共查询到19条相似文献,搜索用时 15 毫秒
1.
2.
Junlan Feng Muqing Yang Qing Wei Feifei Song Youhua Zhang Xiaodong Wang Bin Liu Jiyu Li 《Journal of cellular and molecular medicine》2020,24(16):9028-9040
piRNA‐823 as a member of the piRNA family is reported to promote tumour cell proliferation in multiple myeloma and hepatocellular cancer. However, few studies on the function of piRNA‐823 in colorectal cancer (CRC). Our present study data showed that piRNA‐823 plays an oncogene role in CRC cells. Inhibition of piRNA‐823 can significantly inhibit the proliferation, invasion and apoptosis resistance of CRC cells. Mechanism studies have shown that piRNA‐823 inhibits the ubiquitination of hypoxia‐inducible factor‐1 alpha (HIF‐1α) by up‐regulating the expression of Glucose‐6‐phosphate dehydrogenase (G6PD) and ultimately up‐regulates the glucose consumption of carcinoma cells and inhibits the content of intracellular reactive oxygen species (ROS). Therefore, we speculate piRNA‐823 promotes the proliferation, invasion and apoptosis resistance of CRC cells by regulating G6PD/HIF‐1α pathway. In this study, we set up the cancer‐promoting function recovery experiment of piRNA‐823 by silencing G6PD gene to confirm the dominance of the above‐mentioned pathways. Using clinical samples, we found that overexpression of piRNA‐823 correlated with poor overall survival and predicted a poor response to adjuvant chemotherapy of patients with CRC. In a word, our research has further enriched the theory of piRNA‐823 promoting the progression of CRC, and laid a solid foundation for the development of piRNA‐823‐based gene therapy for CRC and its use as a promising prognostic biomarker in CRC patients. 相似文献
3.
X Sui R Chen Z Wang Z Huang N Kong M Zhang W Han F Lou J Yang Q Zhang X Wang C He H Pan 《Cell death & disease》2013,4(10):e838
Induction of cell death and inhibition of cell survival are the main principles of cancer therapy. Resistance to chemotherapeutic agents is a major problem in oncology, which limits the effectiveness of anticancer drugs. A variety of factors contribute to drug resistance, including host factors, specific genetic or epigenetic alterations in the cancer cells and so on. Although various mechanisms by which cancer cells become resistant to anticancer drugs in the microenvironment have been well elucidated, how to circumvent this resistance to improve anticancer efficacy remains to be defined. Autophagy, an important homeostatic cellular recycling mechanism, is now emerging as a crucial player in response to metabolic and therapeutic stresses, which attempts to maintain/restore metabolic homeostasis through the catabolic lysis of excessive or unnecessary proteins and injured or aged organelles. Recently, several studies have shown that autophagy constitutes a potential target for cancer therapy and the induction of autophagy in response to therapeutics can be viewed as having a prodeath or a prosurvival role, which contributes to the anticancer efficacy of these drugs as well as drug resistance. Thus, understanding the novel function of autophagy may allow us to develop a promising therapeutic strategy to enhance the effects of chemotherapy and improve clinical outcomes in the treatment of cancer patients. 相似文献
4.
Cancer complexity constantly challenges the way that clinicians manage breast cancer therapy. Tumor heterogeneity and intratumoral stroma characteristics allow cells with different phenotypes and deregulated apoptotic, proliferative and migration abilities to co-exist contributing to a disappointing therapeutic response. While new approaches are being associated with conventional chemotherapy, such as hormonal therapy or target monoclonal antibodies, recurrence and metastasization are still observed. Membrane transporters are the cell's first line of contact with anticancer drugs having a major role in multidrug resistance events. This structural-based activity enables the cell to be drug-resistant by decreasing drug intracellular concentration through an efflux-transport mechanism, mainly associated with overexpression of ATP-binding cassette (ABC) proteins. This review focuses on some of the important structural and biological properties of the malignant cell and tumor microenvironment, addressing the role of the membrane ABC transporters in therapeutic outcomes, and highlighting related molecular pathways that may represent meaningful target therapies. 相似文献
5.
Dvid Keresztes Anita Csizmarik Nikolett Nagy Orsolya Mdos Tams Fazekas Thilo Bracht Barbara Sitek Kathrin Witzke Martin Puhr Sabina Sevcenco Gero Kramer Shahrokh Shariat Zsfia Küronya Lszl Takcs Ilona Tornyi Jzsef Lzr Boris Hadaschik Andrs Lszik Mikls Szcs Pter Nyirdy Tibor Szarvas 《Journal of cellular and molecular medicine》2022,26(4):1332
Baseline or acquired resistance to docetaxel (DOC) represents a significant risk for patients with metastatic prostate cancer (PC). In the last years, novel therapy regimens have been approved providing reasonable alternatives for DOC‐resistant patients making prediction of DOC resistance of great clinical importance. We aimed to identify serum biomarkers, which are able to select patients who will not benefit from DOC treatment. DOC‐resistant PC3‐DR and DU145‐DR sublines and their sensitive parental cell lines (DU145, PC3) were comparatively analyzed using liquid chromatography‐coupled tandem mass spectrometry (LC‐MS/MS). Results were filtered using bioinformatics approaches to identify promising serum biomarkers. Serum levels of five proteins were determined in serum samples of 66 DOC‐treated metastatic castration‐resistant PC patients (mCRPC) using ELISA. Results were correlated with clinicopathological and survival data. CD44 was subjected to further functional cell culture analyses. We found at least 177 two‐fold significantly overexpressed proteins in DOC‐resistant cell lines. Our bioinformatics method suggested 11/177 proteins to be secreted into the serum. We determined serum levels of five (CD44, MET, GSN, IL13RA2 and LNPEP) proteins in serum samples of DOC‐treated patients and found high CD44 serum levels to be independently associated with poor overall survival (p = 0.001). In accordance, silencing of CD44 in DU145‐DR cells resulted in re‐sensitization to DOC. In conclusion, high serum CD44 levels may help identify DOC‐resistant patients and may thereby help optimize clinical decision‐making regarding type and timing of therapy for mCRPC patients. In addition, our in vitro results imply the possible functional involvement of CD44 in DOC resistance. 相似文献
6.
《Bioorganic & medicinal chemistry letters》2017,27(4):797-802
Taking into account that multidrug resistance (MDR) is the main cause for chemotherapeutic failure in cancer treatment and as a continuation of our efforts to overcome this problem we report the evaluation of one cyclic selenoanhydride (1) and ten selenoesters (2–11) in MDR human colon adenocarcinoma Colo 320 cell line. The most potent derivatives (1, 9–11) inhibited the ABCB1 efflux pump much stronger than the reference compound verapamil. Particularly, the best one (9) was 4-fold more potent than verapamil at a 10-fold lower concentration. Furthermore, the evaluated derivatives exerted a potent and selective cytotoxic activity. In addition, they were strong apoptosis inducers as the four derivatives triggered apoptotic events in a 64–72% of the examined MDR Colo 320 human adenocarcinoma cells. 相似文献
7.
Abdulla
A.-B. Badawy 《Bioscience reports》2021,41(7)
The role of haem in the activity of cystathionine β-synthase (CBS) is reviewed and a hypothesis postulating multiple effects of haem on enzyme activity under conditions of haem excess or deficiency is proposed, with implications for some therapies of acute hepatic porphyrias. CBS utilises both haem and pyridoxal 5′-phosphate (PLP) as cofactors. Although haem does not participate directly in the catalytic process, it is vital for PLP binding to the enzyme and potentially also for CBS stability. Haem deficiency can therefore undermine CBS activity by impairing PLP binding and facilitating CBS degradation. Excess haem can also impair CBS activity by inhibiting it via CO resulting from haem induction of haem oxygenase 1 (HO 1), and by induction of a functional vitamin B6 deficiency following activation of hepatic tryptophan 2,3-dioxygenase (TDO) and subsequent utilisation of PLP by enhanced kynurenine aminotransferase (KAT) and kynureninase (Kynase) activities. CBS inhibition results in accumulation of the cardiovascular risk factor homocysteine (Hcy) and evidence is emerging for plasma Hcy elevation in patients with acute hepatic porphyrias. Decreased CBS activity may also induce a proinflammatory state, inhibit expression of haem oxygenase and activate the extrahepatic kynurenine pathway (KP) thereby further contributing to the Hcy elevation. The hypothesis predicts likely changes in CBS activity and plasma Hcy levels in untreated hepatic porphyria patients and in those receiving hemin or certain gene-based therapies. In the present review, these aspects are discussed, means of testing the hypothesis in preclinical experimental settings and porphyric patients are suggested and potential nutritional and other therapies are proposed. 相似文献
8.
The role of progesterone metabolites in breast cancer: potential for new diagnostics and therapeutics 总被引:3,自引:3,他引:3
Wiebe JP Lewis MJ Cialacu V Pawlak KJ Zhang G 《The Journal of steroid biochemistry and molecular biology》2005,93(2-5):201-208
Proliferative changes in the normal breast are known to be controlled by female sex steroids. However, only a portion of all breast cancer patients respond to current estrogen based endocrine therapy, and with continued treatment nearly all will become unresponsive and experience relapse. Therefore, ultimately for the majority of breast carcinomas, explanations and treatments based on estrogen are inadequate. Recent observations indicate that 5α-pregnane and 4-pregnene progesterone metabolites may serve as regulators of estrogen-responsive as well as unresponsive human breast cancers. The conversion of progesterone to the 5α-pregnanes is increased while conversion to the 4-pregnenes is decreased in breast carcinoma tissue, as a result of changes in progesterone metabolizing 5α-reductase, 3α-hydroxysteroid oxidoreductase (3α-HSO) and 20α-HSO activities and gene expression. The 5α-pregnane, 5α-pregnane-3,20-dione (5αP) stimulates, whereas the 4-pregnene, 3α-hydroxy-4-pregnen-20-one (3αHP), inhibits cell proliferation and detachment, by modulation of cytoskeletal and adhesion plaque molecules via the MAP kinase pathway and involving separate and specific plasma membrane-based receptors. The promotion of breast cancer appears to be related to changes in in situ concentrations of cancer-inhibiting and cancer-promoting progesterone metabolites. New diagnostic and therapeutic possibilities for breast cancer are suggested. 相似文献
9.
10.
Mechanisms and strategies to overcome multiple drug resistance in cancer 总被引:10,自引:0,他引:10
Ozben T 《FEBS letters》2006,580(12):2903-2909
One of the major problems in chemotherapy is multidrug resistance (MDR) against anticancer drugs. ATP-binding cassette (ABC) transporters are a family of proteins that mediate MDR via ATP-dependent drug efflux pumps. Many MDR inhibitors have been identified, but none of them have been proven clinically useful without side effects. Efforts continue to discover not toxic MDR inhibitors which lack pharmacokinetic interactions with anticancer drugs. Novel approaches have also been designed to inhibit or circumvent MDR. In this review, the structure and function of ABC transporters and development of MDR inhibitors are described briefly including various approaches to suppress MDR mechanisms. 相似文献
11.
12.
Runying Yang 《生物化学与生物物理学报:生物膜》2008,1778(2):454-465
Structural analysis of MRP1-NBD1 revealed that the Walker A S685 forms hydrogen-bond with the Walker B D792 and interacts with magnesium and the β-phosphate of the bound ATP. We have found that substitution of the D792 with leucine resulted in misfolding of the protein. In this report we tested whether substitution of the S685 with residues that prevent formation of this hydrogen-bond would also cause misfolding. Indeed, substitution of the S685 with residues potentially preventing formation of this hydrogen-bond resulted in misfolding of the protein. In addition, some substitutions that might form hydrogen-bond with D792 also yielded immature protein. All these mutants are temperature-sensitive variants. However, these complex-glycosylated mature mutants prepared from the cells grown at 27 °C still significantly affect ATP binding and ATP-dependent solute transport. In contrast, substitution of the S685 with threonine yielded complex-glycosylated mature protein that is more active than the wild-type MRP1, indicating that the interaction between the hydroxyl group of 685 residue and the carboxyl group of D792 plays a crucial role for the protein folding and the interactions of the hydroxyl group at 685 with magnesium and the β-phosphate of the bound ATP play an important role for ATP-binding and ATP-dependent solute transport. 相似文献
13.
Edward F. Greenberg Andrew R. Lavik Clark W. Distelhorst 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2014
The anti-apoptotic protein Bcl-2 is a versatile regulator of cell survival. Its interactions with its own pro-apoptotic family members are widely recognized for their role in promoting the survival of cancer cells. These interactions are thus being targeted for cancer treatment. Less widely recognized is the interaction of Bcl-2 with the inositol 1,4,5-trisphosphate receptor (InsP3R), an InsP3-gated Ca2 + channel located on the endoplasmic reticulum. The nature of this interaction, the mechanism by which it controls Ca2 + release from the ER, its role in T-cell development and survival, and the possibility of targeting it as a novel cancer treatment strategy are summarized in this review. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau. 相似文献
14.
The application of tyrosine kinase inhibitors (TKIs) to the epidermal growth factor receptor (EGFR) has been proven to be highly effective for non‐small‐cell lung cancer (NSCLC). However, patients often evolve into acquired resistance. The secondary mutations in EGFR account for nearly half of the acquired resistance. While the remaining 50% of patients exhibit tolerance to EGFR‐TKIs with unclear mechanism(s). Cylindromatosis (CYLD), a deubiquitinase, functions as a tumor suppressor to regulate cell apoptosis, proliferation, and immune response, and so on. The role of CYLD in NSCLC EGFR‐TKI resistance remains elusive. Here, we found CYLD was upregulated in PC‐9 cells, whereas downregulated in PC‐9 acquired gefitinib‐resistant (PC‐9/GR) cells in response to the treatment of gefitinib, which is consistent with the results in the Gene Expression Omnibus database. Overexpression of CYLD promoted a more apoptotic death ratio in PC‐9/GR cells than that in PC‐9 cells. In addition, silencing the expression of CYLD resulted in an increase of the expression level of interleukin‐6, transforming growth factor‐β and tumor necrosis factor‐α, which may contribute to acquired resistance of PC‐9 cells to gefitinib. Taken together, our data in vitro demonstrate that PC‐9/GR cells downregulated CYLD expression, enhanced subsequent CYLD‐dependent antiapoptotic capacity and inflammatory response, which may provide a possible target for acquired gefitinib‐resistant treatment in NSCLC. 相似文献
15.
Background
Mitochondria, essential to the cell homeostasis maintenance, are central to the intrinsic apoptotic pathway and their dysfunction is associated with multiple diseases. Recent research documents that microRNAs (miRNAs) regulate important signalling pathways in mitochondria, and many of these miRNAs are deregulated in various diseases including cancers.Scope of review
In this review, we summarise the role of miRNAs in the regulation of the mitochondrial bioenergetics/function, and discuss the role of miRNAs modulating the various metabolic pathways resulting in tumour suppression and their possible therapeutic applications.Major conclusions
MiRNAs have recently emerged as key regulators of metabolism and can affect mitochondria by modulating mitochondrial proteins coded by nuclear genes. They were also found in mitochondria. Reprogramming of the energy metabolism has been postulated as a major feature of cancer. Modulation of miRNAs levels may provide a new therapeutic approach for the treatment of mitochondria-related pathologies, including neoplastic diseases.General significance
The elucidation of the role of miRNAs in the regulation of mitochondrial activity/bioenergetics will deepen our understanding of the molecular aspects of various aspects of cell biology associated with the genesis and progression of neoplastic diseases. Eventually, this knowledge may promote the development of innovative pharmacological interventions. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research. 相似文献16.
Runying Yang 《生物化学与生物物理学报:生物膜》2007,1768(2):324-335
MRP1 couples ATP binding/hydrolysis to solute transport. We have shown that ATP binding to nucleotide-binding-domain 1 (NBD1) plays a regulatory role whereas ATP hydrolysis at NBD2 plays a crucial role in ATP-dependent solute transport. However, how ATP is hydrolyzed at NBD2 is not well elucidated. To partially address this question, we have mutated the histidine residue in H-loop of MRP1 to either a residue that prevents the formation of hydrogen-bonds with ATP and other residues in MRP1 or a residue that may potentially form these hydrogen-bonds. Interestingly, substitution of H827 in NBD1 with residues that prevented formation of these hydrogen-bonds had no effect on the ATP-dependent solute transport whereas corresponding mutations in NBD2 almost abolished the ATP-dependent solute transport completely. In contrast, substitutions of H1486 in H-loop of NBD2 with residues that might potentially form these hydrogen-bonds exerted either full function or partial function, implying that hydrogen-bond formation between the residue at 1486 and the γ-phosphate of the bound ATP and/or other residues, such as putative catalytic base E1455, together with S769, G771, T1329 and K1333, etc., holds all the components necessary for ATP binding/hydrolysis firmly so that the activated water molecule can efficiently hydrolyze the bound ATP at NBD2. 相似文献
17.
Cyrille Maugeais Anne PerezElisabeth von der Mark Christine MaggPhilippe Pflieger Eric J. Niesor 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2013,1831(11):1644-1650
Cholesteryl ester transfer protein (CETP), a key regulator of high-density lipoprotein (HDL) metabolism, induces HDL remodeling by transferring lipids between apolipoprotein B-containing lipoproteins and HDL, and/or by promoting lipid transfer between HDL subparticles. In this study, we investigated the mechanism as to how CETP induces the generation of lipid-poor particles (pre-β-HDL) from HDL, which increases ATP-binding cassette transporter 1-mediated cholesterol efflux. This CETP-dependent HDL remodeling is enhanced by the CETP modulator dalcetrapib both in plasma and isolated HDL. The interaction of dalcetrapib with cysteine 13 of CETP is required, since this effect was abolished when using mutant CETP in which cysteine 13 was substituted for a serine residue. Other thiol-containing compounds were identified as CETP modulators interacting with cysteine 13 of CETP. In order to mimic dalcetrapib-bound CETP, mutant CETP proteins were prepared by replacing cysteine 13 with the bulky amino acid tyrosine or tryptophan. The resultant mutants showed virtually no CETP-dependent lipid transfer activity but demonstrated preserved CETP-dependent pre-β-HDL generation. Overall, these data demonstrate that the two functions of CETP i.e., cholesteryl ester transfer and HDL remodeling can be uncoupled by interaction of thiol-containing compounds with cysteine 13 of CETP or by introducing large amino acid residues in place of cysteine 13. 相似文献
18.