首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The detrimental effect of direct gas sparging on insect cells was investigated in bubble columns with various gas flow rates and bubble sizes. The first-order cell death rate was shown to be directly proportional to the gas flow rate and inversely proportional to the bubble size. The specific killing volume of a bubble, killing volume per unit volume of bubble, was found to have a linear correlation with the specific interfacial area of a bubble. Based on these experimental results and the analysis of a bursting bubble at the liquid surface, it was concluded that the killing volume of a bubble is in the liquid layer surrounding the bubble before its rupture, and most important, in the liquid layer beneath the bubble cavity. Cell damage in the bubble film cap was relatively insignificant compared to that in the liquid layer underneath the bubble cavity, except for very large bubbles (i.e., bubble diameter over 5 mm).  相似文献   

2.
The local properties of the dispersed gas phase (gasholdup, bubble diamater, and bubble velocity) were measured and evaluated at different positions in the riser and downcomer of a pilot plant reactor and, for comparison, in a laboratory reactor. These were described in Parts I and II of this series of articles during yeast cultivation and with model media. In the riser of the pilot plant reactor, the local gas holdup and bubble velocities varied only slightly in axial direction. The gas holdup increased considerably, while the bubble velocity increased only slightly with aeration rate. The bubble size diminished with increasing distance from the aerator in the riser, since the primary bubble size was larger than the equilibrium bubble size. In the downcomer, the mean bubble size was smaller than in the riser. The mean bubble size varied only slightly, the bubble velocity was accelerated, and the gas holdup decreased from top to bottom in the downcomer. In pilot plant at constant aeration rate, the properties of the dispersed phase were nearly constant during the batch cultivation, i.e., they depended only slightly on the cell concentration. In the laboratory reactor, the mean bubble sizes were much larger than in the pilot plant reactor. In the laboratory reactor, the bubble velocities in the riser and downcomer increased, and the mean gas holdup and bubble diameter in the downcomer remained constant as the aeration rate was increased.  相似文献   

3.
4.
In this paper, we present the computational fluid dynamics (CFD) simulations of bubble transport in a first generation bifurcating microchannel. In the present study, the human arteriole is modeled as a two-dimensional (2D) rectangular bifurcating microchannel. The microchannel is filled with blood and a single perfluorocarbon (PFC) bubble is introduced in the parent channel. The simulations are carried out to identify the lodging and dislodging pressures for two nondimensional bubble sizes, L(d) (ratio of the dimensional bubble length to the parent tube diameter), that is for L(d)?=?1 and L(d)?=?2. Subsequently, the bubble transport and splitting behavior due to the presence of symmetry and asymmetry in the daughter channels of the microchannel is studied for these bubble sizes. The splitting behavior of the bubble under the effect of gravity is also assessed and reported here. For the symmetric bifurcation model, the splitting ratio (SR) (ratio of bubble volume in bottom daughter channel to bubble volume in top daughter channel), of the bubble was found to be 1. For the asymmetric model, the splitting ratio was found to be less than 1. The loss in the bubble volume in the asymmetric model was attributed to surface tension effects and the resistance offered by the flow, which led to the bubble sticking and sliding along the walls of the channel. With the increase in roll angle, Φ (angle which the plane makes with the horizontal to study the effects of gravity), there was a decline in the splitting ratio.  相似文献   

5.
We consider a simple physical model for the reopening of a collapsed lung airway involving the unsteady propagation of a long bubble of air, driven at a prescribed flow-rate, into a liquid-filled channel formed by two flexible membranes that are held under large longitudinal tension and are confined between two parallel rigid plates. This system is described theoretically using an asymptotic approximation, valid for uniformly small membrane slopes, which reduces to a fourth-order nonlinear evolution equation for the channel width ahead of the bubble tip, from which the time-evolution of the bubble pressure pb* and bubble speed may be determined. The model shows that there can be a substantial delay between the time at which the bubble starts to grow in volume and the time at which its tip starts to move. Under certain conditions, the start of the bubble's motion is accompanied by a transient overshoot in pb*, as seen previously in experiment; the model predicts that the overshoot is greatest in narrow channels when the bubble is driven with a large volume flux. It is also shown how the threshold pressure for steady bubble propagation in wide channels has distinct contributions from the capillary pressure drop across the bubble tip and viscous dissipation in the channel ahead of the bubble.  相似文献   

6.
As a part of the study of bubble expansion in wheat flour dough under temperature rise, the critical radius for expansion, and the time course of expansion of an isolated bubble were investigated. As the required physical properties for the calculation of the critical bubble radius for expansion and the time course of bubble expansion, the authors measured the surface tension of the liquid phase of wheat flour batter as a function of concentration and temperature, and the apparent diffusion coefficients of air in wheat flour dough as a function of temperature. The critical radius for expansion and the time course of expansion of the isolated bubble under temperature rise were compared with the theoretical values calculated from the diffusion theory. At constant temperature, the time course of bubble shrinkage in wheat flour dough was described well by diffusion theory with the surface tension and the apparent diffusion coefficient, indicating that the bubble shrinkage would be rate-limited by the diffusion in the liquid phase of wheat flour dough of air out of the bubble. Under temperature rise from 3°C to 43°C, every bubble larger than the critical radius expanded. This result is physically admissible. On the other hand, the calculated time course of the bubble radius under temperature rise was not in agreement with the experimental data.  相似文献   

7.
In response to exercise performed before or after altitude decompression, physiological changes are suspected to affect the formation and growth of decompression bubbles. We hypothesized that the work to change the size of a bubble is done by gas pressure gradients in a macro- and microsystem of thermodynamic forces and that the number of bubbles formed through time follows a Poisson process. We modeled the influence of tissue O(2) consumption on bubble dynamics in the O(2) transport system in series against resistances, from the alveolus to the microsystem containing the bubble and its surrounding tissue shell. Realistic simulations of experimental decompression procedures typical of actual extravehicular activities were obtained. Results suggest that exercise-induced elevation of O(2) consumption at altitude leads to bubble persistence in tissues. At the same time, exercise-enhanced perfusion leads to an overall suppression of bubble growth. The total volume of bubbles would be reduced unless increased tissue motion simultaneously raises the rate of bubble formation through cavitation processes, thus maintaining or increasing total bubble volume, despite the exercise.  相似文献   

8.
Deep sea divers suffer from decompression sickness (DCS) when their rate of ascent to the surface is too rapid. When the ambient pressure drops, inert gas bubbles may form in blood vessels and tissues. The evolution of a gas bubble in a rigid tube filled with slowly moving fluid, intended to simulate a bubble in a blood vessel, is studied by solving a coupled system of fluid-flow and gas transport equations. The governing equations for the fluid motion are solved using two techniques: an analytical method appropriate for small nondeformable spherical bubbles, and the boundary element method for deformable bubbles of arbitrary size, given an applied steady flow rate. A steady convection-diffusion equation is then solved numerically to determine the concentration of gas. The bubble volume, or equivalently the gas mass inside the bubble for a constant bubble pressure, is adjusted over time according to the mass flux at the bubble surface. Using a quasi-steady approximation, the evolution of a gas bubble in a tube is obtained. Results show that convection increases the gas pressure gradient at the bubble surface, hence increasing the rate of bubble evolution. Comparing with the result for a single gas bubble in an infinite tissue, the rate of evolution in a tube is approximately twice as fast. Surface tension is also shown to have a significant effect. These findings may have important implications for our understanding of the mechanisms of inert gas bubbles in the circulation underlying decompression sickness.  相似文献   

9.

Suspended gold nanoparticle in water medium starts to warm up under nanosecond laser irradiation and creates a bubble around itself. The present study aims at evaluating the amount of nanoparticle size reduction at boiling temperature, the temperature variations of the nanoparticle, and its medium and finally the bubble formation moment. To this aim, Mie theory was used to calculate the absorption cross section of the nanoparticle in proximity of the bubble. Heat transfer equations were applied to determine the temperature of the nanoparticle and water. In addition, hydrodynamic equations were initiated to evaluate the expansion of the bubble. Then, these three groups of equations were coupled together and solved numerically. Based on the results, the bubble forms at the critical pressure and consequently due to the slow bubble velocity, temperature gradient in the medium is observed. Further, slight pulse width variations play a significant role on the nanoparticle temperature. The calculation of the nanoparticle heating associated with the creation of the bubble helps in controlling nanoparticle size and understanding the nanoscale heat transfer processes.

  相似文献   

10.
Prior to an analysis of the shrinkage and growth of air bubbles entrained in wheat flour dough, the shrinkage and growth under a temperature rise of a small bubble in water was analysed for comparison. The rates of shrinkage and growth of the bubble were respectively controlled by the diffusion of under- and over-saturated dissolved air from and into the bubble. The diffusion coefficient of the dissolved air in water calculated from the shrinkage of the bubble was 2.10 × 10_9m2/sec (17°C), which agrees with the literature value. On the other hand, at below 100°C, the effects on the bubble growth of the expansion of air due to the temperature rise and the increase in the saturation vapor pressure of water were negligibly small. The accompanying air entrained in flour particles suspended in water was much more stable than a free bubble in water. However, the growth under a temperature-rise of a bubble evolved from wheat flour particles was the same as the growth of a bubble in water, if many bubbles did not coexist.  相似文献   

11.
It is proposed that when cells are either attached to, or very near, a rupturing bubble, the hydrodynamic forces associated with the rupture are sufficient to kill the cells. Four types of experiments were conducted to quantify the number and location of these killed cells. We determined: (1) the number of cells killed as a result of a single, 3.5-mm bubble rupture; (2) the number and viability of cells in the upward jet that results when a bubble ruptures; (3) the number of cells on the bubble film; and (4) the fate of cells attached to the bubble film after film rupture. All experiments were conducted with Spodoptera frugiperda (SF-9) insect cells, in TNM-FH and SFML medium, with and without Pluronic F-68. Experiments indicate that approximately 1050 cells are killed per single, 3.5-mm bubble rupture in TNM-FH medium and approximately the same number of dead cells are present in the upward jet. It was also observed that the concentration of cells in this upward jet is higher than the cell suspension in TNM-FH medium without Pluronic F-68 by a factor of two. It is believed that this higher concentration is the result of cells adhering to the bubble interface. These cells are swept up into the upward jet during the bubble rupture process. Finally, it is suggested that a thin layer around the bubble containing these absorbed cells is the "hypothetical killing volume" presented by other researchers. (c) 1994 John Wiley & Sons, Inc.  相似文献   

12.
Dinoflagellate bioluminescence , a common source of bioluminescence in coastal waters , is stimulated by flow agitation . Although bubbles are anecdotally known to be stimulatory , the process has never been experimentally investigated . This study quantified the flash response of the bioluminescent dinoflagellate Lingulodinium polyedrum to stimulation by bubbles rising through still seawater . Cells were stimulated by isolated bubbles of 0 . 3–3 mm radii rising at their terminal velocity , and also by bubble clouds containing bubbles of 0 . 06–10 mm radii for different air flow rates . Stimulation efficiency , the proportion of cells producing a flash within the volume of water swept out by a rising bubble , decreased with decreasing bubble radius for radii less than approximately 1 mm . Bubbles smaller than a critical radius in the range 0 . 275–0 . 325 mm did not stimulate a flash response . The fraction of cells stimulated by bubble clouds was proportional to the volume of air in the bubble cloud , with lower stimulation levels observed for clouds with smaller bubbles . An empirical model for bubble cloud stimulation based on the isolated bubble observations successfully reproduced the observed stimulation by bubble clouds for low air flow rates . High air flow rates stimulated more light emission than expected , presumably because of additional fluid shear stress associated with collective buoyancy effects generated by the high air fraction bubble cloud . These results are relevant to bioluminescence stimulation by bubbles in two‐phase flows , such as in ship wakes , breaking waves , and sparged bioreactors . Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Decolourisation of the azo dye Reactive Black 5 by Geotrichum sp. CCMI 1019 was studied using stirred tank reactors (STR) and two types of bubble columns (porous plate (PP) bubble column and aeration tube (AT) bubble column). For the bubble columns, the kLa increased with the gas fractional hold-up (εG) and the aeration rate. A linear relationship between εG and superficial gas velocity was obtained for all reactors. At same aeration rates, the PP bubble columns showed higher kLa and hold-up values than the AT bubble column. In the STRs, large and dense aggregates were formed which adhered to surfaces whereas bubble columns gave smaller and less compact pellets.

Manganese peroxidase and laccase were detected in the extracellular media in all reactors. However, laccase was only detected after the onset of decolourisation, suggesting that additional enzymes may be involved. Mn peroxidase activity was detected (about 46 U/ml) in both the STRs and AT bubble columns but higher values (110 U/ml) were obtained with the PP bubble columns.

Out of the three reactor systems studied, the AT bubble columns gave the most favourable results for Reactive Black 5 decolourisation. Rapid and complete colour removal was obtained throughout the visible spectrum. Bubble columns are simple in design as well as operation and may be useful for the bioremediation of textile wastewater.  相似文献   

14.
ABSTRACT. Using a microfocal X-ray apparatus, a gas bubble was detected within the puparium of Glossina morsitans. The bubble appeared between 6 and 15 h after pupariation and was associated with one of the longitudinal tracheal trunks of the third instar larva. The bubble grew and achieved maximum size approximately 96 h after pupariation. It then disappeared at the time of eversion of the pupal appendages. There was a close correlation between bubble size and the weight of water lost since the time of pupariation. At the time of eversion of the pupal appendages the gas bubble apparently passed out through the longitudinal tracheal trunk and posterior spiracle to occupy the space between larval (puparial) and pupal cuticle. It is suggested that the bubble plays a vital role in the separation of these cuticular layers and that to this end water loss from the puparium is essential.  相似文献   

15.
Hairy root cultures of Artemisia annua L were cultivated in four different culture systems: a flask, a bubble column, a modified bubble column and a modified inner-loop airlift bioreactor. The artemisinin contents of hairy root cultures in the bubble column and the modified inner-loop airlift bioreactor were higher than that in the modified bubble column. The growth rate and hairy root distribution in the modified inner-loop airlift bioreactor were better than those in other bioreactors, and dry weight and artemisinin production reached to 26.8 g/L and 536 mg/L after 20 days.  相似文献   

16.
Measurements of bubble and pellet size distributions are useful for biochemical process optimizations. The accuracy, representation, and simplicity of these measurements improve when the measurement is performed on-line and in situ rather than off-line using a sample. Historical and currently available measurement systems for photographic methods are summarized for bubble and pellet (morphology) measurement applications. Applications to cells, mycelia, and pellets measurements have driven key technological developments that have been applied for bubble measurements. Measurement trade-offs exist to maximize accuracy, extend range, and attain reasonable cycle times. Mathematical characterization of distributions using standard statistical techniques is straightforward, facilitating data presentation and analysis. For the specific application of bubble size distributions, selected bioreactor operating parameters and physicochemical conditions alter distributions. Empirical relationships have been established in some cases where sufficient data have been collected. In addition, parameters and conditions with substantial effects on bubble size distributions were identified and their relative effects quantified. This information was used to guide required accuracy and precision targets for bubble size distribution measurements from newly developed novel on-line and in situ bubble measurement devices.  相似文献   

17.
In this paper, the second in the series, the use of a microscopic, high-speed video system to study the interactions of two suspended insect cells strains, Trichoplusia ni (TN-368) and Spodoptera frugiperda (SF-9), with rupturing bubbles is reported. Events such as the adsorption of cells onto the bubble film and the mechanism of bubble rupture were observed. On the basis of these observations and the experimental and theoretical work of other researchers on bubble rupture and cell death as a result of sparging, it is proposed that cells are killed by the rapid acceleration of the bubble film after rupture and the high levels of shear stress in the boundary layer flow associated with bubble jet formation.  相似文献   

18.
Summary Electrical conductivity microprobes have been used to estimate the transverse variation of bubble size, local gas holdup and local specific gas/liquid interfacial area in bench scale bubble column bioreactors containing fermentation model media. Inserted O2-electrodes and plane parallel windows alter the structure of the two phase flow. Even slight tilting of the column strongly influences the transverse profiles of the bubble size and local gas holdup. The larger bubbles are collected at the wall, where they can be redispersed. These observations open up new possibilities for the construction of bubble column bioreactors.  相似文献   

19.
Lethal events during gas sparging in animal cell culture   总被引:1,自引:0,他引:1  
The lethal effects of gas sparging on hybridoma cells obtained from a chemostat culture were examined in a bubble column. Experiments were performed to identify and quantify the main hazardous event: bubble formation, bubble rising, or bubble breakup. The results indicate that bubble breakup is the main cause of cell death. The protective activity of the surfactant Pluronic F68 against sparging seems to result from a direct interaction with the cells rather than influencing bubble-liquid interface properties.  相似文献   

20.
Summary The following two-phase properties were evaluated in bubble column reactors with porous plate (5 m pore diameter) or perforated plate (1 mm and/or 3 mm hole diameter) gas distributors using distilled water or a 1% methanol solution: transverse profiles of the mean and Sauter bubble diameters, local gas holdups, true mean liquid and bubble velocities. Furthermore, swarm bubble velocity distributions were evaluted and compared with calculated values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号