首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Tumor necrosis factor–α, interleukin-1, and endotoxin stimulate the expression of vascular endothelial cell (EC) adhesion molecules. Here we describe a novel pathway of adhesion molecule induction that is independent of exogenous factors, but which is dependent on integrin signaling and cell–cell interactions. Cells plated onto gelatin, fibronectin, collagen or fibrinogen, or anti-integrin antibodies, expressed increased amounts of E-selectin, vascular cell adhesion molecule–1, and intercellular adhesion molecule–1. In contrast, ECs failed to express E-selectin when plated on poly-l-lysine or when plated on fibrinogen in the presence of attachment-inhibiting, cyclic Arg-Gly-Asp peptides. The duration and magnitude of adhesion molecule expression was dependent on EC density. Induction of E-selectin on ECs plated at confluent density was transient and returned to basal levels by 15 h after plating when only 7 ± 2% (n = 5) of cells were positive. In contrast, cells plated at low density displayed a 17-fold greater expression of E-selectin than did high density ECs with 57 ± 4% (n = 5) positive for E-selectin expression 15 h after plating, and significant expression still evident 72 h after plating. The confluency-dependent inhibition of expression of E-selectin was at least partly mediated through the cell junctional protein, platelet/endothelial cell adhesion molecule–1 (PECAM-1). Antibodies against PECAM-1, but not against VE-cadherin, increased E-selectin expression on confluent ECs. Co– culture of subconfluent ECs with PECAM-1– coated beads or with L cells transfected with full-length PECAM-1 or with a cytoplasmic truncation PECAM-1 mutant, inhibited E-selectin expression. In contrast, untransfected L cells or L cells transfected with an adhesion-defective domain 2 deletion PECAM-1 mutant failed to regulate E-selectin expression. In an in vitro model of wounding the wound front displayed an increase in the number of E-selectin–expressing cells, and also an increase in the intensity of expression of E-selectin positive cells compared to the nonwounded monolayer. Thus we propose that the EC junction, and in particular, the junctional molecule PECAM-1, is a powerful regulator of endothelial adhesiveness.The endothelial lining of the vascular system normally displays a nonactivated, nonadhesive phenotype. Stimulation with agents such as tumor necrosis factor-α (TNF-α)1, interleukin-1 (IL-1), or lipopolysaccharide (LPS) are known to induce the expression of proteins on the endothelial surface that mediate coagulation (Bevilacqua et al., 1986), leukocyte adhesion (Bevilacqua et al., 1985; Gamble et al., 1985; Pober et al., 1986b ; Doherty et al., 1989), and leukocyte transendothelial migration (Furie et al., 1989; Moser et al., 1989). The endothelial antigens that are important for the adhesion of leukocytes are members of the selectin family, E- and P-selectin, and the immunoglobulin gene superfamily, vascular cell adhesion molecule–1 (VCAM-1) and intercellular adhesion molecule–1 (ICAM-1) (Carlos and Harlan, 1994; Litwin et al., 1995).The induction of E-selectin expression on endothelial cells (ECs) in vitro after cytokine stimulation is transient and independent of the continued presence of the stimulant (Pober et al., 1986a ). Previous studies have shown that E-selectin mRNA and protein levels peak between 2 and 4 h, respectively, after treatment with an agonist, returning to near basal levels by 24 h (Bevilacqua et al., 1989; Read et al., 1994). VCAM-1 (Osborn et al., 1989) and ICAM-1 (Pober et al., 1986b ) are maximal 6 and 12 h, respectively, after stimulation.In contrast to the transiency of E-selectin and VCAM expression demonstrated by the in vitro data, these antigens have been detected on venular endothelium in chronic inflammatory lesions, such as the synovium in rheumatoid arthritis (Koch et al., 1991), and the skin in psoriasis (Petzelbauer et al., 1994). E-selectin expression is also detected on angiogenic vessels in human hemangiomas, a noninflammatory angiogenic disease (Kraling et al., 1996). Moreover, the architecture and anatomic localization of capillary loops influence the pattern of endothelial expression of E-selectin and VCAM-1, independently of the availability of cytokines (Petzelbauer et al., 1994). Thus it is likely that alternate control mechanisms exist to allow prolonged, locality-based expression of adhesion molecules on the endothelium. At least one of these alternate mechanisms may be flow, since increased shear stress has been shown to selectively modulate adhesion molecule expression, upregulating ICAM-1 but not E-selectin or VCAM-1 (Nagel et al., 1994).Since sites of inflammation are often associated with morphological changes including cell retraction of the endothelium (Schumacher, 1973), we hypothesized that cell contacts may be important in the regulation of endothelial phenotype. We describe here the central role of the junctional protein, platelet/endothelial cell adhesion molecule–1 (PECAM-1), through the formation of cell–cell interactions, in the maintenance of the functional integrity of the endothelial monolayer. Furthermore, we demonstrate a novel pathway for the induction of adhesion molecules on endothelial cells that is independent of exogenous addition of cytokines, but is related to integrin- and cell shape–associated signaling events.  相似文献   

2.
Interactions between circulating leukocytes and vascular endothelial cells are of fundamental importance in controlling normal recirculation and migration of cells into sites of inflammation. Nitric oxide (NO), which is synthesized by vascular endothelial cells, has been reported to decrease the binding of platelets, monocytes, macrophages, and neutrophils to endothelial cells. Using NO donors and inhibitors of the enzyme NO synthase, we found no evidence that physiologically relevant levels of NO alter adhesion of purified lymphocytes to an endothelial cell line derived from human umbilical vein endothelial cells (SGHEC-7). In addition, NO donors did not alter the cell surface expression of VCAM-1, ICAM-1, or E-selectin on SGHEC-7 cells.  相似文献   

3.
前期研究观察到一种现象, 在正常妊娠的胎盘中细胞粘附分子CD146选择性地表达在侵入性滋养层细胞中, 而在滋养层细胞侵入不足的先兆子痫病人的胎盘中CD146表达降低或缺失.本文进一步研究了CD146分子影响滋养层细胞侵入行为的作用机理.免疫荧光实验显示CD146分子选择性地表达在具有侵袭能力的中间滋养层细胞,而在非侵入性的细胞滋养层细胞和合体滋养层细胞中不表达.细胞功能实验表明,影响滋养层细胞侵入性的两个关键要素,即细胞迁移和基质金属蛋白酶的分泌,都受到CD146特异抗体的显著抑制.这些研究结果提示,粘附分子CD146是影响细胞侵入行为的关键分子.这为深入研究胚胎植入和肿瘤浸润的分子调控机理提供了一个关键的分子模型.  相似文献   

4.
肝窦内皮细胞(liver sinusoidal endothelial cell,LSEC)是肝非实质细胞的主要细胞群,具有物质转运、吞噬、抗原提呈、免疫耐受等功能. 肝在遭到多种病原侵袭时,肝窦内皮细胞窗孔逐渐减少或消失,内皮下基膜形成,产生类似于连续型毛细血管的结构,这一过程称为肝窦毛细血管化. 它由多种因素引起,其过程极复杂,在多种肝病的发病前期阶段均有出现,近年来受到广泛关注. 而目前关于肝窦内皮细胞的生理功能及病理机制研究方面的系统总结仍少有报道. 本文对肝窦内皮细胞的生理功能及肝窦病理机制作一较为全面的综述. 除了阐述肝窦毛细血管化自身分子机制的研究进展外,还重点介绍了肝窦毛细血管化参与肝多种疾病发病过程的作用机制. 此外,对肝窦内皮细胞相关的研究方法也作了详细的介绍,为全面了解肝窦内皮细胞生理功能及肝窦毛细血管化的分子机理提供参考.  相似文献   

5.
线粒体是细胞的代谢中心之一,不仅产生大量的ATP为细胞提供能量,还参与多种生物分子(例如核酸、氨基酸、胆固醇和脂肪酸)合成及代谢废物的处理。ATP是细胞重要的“能源货币”,是能量载体和信号分子,参与调节细胞的各种生命活动。动物与人在激烈运动时,ATP消耗速率增加数十倍,但细胞内的ATP仍维持在“设定点”水平,不出现降低。因此,传统生理学观点认为,动物细胞内ATP水平保持恒定。但新的研究结果表明,生物细胞内ATP水平存在波动。生理条件下,增加能量物资(糖、脂和氨基酸等)和氧供,促进线粒体ATP合成,可使细胞内ATP水平出现一过性升高。新的研究证明,在肥胖情况下,由于能量物质的过多供应,细胞内ATP水平出现持续性升高,构成代谢紊乱的源头信号。线粒体ATP合成受多种因素影响,如氧化应激、钙超载、缺氧、线粒体膜通透性增加和线粒体DNA突变等。这些因素与疾病条件下细胞内ATP水平持续降低相关,常见的疾病包括阿尔茨海默症、帕金森疾病、精神分裂症、肿瘤、心衰、全身炎症反应综合征等。本综述简要概述线粒体调节细胞内ATP水平的研究进展,重点讨论造成ATP波动的因素、机制及病理生理学意义。  相似文献   

6.
线粒体是细胞的代谢中心之一,不仅产生大量的ATP为细胞提供能量,还参与多种生物分子(例如核酸、氨基酸、胆固醇和脂肪酸)合成及代谢废物的处理。ATP是细胞重要的“能源货币”,是能量载体和信号分子,参与调节细胞的各种生命活动。动物与人在激烈运动时,ATP消耗速率增加数十倍,但细胞内的ATP仍维持在“设定点”水平,不出现降低。因此,传统生理学观点认为,动物细胞内ATP水平保持恒定。但新的研究结果表明,生物细胞内ATP水平存在波动。生理条件下,增加能量物资(糖、脂和氨基酸等)和氧供,促进线粒体ATP合成,可使细胞内ATP水平出现一过性升高。新的研究证明,在肥胖情况下,由于能量物质的过多供应,细胞内ATP水平出现持续性升高,构成代谢紊乱的源头信号。线粒体ATP合成受多种因素影响,如氧化应激、钙超载、缺氧、线粒体膜通透性增加和线粒体DNA突变等。这些因素与疾病条件下细胞内ATP水平持续降低相关,常见的疾病包括阿尔茨海默症、帕金森疾病、精神分裂症、肿瘤、心衰、全身炎症反应综合征等。本综述简要概述线粒体调节细胞内ATP水平的研究进展,重点讨论造成ATP波动的因素、机制及病理生理学意义。  相似文献   

7.
Bacterial Adhesion under Static and Dynamic Conditions   总被引:6,自引:5,他引:6       下载免费PDF全文
The deposition of various pseudomonads and coryneform bacteria with different hydrophobicities (water contact angles) and negative cell surface charges on negatively charged Teflon and glass surfaces was investigated. The levels of deposition varied between 5.0 × 104 and 1.6 × 107 cells cm-2 and between 5.0 × 104 and 3.6 × 107 cells cm-2 for dynamic column and static batch systems, respectively, indicating that there was a wide variation in physicochemical interactions. Batch and column results were compared in order to better distinguish between hydrodynamic and other system-dependent influences and method-independent physicochemical interactions. Despite the shorter suspension-solid contact time in columns (1 h) than in batch systems (4 h), the level of deposition (expressed as the number of cells that adhered) divided by the applied ambient cell concentration was 4.12 ± 1.63 times higher in columns than in batch sytems for 15 of 22 strain-surface combinations studied. This demonstrates that transport of microbial particles from bulk liquid to surfaces is more efficient in dynamic columns (transport dominated by convection and diffusion) than in static batch systems (transport by diffusion only). The relative constancy of this ratio for the 15 combinations shows that physicochemical interactions affect adhesion similarly in the two systems. The deviating deposition behavior of the other seven strain-surface combinations could be attributed to method-dependent effects resulting from specific cell characteristics (e.g., to the presence of capsular polymers, to an ability to aggregate, to large cell sizes, or to a tendency to desorb after passage through an air-liquid interface).  相似文献   

8.
细胞间粘附分子-1(ICAM-1)是介导白细胞与内皮细胞粘附的重要粘附分子.为研究野生型p53基因对内皮细胞ICAM-1表达的影响,分别采用流式细胞术和RT-PCR/HPLC方法测定ICAM-1蛋白及mRNA水平.静息状态的内皮细胞表面结构性地表达有少量的ICAM-1,在肿瘤坏死因子α(TNFα,10~1000U/ml)诱导下,其表达呈剂量依赖性增加.将p53基因导入内皮细胞,则显著抑制TNFα诱导的内皮细胞表面ICAM-1的表达.p53基因的导入对静息状态内皮细胞表面结构性表达的ICAM-1影响较小.p53基因主要通过降低ICAM-1的mRNA水平而抑制内皮细胞表面ICAM-1的表达,但对蛋白的抑制程度小于对mRNA的抑制程度.提示:p53基因对内皮细胞ICAM-1表达的影响除转录水平控制外,还存在转录后水平的调控  相似文献   

9.
Integrin-mediated adhesion of circulating neutrophils to endothelium during inflammation involves multiple adhesion molecules on both neutrophils and endothelium. Most studies of neutrophil adhesion have focused on adhesion to ICAM-1 (mediated by β2 integrins), but interaction with the endothelial ligand vascular cell adhesion molecule 1 (VCAM-1) may also play a role in neutrophil adhesion to activated endothelium. In this study we demonstrate significant adhesion between neutrophils and VCAM-1 mediated by β1 integrins, principally via α4β1 (VLA-4). We characterize the dynamics of adhesion in terms of rate constants for a two-step bond formation process, the first involving juxtaposition of active molecules with substrate and the second involving bond formation. The results indicate that the first step is rate limiting for VLA-4-VCAM-1 interactions. Changing divalent cation composition affects these coefficients, implicating molecular conformational changes as a key step in the process.  相似文献   

10.
Under conditions of experimental varicocele in rats, we observed suppression of production of testosterone and significant drops in the level of this hormone in the blood serum. Such a decrease resulted in a two-fold (or even greater) rise in the amount of the membrane-bound fraction of neuronal cell adhesion molecule (NCAM) in the hypothalamus and hippocampus, while the levels in the cerebellum and neocortex remained stable, and also in appreciable redistribution of the soluble form of this molecule in different cerebral structures in the course of development of varicocele.  相似文献   

11.
Aquaporin-4 (AQP4) is the primary cellular water channel in the brain and is abundantly expressed by astrocytes along the blood-brain barrier and brain-cerebrospinal fluid interfaces. Water transport via AQP4 contributes to the activity-dependent volume changes of the extracellular space (ECS), which affect extracellular solute concentrations and neuronal excitability. AQP4 is anchored by α-syntrophin (α-syn), the deletion of which leads to reduced AQP4 levels in perivascular and subpial membranes. We used the real-time iontophoretic method and/or diffusion-weighted magnetic resonance imaging to clarify the impact of α-syn deletion on astrocyte morphology and changes in extracellular diffusion associated with cell swelling in vitro and in vivo. In mice lacking α-syn, we found higher resting values of the apparent diffusion coefficient of water (ADCW) and the extracellular volume fraction (α). No significant differences in tortuosity (λ) or non-specific uptake (k′), were found between α-syn-negative (α-syn −/−) and α-syn-positive (α-syn +/+) mice. The deletion of α-syn resulted in a significantly smaller relative decrease in α observed during elevated K+ (10 mM) and severe hypotonic stress (−100 mOsmol/l), but not during mild hypotonic stress (−50 mOsmol/l). After the induction of terminal ischemia/anoxia, the final values of ADCW as well as of the ECS volume fraction α indicate milder cell swelling in α-syn −/− in comparison with α-syn +/+ mice. Shortly after terminal ischemia/anoxia induction, the onset of a steep rise in the extracellular potassium concentration and an increase in λ was faster in α-syn −/− mice, but the final values did not differ between α-syn −/− and α-syn +/+ mice. This study reveals that water transport through AQP4 channels enhances and accelerates astrocyte swelling. The substantially altered ECS diffusion parameters will likely affect the movement of neuroactive substances and/or trophic factors, which in turn may modulate the extent of tissue damage and/or drug distribution.  相似文献   

12.
Inflammatory cell migration characteristic of ischemic damages has a dual role providing the tissue with factors needed for tissue injury recovery simultaneously causing deleterious development depending on the quality and the quantity of infiltrated cells. Extracellular superoxide dismutase (SOD3) has been shown to have an anti-inflammatory role in ischemic injuries where it increases the recovery process by activating mitogen signal transduction and increasing cell proliferation. However, SOD3 derived effects on inflammatory cytokine and adhesion molecule expression, which would explain reduced inflammation in vascular lesions, has not been properly characterized. In the present work the effect of SOD3 on the inflammatory cell extravasation was studied in vivo in rat hind limb ischemia and mouse peritonitis models by identifying the migrated cells and analyzing SOD3-derived response on inflammatory cytokine and adhesion molecule expression. SOD3 overexpression significantly reduced TNFα, IL1α, IL6, MIP2, and MCP-1 cytokine and VCAM, ICAM, P-selectin, and E-selectin adhesion molecule expressions in injured tissues. Consequently the mononuclear cell, especially CD68+ monocyte and CD3+ T cell infiltration were significantly decreased whereas granulocyte migration was less affected. According to our data SOD3 has a selective anti-inflammatory role in ischemic damages preventing the migration of reactive oxygen producing monocyte/macrophages, which in excessive amounts could potentially further intensify the tissue injuries therefore suggesting potential for SOD3 in treatment of inflammatory disorders.  相似文献   

13.
bEND.3 cells are polyoma middle T-transformed mouse brain endothelial cells that express very little or no thrombospondin-1, a natural inhibitor of angiogenesis, but express high levels of platelet endothelial cell adhesion molecule-1 (PECAM-1) that localizes to sites of cell–cell contact. Here, we have examined the role of PECAM-1 in regulation of bEND.3 cell proliferation, migration, morphogenesis, and hemangioma formation. We show that down-regulating PECAM-1 expression by antisense transfection of bEND.3 cells has a dramatic effect on their morphology, proliferation, and morphogenesis on Matrigel. There is an optimal level for PECAM-1 expression such that high levels of PECAM-1 inhibit, whereas moderate levels of PECAM-1 stimulate, endothelial cell morphogenesis. The down-regulation of PECAM-1 in bEND.3 cells resulted in reexpression of endogenous thrombospondin-1 and its antiangiogenic receptor CD36. The expression of the vascular endothelial growth factor receptors flk-1 and flt-1, as well as integrins and metalloproteinases (which are involved in angiogenesis), were also affected. These observations are consistent with the changes observed in proliferation, migration, and adhesion characteristics of the antisense-transfected bEND.3 cells as well as with their lack of ability to form hemangiomas in mice. Thus, a reciprocal relationship exists between thrombospondin-1 and PECAM-1 expression, such that these two molecules appear to be constituents of a “switch” that regulates in concert many components of the angiogenic and differentiated phenotypes of endothelial cells.  相似文献   

14.
15.
Cell-cell contacts are fundamental to multicellular organisms and are subject to exquisite levels of control. The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) can engage in both cis-homophilic (parallel) oligomerization and trans-homophilic (anti-parallel) binding. In this study, we establish that the CEACAM1 transmembrane domain has a propensity to form cis-dimers via the transmembrane-embedded 432GXXXG436 motif and that this basal state is overcome when activated calmodulin binds to the CEACAM1 cytoplasmic domain. Although mutation of the 432GXXXG436 motif reduced CEACAM1 oligomerization, it did not affect surface localization of the receptor or influence CEACAM1-dependent cellular invasion by the pathogenic Neisseria. The mutation did, however, have a striking effect on CEACAM1-dependent cellular aggregation, increasing both the kinetics of cell-cell association and the size of cellular aggregates formed. CEACAM1 association with tyrosine kinase c-Src and tyrosine phosphatases SHP-1 and SHP-2 was not affected by the 432GXXXG436 mutation, consistent with their association with the monomeric form of wild type CEACAM1. Collectively, our results establish that a dynamic oligomer-to-monomer shift in surface-expressed CEACAM1 facilitates trans-homophilic binding and downstream effector signaling.  相似文献   

16.
Numerous red blood cells are generated every second from proliferative progenitor cells under a homeostatic state. Increased erythropoietic activity is required after myelo-suppression as a result of chemo-radio therapies. Our previous study revealed that the endothelial cell-selective adhesion molecule (ESAM), an authentic hematopoietic stem cell marker, plays essential roles in stress-induced hematopoiesis. To determine the physiological importance of ESAM in erythroid recovery, ESAM-knockout (KO) mice were treated with the anti-cancer drug, 5-fluorouracil (5-FU). ESAM-KO mice experienced severe and prolonged anemia after 5-FU treatment compared to wild-type (WT) mice. Eight days after the 5-FU injection, compared to WT mice, ESAM-KO mice showed reduced numbers of erythroid progenitors in bone marrow (BM) and spleen, and reticulocytes in peripheral blood. Megakaryocyte-erythrocyte progenitors (MEPs) from the BM of 5-FU-treated ESAM-KO mice showed reduced burst forming unit-erythrocyte (BFU-E) capacities than those from WT mice. BM transplantation revealed that hematopoietic stem/progenitor cells from ESAM-KO donors were more sensitive to 5-FU treatment than that from WT donors in the WT host mice. However, hematopoietic cells from WT donors transplanted into ESAM-KO host mice could normally reconstitute the erythroid lineage after a BM injury. These results suggested that ESAM expression in hematopoietic cells, but not environmental cells, is critical for hematopoietic recovery. We also found that 5-FU treatment induces the up-regulation of ESAM in primitive erythroid progenitors and macrophages that do not express ESAM under homeostatic conditions. The phenotypic change seen in macrophages might be functionally involved in the interaction between erythroid progenitors and their niche components during stress-induced acute erythropoiesis. Microarray analyses of primitive erythroid progenitors from 5-FU-treated WT and ESAM-KO mice revealed that various signaling pathways, including the GATA1 system, were impaired in ESAM-KO mice. Thus, our data demonstrate that ESAM expression in hematopoietic progenitors is essential for erythroid recovery after a BM injury.  相似文献   

17.
The melanoma cell adhesion molecule (CD146) contains a circulating proteolytic variant (sCD146), which is involved in inflammation and angiogenesis. Its circulating level is modulated in different pathologies, but its intracellular transduction pathways are still largely unknown. Using peptide pulldown and mass spectrometry, we identified angiomotin as a sCD146-associated protein in endothelial progenitor cells (EPC). Interaction between angiomotin and sCD146 was confirmed by enzyme-linked immunosorbent assay (ELISA), homogeneous time-resolved fluorescence, and binding of sCD146 on both immobilized recombinant angiomotin and angiomotin-transfected cells. Silencing angiomotin in EPC inhibited sCD146 angiogenic effects, i.e. EPC migration, proliferation, and capacity to form capillary-like structures in Matrigel. In addition, sCD146 effects were inhibited by the angiomotin inhibitor angiostatin and competition with recombinant angiomotin. Finally, binding of sCD146 on angiomotin triggered the activation of several transduction pathways that were identified by antibody array. These results delineate a novel signaling pathway where sCD146 binds to angiomotin to stimulate a proangiogenic response. This result is important to find novel target cells of sCD146 and for the development of therapeutic strategies based on EPC in the treatment of ischemic diseases.  相似文献   

18.
Vaso-occlusive crises are the main acute complication in sickle cell disease. They are initiated by abnormal adhesion of circulating blood cells to vascular endothelium of the microcirculation. Several interactions involving an intricate network of adhesion molecules have been described between sickle red blood cells and the endothelial vascular wall. We have shown previously that young sickle reticulocytes adhere to resting endothelial cells through the interaction of α4β1 integrin with endothelial Lutheran/basal cell adhesion molecule (Lu/BCAM). In the present work, we investigated the functional impact of endothelial exposure to hydroxycarbamide (HC) on this interaction using transformed human bone marrow endothelial cells and primary human pulmonary microvascular endothelial cells. Adhesion of sickle reticulocytes to HC-treated endothelial cells was decreased despite the HC-derived increase of Lu/BCAM expression. This was associated with decreased phosphorylation of Lu/BCAM and up-regulation of the cAMP-specific phosphodiesterase 4A expression. Our study reveals a novel mechanism for HC in endothelial cells where it could modulate the function of membrane proteins through the regulation of phosphodiesterase expression and cAMP-dependent signaling pathways.  相似文献   

19.
20.
Abstract: The cell adhesion molecule L1 is a multifunctional protein in the nervous system characterizing cell adhesion, migration, and neurite outgrowth. In addition to full-length L1, we found an alternatively spliced variant lacking both the KGHHV sequence in the extracellular part and the RSLE sequence in the cytoplasmic part of L1. This L1 variant was expressed exclusively in nonneuronal cells such as Schwann cells, astrocytes, and oligodendrocytes, in contrast to the expression of the full-length L1 in neurons and cells of neuronal origin. To investigate the functions of the L1 variant, we established cell lines transfected with a cytoplasmic short L1 (L1cs) cDNA that lacks only the 12-bp segment encoding for the RSLE sequence. The promoting activities of homophilic cell adhesion, neurite outgrowth, and neuronal cell migration of L1cs-transfected cells (L4-2) were similar to those of full-length L1-transfected cells (L3-1), but the cell migratory activity of L4-2 itself was clearly lower than that of L3-1. In conclusion, the short form of L1 is a nonneuronal type, in contrast to the neuronal type of the full-length L1. Deletion of the four amino acids RSLE in the cytoplasmic region of L1 markedly reduced cell migratory activity, suggesting an importance of the RSLE sequence for the signaling events of neuronal migration mediated by L1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号