorporated into the cells incubated with [125I]-T4-sialylated TBG was greater than that into the cells incubated with [125I]-T4-desialylated TBG during the early 0-20 min. incubation, whereas the amount of [125I]-T4 incorporated into the cells incubated with [125I]-T4-desialylated TBG became greater than that into the cells incubated with [125I]-T4-sialylated TBG after 20 min. of incubation. Pretreatment of the cells with methylamine blocked [125I]-T4 uptake in both cases, i.e. incubated with [125I]-T4-sialylated TBG and incubated with [125I]-T4-desialylated TBG. The results suggest that TBG plays a role not only as a carrier protein for T4 in circulation but also as a protein which can transport T4 from the extracellular into the intracellular space, so that the mechanism of T4 transport mediated by desialylated TBG is different from that mediated by sialylated TBG, and that the T4 transport system in both cases, mediated by sialylated TBG and by desialylated TBG, may be related to the internalization of T4-TBG-TBG receptor complex or of T4-T4 receptor complex if TBG receptors are present in the outer surface of the cell membrane.  相似文献   

14.
Incubation of Saccharomyces cerevisiae S288C with 4-deoxy-4-fluoro-D-[1-14C]-mannose resulted in the formation of three metabolites that were characterized as 4-deoxy-4-fluoro-D-[1-14C]mannose 1,6-bisphosphate, 4-deoxy-4-fluoro-D-[1-14C]-mannose 6-phosphate and GDP-4-deoxy-4-fluoro-D-[1-14C]mannose. In addition, radioactive material was incorporated into a particulate fraction composed primarily of cell-wall polysaccharides. Compared with the 4-fluoro sugar, 3-deoxy-3-fluoro-D-[1-14C]mannose was not transported into yeast cells as well, and its conversion into sugar nucleotide was much less efficient. Metabolites that were isolated after incubation with the 3-fluoro analogue were identified as 3-deoxy-3-fluoro-D-[1-14C]mannose 1,6-bisphosphate, 3-deoxy-3-fluoro-D-[1-14C]mannose 6-phosphate and GDP-3-deoxy-3-fluoro-D-[1-14C]mannose. Little radioactivity was transferred into the cell-wall fraction.  相似文献   

15.
Insulin stimulates glucose transport in fat and muscle cells by regulating delivery of the facilitative glucose transporter, glucose transporter isoform 4 (GLUT4), to the plasma membrane. In the absence of insulin, GLUT4 is sequestered away from the general recycling endosomal pathway into specialized vesicles, referred to as GLUT4-storage vesicles. Understanding the sorting of GLUT4 into this store is a major challenge. Here we examine the role of the Sec1/Munc18 protein mVps45 in GLUT4 trafficking. We show that mVps45 is up-regulated upon differentiation of 3T3-L1 fibroblasts into adipocytes and is expressed at stoichiometric levels with its cognate target–soluble N-ethylmaleimide–sensitive factor attachment protein receptor, syntaxin 16. Depletion of mVps45 in 3T3-L1 adipocytes results in decreased GLUT4 levels and impaired insulin-stimulated glucose transport. Using sub­cellular fractionation and an in vitro assay for GLUT4-storage vesicle formation, we show that mVps45 is required to correctly traffic GLUT4 into this compartment. Collectively our data reveal a crucial role for mVps45 in the delivery of GLUT4 into its specialized, insulin-regulated compartment.  相似文献   

16.
To determine whether IL-4 is therapeutic in treating established experimental arthritis, a recombinant adenovirus carrying the gene that encodes murine IL-4 (Ad-mIL-4) was used for periarticular injection into the ankle joints into mice with established collagen-induced arthritis (CIA). Periarticular injection of Ad-mIL-4 resulted in a reduction in the severity of arthritis and joint swelling compared with saline- and adenoviral control groups. Local expression of IL-4 also reduced macroscopic signs of joint inflammation and bone erosion. Moreover, injection of Ad-mIL-4 into the hind ankle joints resulted in a decrease in disease severity in the untreated front paws. Systemic delivery of murine IL-4 by intravenous injection of Ad-mIL-4 resulted in a significant reduction in the severity of early-stage arthritis.  相似文献   

17.
Incorporation of 14C-amino acids into proteins in radish cotyledonswas suppressed by 4-thiouridine (4SU) culture. The inhibitoryeffect of 4SU was similar to that of chloramphenicol. 4SU culturedid not reduce the content of ferredoxin (Fd) and the labelinginto Fd significantly, but it did decrease the content and thesynthesis of ribulose bisphosphate carboxylase (RuBPCase). Thesynthesis of thylakoid chlorophyll-proteins I and II also wasinhibited by 4SU culture. In 4SU-cultured seedlings, the ratioof labeling into the large and small subunits of RuBPCase andthat into the two chlorophyll-proteins were the same as thosein the controls grown without 4SU. (Received September 29, 1980; Accepted January 27, 1981)  相似文献   

18.
The incorporation of 13C- and 14C-labeled precursors into 5-deaza-7,8-didemethyl-8-hydroxyriboflavin (factor F0) was studied with growing cells of Methanobacterium thermoautotrophicum. 5-Amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione was incorporated into the deazaflavin and into riboflavin without dilution. Tyrosine and 4-hydroxyphenylpyruvate were incorporated into the deazaflavin and into cellular protein. 4-Hydroxybenzaldehyde was not incorporated. A reaction mechanism is proposed for the formation of the deazaflavin chromophore from 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione and tyrosine or 4-hydroxyphenylpyruvate.  相似文献   

19.
Benthiocarb labeled at benzyl methylene group with carbon-14 was synthesized and studied on the distribution, excretion and metabolism in white mice. Benthiocarb was rapidly translocated into organs after oral administration. Radioactive substances were also rapidly eliminated mainly into urine, slightly into feces and little into expiration. Major metabolites in urine were identified as 4-chlorohippuric and 4 chlorobenzoic acids, and small amounts of glucuronides of the latter acid and 4-chlorobenzyl alcohol were detected. Benthiocarb was degraded in liver homogenates, in which the microsomal fraction showed the largest activity, and the degradation was accelerated by reduced NADP as the cofactor for the reaction. N-Desethylbenthiocarb, bis(4-chlorobenzyl) mono- and di-sulfides, and 4-chlorobenzoic acid were identified in the incubation mixture of the liver homogenates. The main metabolic pathway in mice seemed to be as follows; parent benthiocarb and/or the N-desethylbentiocarb were hydrolyzed, and the produced 4-chlorobenzylmercaptan presumed to be oxidized finally to 4-chlorobenzoic acid, which then conjugated with glycine to produce 4-chlorohippuric acid.  相似文献   

20.
Glycal esters of Kdo derivatives were converted into 2,3-anhydro intermediates, which were transformed into D-glycero-D-talo-oct-2-ulopyranosylonic acid (Ko), as well as 3-O- and 4-O-p-nitrobenzoyl-Ko derivatives. The exo-allyl orthoester derivative, methyl [5,7,8-tri-O-acetyl-4-O-(4-nitrobenzoyl)-2,3-O-[(1-exo-allyloxy)-ethylidene]-D-glycero-beta-D-talo-oct-2-ulopyranos]onate, prepared from the 4-O-pNBz-protected Ko derivative, was elaborated into the alpha-Ko allyl ketoside, the reducing disaccharide alpha-Kdop-(2-->4)-Ko and the disaccharide alpha-Kdop-(2-->4)-Kop-(2-->OAll). Conversely, methyl[4,5,7,8-tetra-O-acetyl-3-O-(4-nitrobenzoyl)-alpha-D-glycero-D-talo-2-octulopyranosyl bromide]onate [Carbohydr. Res., 244 (1993) 69-84], was coupled with a Kdo acceptor to give the disaccharide alpha-Kop-(2-->4)-Kdop-(2-->OAll) after orthoester rearrangement and deprotection. The allyl glycosides were treated with cysteamine and converted into neoglycoproteins. The ligands correspond to inner core units from Acinetobacter haemolyticus and Burkholderia cepacia lipopolysaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号