首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】对大酱中耐盐性较好的植物乳杆菌进行蛋白质组学研究,为植物乳杆菌盐胁迫应激机制的研究提供实验数据。【方法】本项研究以筛选自东北传统农家大酱的耐盐性较好的植物乳杆菌FS5-5为研究对象,绘制了其在0%、6.0%、7.0%和8.0%(W/V)Na Cl浓度下的生长曲线,并利用i TRAQ技术研究了其在0%、6.0%、7.0%和8.0%(W/V)Na Cl浓度下的蛋白质表达情况。【结果】植物乳杆菌FS5-5在0%、6.0%、7.0%和8.0%(W/V)Na Cl浓度下到达对数生长期中期的时间点分别为5、10、12和12 h;以差异倍数在1.2倍以上且P0.05为筛选条件对6.0%、7.0%和8.0%(W/V)Na Cl浓度下与0%进行差异蛋白质的筛选,共筛选出1271个差异蛋白质。这些差异蛋白质主要参与糖代谢、氨基酸代谢、脂肪酸代谢、核苷酸代谢、应激反应、转运、PTS系统和核糖体代谢等。【结论】植物乳杆菌在高盐浓度下生长与能量合成蛋白质、应激蛋白质以及相容性溶质转运蛋白质的表达上调有密切关系。  相似文献   

2.
Lactobacillus plantarum (L. plantarum) K25 is a probiotic strain isolated from Tibetan kefir. Previous studies showed that this exopolysaccharide (EPS)-producing strain was antimicrobial active and cold tolerant. These functional traits were evidenced by complete genome sequencing of strain K25 with a circular 3,175,846-bp chromosome and six circular plasmids, encoding 3365 CDSs, 16 rRNA genes and 70 tRNA genes. Genomic analysis of L. plantarum K25 illustrates that this strain contains the previous reported mechanisms of probiotic functionality and cold tolerance, involving plantaricins, lysozyme, bile salt hydrolase, chaperone proteins, osmoprotectant, oxidoreductase, EPSs and terpenes. Interestingly, strain K25 harbors more genes that function in defense mechanisms, and lipid transport and metabolism, in comparison with other L. plantarum strains reported. The present study demonstrates the comprehensive analysis of genes related to probiotic functionalities of an EPS-producing L. plantarum strain based on whole genome sequencing.  相似文献   

3.
【目的】比较临床分离的亲缘关系近的多药耐药鲍曼不动杆菌MDR-ZJ06(blaNDM-1–)和ABC3229(blaNDM-1+)的差异蛋白质组,以期发现新德里金属?-内酰胺酶1(New Delhimetallo-β-lactamase-1,NDM-1)对鲍曼不动杆菌生长代谢的影响。【方法】利用2-DE联合MALDI-TOF MS/MS技术鉴定差异表达蛋白,并在GO注析的基础上,对差异蛋白进行通路分析、功能分类和富集分析,并作出蛋白与蛋白相互作用网络。【结果】发现ABC3299相对于MDR-ZJ06有51个差异表达蛋白,其中11个蛋白表达上调,40个蛋白表达下调,并且这些差异蛋白主要涉及降低碳代谢、氨基酸代谢、脂肪酸代谢和细胞壁合成,增加铁离子转运系统形成。【结论】这个结果揭示了NDM-1可能是通过减缓细菌自身的代谢,增加自身铁的摄取使细菌机体系统地抵抗抗生素从而达到耐药。  相似文献   

4.
Castor bean (Ricinus communis L.), is one of the top 10 oilseed crops in the world and, therefore, of high economic value. Hybridization is one of the most effective ways to breed new varieties with high yield, high oil content, and better stress resistance. Therefore, prediction of desired traits in castor hybrid offspring is particularly important. In this study, proteomic analysis was performed to identify differentially expressed proteins (DEPs) in seeds between castor hybrid offspring and their female (Lm female line aLmAB2) and male parents (CSR·181). Among the DEPs upregulated in the seeds of hybrid offspring, the majority were related to seed yield and stress tolerance, while some were related to oil synthesis and fatty acid synthesis and metabolism in seeds. In other words, the hybrid offspring showed heterosis for seed yield, stress tolerance, oil synthesis, and fatty acid synthesis and metabolism when compared with their parents. Further, real-time quantitative polymerase chain reaction assays were performed on 12 genes encoding DEPs involved in oil synthesis, pollen abortion, yield, and stress tolerance of seeds. The results showed that the expression levels of the 12 genes were consistent with those of the DEPs.  相似文献   

5.

Parthenium hysterophorus biomass can be used as a non-conventional renewable feedstock for the production of bioethanol. Therefore, the present work was designed to hydrolyze P. hysterophorus biomass using cellulase enzyme produced from an actinomycete, i.e., Streptomyces sp. NAA2 using P. hysterophorus biomass as a substrate. The isolate NAA2 was identified by molecular characterization of 16SrDNA. The enzyme production by strain NAA2 was enhanced by optimization studies conducted under submerged fermentation conditions using P. hysterophorus as a substrate. The crude enzyme produced under optimized conditions was used to hydrolyze alkali-acid pretreated P. hysterophorus biomass. The highest CMCase production was achieved in 4–5 days when steam-pretreated P. hysterophorus biomass was used at 1% (w/v) concentration, using 2 discs (1 disc = 5 × 107 spores/ml) of inoculum, an initial pH 6.5, temperature at 40 °C, an agitation speed of 120–150 rpm, and by supplementing fermentation medium with 1.5% (w/v) carboxymethyl cellulose (CMC) as additional carbon source. Under optimized conditions, the actinomycete strain NAA2 showed production of 0.967 ± 0.016 U/ml CMCase, 0.116 ± 0.08 FPU/ml FPase, and 0.22 ± 0.012 U/ml β-glucosidase enzymes. On utilizing the cellulase enzyme for biomass hydrolysis, maximum 18.2% saccharification yield (of cellulose 0.202 g/g) was achieved in 96 h when enzyme and substrate levels were 30 FPU/100 ml and 2% (w/v) respectively. Parthenium hysterophorus biomass can be hydrolyzed enzymatically yielding considerable amounts of total reducing sugars. It can, therefore, be used as a feedstock for the production of bioethanol. Also, it has the potential to act as a substrate for the production of cellulases. Furthermore, the improved cellulolytic potential of Streptomyces sp. NAA2 can be exploited in various industrial applications.

  相似文献   

6.
The metabolism of (–)-quinate and shikimate by one heterofermentative strain,actobacillus pastorianus, and by one homofermentative strain,Lactobacillus plantarum, has been studied using growing and washed cells. Both organisms reduced quinate and shikimate under anaerobic conditions in the presence of suitable hydrogen donors including fructose, glucose andd(–) andl(+)-lactates. The end-product ofL.pastorianus metabolism was dihydroshikimate butL.plantarum carried the reduction a stage further tocis-3,4-dihydroxycyclohexanecarboxylate and formed, simultaneously, catechol. The enzymes involved in these reductions are induced; their importance in the metabolism of lactobacilli is discussed.  相似文献   

7.
Changes in leaf solute contents in response to saline (NaCl) and osmotic (polyethylene glycol, PEG, 6000) stresses were measured in three different salt tolerant cultivars of Lycopersicon esculentum (L.) Mill. (Pera, P-73 and Volgogradskij), and its wild relative L. pennellii (Correll) D'Arcy accession PE-47. Iso-osmotic stresses (–0. 5 MPa) of NaCl (140 mM) and PEG 6000 (150 g l-1) were applied to one-month old plants for 3 weeks. Decreasing leaf dry weight was similar in L. pennellii or L. esculentum cv. P-73 and Volgogradskij under both stresses, while leaf dry weight of L. esculentum cv. Pera decreased more under PEG stress than under NaCl stress. Water contents decreased in all the PEG treated populations, while their calculated solute potential (Ψs increased. Under osmotic stress, the total ion contents decreased in relation to control, whereas organic solutes (sugars, amino acids and organic acids) markedly increased in both tomato species, specially in the tomato cultivars, where these solutes represented 50% of the Ψ5 calculated. Soluble sugar increase was three times higher in leaves of L. esculentum than in the leaves of L. pennellii. Free proline increased under both stresses and its content was highest in L. esculentum and in L. pennellii, respectively, under NaCl and PEG stresses. Nevertheless, the contribution of this metabolite to Ψs did not exceed 5%, irrespective of treatment and species. The greater organic solute accumulation in L. esculentum than in L. pennellii– which was not reflected in their Ψ5 values – was not correlated with the tolerances of the two species to osmotic stress. Therefore, osmotic adjustment may not be the only process influencing salt and drought tolerances in tomato; the ability of plants to regulate their metabolic and physiological functions could also play an important role under these harmful conditions. The possible roles of inorganic solutes and metabolites in osmotic adjustment, energetic metabolism and redox regulation are discussed  相似文献   

8.
The paper reports a study involving the use of Halomonas boliviensis, a moderate halophile, for co-production of compatible solute ectoine and biopolyester poly(3-hydroxybutyrate) (PHB) in a process comprising two fed-batch cultures. Initial investigations on the growth of the organism in a medium with varying NaCl concentrations showed the highest level of intracellular accumulation of ectoine (0.74 g L−1) at 10–15% (w/v) NaCl, while at 15% (w/v) NaCl, the presence of hydroxyectoine (50 mg L−1) was also noted. On the other hand, the maximum cell dry weight and PHB concentration of 10 and 5.8 g L−1, respectively, were obtained at 5–7.5% (w/v) NaCl. A process comprising two fed-batch cultivations was developed—the first culture aimed at obtaining high cell mass and the second for achieving high yields of ectoine and PHB. In the first fed-batch culture, H. boliviensis was grown in a medium with 4.5% (w/v) NaCl and sufficient levels of monosodium glutamate, NH4+, and PO43−. In the second fed-batch culture, the NaCl concentration was increased to 7.5% (w/v) to trigger ectoine synthesis, while nitrogen and phosphorus sources were fed only during the first 3 h and then stopped to favor PHB accumulation. The process resulted in PHB yield of 68.5 wt.% of cell dry weight and volumetric productivity of about 1 g L−1 h−1 and ectoine concentration, content, and volumetric productivity of 4.3 g L−1, 7.2 wt.%, and 2.8 g L−1 day−1, respectively. At salt concentration of 12.5% (w/v) during the second cultivation, the ectoine content was increased to 17 wt.% and productivity to 3.4 g L−1 day−1.  相似文献   

9.
Cuttings of five Populus alba clones (S18 F1-26, Al29 F8-35, J3 F1-4, GU1 F16-36, PO9 F21-88), Populus euphratica, and Populus×euramericana (I-214) were submitted during 45 d to regular watering with NaCl solutions of electrical conductivity of 7 and 14 dS m−1. Chlorophyll a fluorescence in response to the salinity stress was assessed, using F0 and Fv/Fm. Differences in reaction to the salt were found in P. alba clones, F0 and Fv/Fm being the fluorescence parameters used to check out this stress. Minimal constant fluorescence of dark-adapted plants (F0) showed a better correlation with the disease index exhibited by plants and also with salinity dose than the parameter Fv/Fm. Some of the P. alba clones showed the same behaviour, assessed through fluorescence parameters, as P. euphratica, which was previously defined as salt tolerant, while the rest exhibited the same characteristics as I-214, which was very sensitive.  相似文献   

10.
Wang  Qi  Sun  Qian  Wang  Jing  Qiu  Xiaoyu  Qi  Renli  Huang  Jinxiu 《Probiotics and antimicrobial proteins》2021,13(4):1093-1105

Lactiplantibacillus plantarum subsp. plantarum 299v (L. plantarum 299v) is one of the most important probiotic strains in animal health, but the molecular mechanisms of how it exerts health benefits remain unclear. The purpose of this study was to explore the changes in miRNA expression profiles in the intestinal tissues of piglets by L. plantarum 299v and to explore its possible molecular regulatory mechanism in intestinal function. Neonatal piglets were orally administered L. plantarum 299v daily from 1 to 20 days old, and high-throughput sequencing was conducted to analyse the changes in miRNA expression in the jejunum and ileum. The results showed that 370 known porcine miRNAs were identified from eight libraries. Five miRNAs (ssc-miR-21-5p, -143-3p, -194b-5p, -192, and -126-3p) were highly expressed in the intestinal tissues. There were 15 differentially expressed miRNAs between the control group and the L. plantarum group, and only miR-450a was expressed differentially in both intestinal tissues. KEGG analysis revealed that the target genes of the 15 differentially expressed miRNAs were involved in 37 significantly enriched pathways (P < 0.01). Then, quantitative polymerase chain reaction confirmed that the miRNA expression was corresponded well with those from the sequencing. Luciferase reporter assays verified that lipopolysaccharide-induced TNF-α factor is a target of miR-450a. Our results also showed L. plantarum 299v could influence intestinal function by changing the levels of cytokines via miRNA expression. This is the first study to analyse differential expression miRNA profiles in intestinal tissue after L. plantarum 299v treatment and investigate the molecular regulatory mechanism of functional miRNA.

  相似文献   

11.
This study investigated the relative abundance of extracellular and cell wall associated proteins (exoproteome), cytoplasmic proteins (proteome), and related phenotypic traits of Lactobacillus plantarum grown under planktonic and biofilm conditions. Lactobacillus plantarum DB200 was preliminarily selected due to its ability to form biofilms and to adhere to Caco2 cells. As shown by fluorescence microscope analysis, biofilm cells became longer and autoaggregated at higher levels than planktonic cells. The molar ratio between glucose consumed and lactate synthesised was markedly decreased under biofilm compared to planktonic conditions. DIGE analysis showed a differential exoproteome (115 protein spots) and proteome (44) between planktonic and biofilm L. plantarum DB200 cells. Proteins up‐ or downregulated by at least twofold (p < 0.05) were found to belong mainly to the following functional categories: cell wall and catabolic process, cell cycle and adhesion, transport, glycolysis and carbohydrate metabolism, exopolysaccharide metabolism, amino acid and protein metabolisms, fatty acid and lipid biosynthesis, purine and nucleotide metabolism, stress response, oxidation/reduction process, and energy metabolism. Many of the above proteins showed moonlighting behavior. In accordance with the high expression levels of stress proteins (e.g., DnaK, GroEL, ClpP, GroES, and catalase), biofilm cells demonstrated enhanced survival under conditions of environmental stress.  相似文献   

12.
Cell growth and accumulation of polyhydroxybutyric acid, P(3HB), from CO2 in autotrophic condition of a newly isolated hydrogen-oxidizing bacterium, the strain O-1, was investigated. The bacterium, which was deposited in the Japan Collection of Microorganisms as JCM17105, autotrophically grows by assimilating H2, O2, and CO2 as substrate. 16S rRNA gene sequence of the bacterium was the closest to Ideonella dechloratans (99%). Specific growth rate of the strain O-1 was faster than a hydrogen-oxidizing bacterium, Ralstonia eutropha, which is well-known P(3HB)-producing microorganism. The strain O-1 is tolerant to high O2 concentration and it can grow above 30% (v/v) O2, while the growth of R. eutropha and Alcaligenes latus was seriously inhibited. In culture medium containing 1 g/L (NH4)2SO4, cell concentration of the strain O-1 and P(3HB) increased to 6.75 and 5.26 g/L, respectively. The content of P(3HB) in the cells was 77.9% (w/w). The strain O-1 was very tolerant to carbon monoxide (CO) and it grew even at 70% (v/v) CO, while the growth of R. eutropha and A. latus were seriously inhibited at 5% (v/v) CO. From these results, it is expected that the strain O-1 will be useful in the manufacture of P(3HB) because the industrial exhaust gas containing CO2, H2, and CO can be directly used as the substrate in the fermentation process.  相似文献   

13.
We isolated and characterized novel insoluble phosphate (P)-solubilizing bacteria tolerant to environmental factors like high salt, low and high pHs, and low temperature. A bacterium M6 was isolated from a ginseng rhizospheric soil and confirmed to belong to Burkholderia vietnamiensis by BIOLOG system and 16S rRNA gene analysis. The optimal cultural conditions for the solubilization of P were 2.5% (w/v) glucose, 0.015% (w/v) urea, and 0.4% (w/v) MgCl2·6H2O along with initial pH 7.0 at 35°C. High-performance liquid chromatography analysis showed that B. vietnamiensis M6 produced gluconic and 2-ketogluconic acids. During the culture, the pH was reduced with increase in gluconic acid concentration and was inversely correlated with P solubilization. Insoluble P solubilization in the optimal medium was about 902 mg l−1, which was approximately 1.6-fold higher than the yield in NBRIP medium (580 mg l−1). B. vietnamiensis M6 showed resistance against different environmental stresses like 10–45°C, 1–5% (w/v) salt, and 2–11 pH range. The maximal concentration of soluble P produced by B. vietnamiensis M6 from Ca3(PO4)2, CaHPO4, and hydroxyapatite was 1,039, 2,132, and 1,754 mg l−1, respectively. However, the strain M6 produced soluble P with 20 mg l−1 from FePO4 after 2 days and 100 mg l−1 from AlPO4 after 6 days, respectively. Our results indicate that B. vietnamiensis M6 could be a potential candidate for the development of biofertilizer applicable to environmentally stressed soil.  相似文献   

14.
Biometric and physiological analyses of salt stress responses were performed in two time-course experiments on giant reed (Arundo donax L). Experiment I evaluated biomass production in plants exposed to 128, 256, 512 mM NaCl for 84 days. For Experiment II, plants grown under 256 mM NaCl were further assessed for chlorophyll a fluorescence, ionic partitioning, and proline content at 14 and 49 days after treatment (DAT). Biomass allocation was affected with all the concentrations of NaCl used from 28 DAT onward. Proline biosynthesis in leaves was more stimulated than that in roots after salt stress. Photosynthetic efficiency of photosystem II (PSII) was not affected by salt stress up to 42 DAT, while 49 DAT plants exhibited a significant reduction of both potential (ΦPSII) and maximal (Fv/Fm) PSII quantum yield. A. donax resulted a moderately sensitive species in response to 256 and 512 mM NaCl, concentrations that are however higher than that commonly found in most marginal lands (such as 128 mM or lower), where the biomass yield is appreciable, especially in short-term cultivation (56 DAT here). Altogether, this study indicates that A. donax can be considered as a promising and valuable energy crop for exploiting the Mediterranean marginal land.  相似文献   

15.

In this study, antioxidant processes were searched for in macrophyte duckweed to investigate tolerance mechanisms in this species against oxidative damage caused by salinity stress. Biochemical and histological analyses were performed on four Lemna aequinoctialis clones grown in Schenk-Hildebrandt medium, 0.5 × SH, supplemented with 1% sucrose liquid medium containing or not containing NaCl in different NaCl concentrations (0, 25 and 50 mM). For most clones, the salt stress effects caused growth inhibition and antioxidant responses at 50 mM NaCl. Also, starch and reducing sugar accumulations were increased with salt, whereas the photosynthetic pigment content was reduced in clone L. aequinoctialis 5569. The plant growth inhibition reflects the oxidative stress shown by the significant increase in malondialdehyde (MDA) and hydrogen peroxide (H2O2) content. In the L. aequinoctialis 5568 clone, with the highest MDA levels, no antioxidant enzymatic activity was observed. The L. aequinoctialis 5570 clone presented higher ascorbate peroxidase and catalase activities in parallel, indicating that the efficiency of the defence mechanism relies on synchrony between such enzyme activities toward successive elimination of reactive oxygen species and resulting in the assurance of some level of protection of the metabolism from oxidative damage. Considering the moderate salt stress (25 mM), the maintenance of MDA content and small growth inhibition associated with the high starch production suggested the acclimation efficiency of L. aequinoctialis 5570 and 5567 clones, indicating that they may be suitable for cultivation under moderate saline conditions, serving as biofuel feedstock. In addition, this study demonstrates great intraspecific phenotypic plasticity of duckweed, L. aequinoctialis, from closely related clones.

  相似文献   

16.
Allotetraploid is a new species produced by distant hybridization between red crucian carp (Carassius auratus red var., abbreviated as RCC) and common carp (Cyprinus carpio L., abbreviated as CC). There is a significant difference in growth rate between allotetraploid and its parents. However, the underlying molecular mechanism is largely unknown. In this study, to find direct evidence associated with metabolism and growth rate in protein level, we performed quantitative proteomics analysis on liver tissues between allotetraploid and its parents. A total of 2502 unique proteins were identified and quantified by SWATH-MS in our proteomics profiling. Subsequently, comprehensive bioinformatics analyses including gene ontology enrichment analysis, pathway and network analysis, and protein–protein interaction analysis (PPI) were conducted based on differentially expressed proteins (DEPs) between allotetraploid and its parents. The results revealed several significant DEPs involved in metabolism pathways in liver. More specifically, the integrative analysis highlighted that the DEPs ACSBG1, OAT, and LDHBA play vital roles in metabolism pathways including “pentose phosphate pathway,” “TCA cycle,” and “glycolysis and gluconeogenesis.” These could directly affect the growth rate in fresh water fishes by regulating the metabolism, utilization, and exchange of substance and energy. Since the liver is the central place for metabolism activity in animals, we firstly established the comprehensive and quantitative proteomics knowledge base for liver tissue from freshwater fishes, our study may serve as an irreplaceable reference for further studies regarding fishes’ culture and growth.  相似文献   

17.
The iron requirement of four strains of lactobacilli (L. acidophilus, L. delbrueckii subsp. bulgaricus, L. plantarum, and L. pentosus) was studied in a synthetic medium under aerobic or anaerobic conditions. Effects of iron salt and iron-chelated compounds were tested on bacterial growth in manganese-free or -supplemented media. No significant growth stimulation was observed in any condition. These results support the absolute manganese requirement for optimum growth of lactobacilli and the needless incorporation of iron in growth media. Received: 5 November 1997 / Accepted: 20 January 1998  相似文献   

18.
Terpinen-4-ol has high fumigating activity to stored-grain pests including Tribolium confusum. To understand the detoxification of terpinen-4-ol in insects, proteomic analysis was performed to identify related proteins and pathways in response to terpinen-4-ol fumigation in T. confusum. By using isobaric tags for relative and absolute quantitation (iTRAQ)-based strategy, 4,618 proteins were obtained from T. confusum adults in the present study. Comparative proteomic analysis showed that 148 proteins were upregulated and 137 proteins were downregulated in beetles under the LC50 of terpinen-4-ol treatment for 24 hr. According to functional classifications, differentially expressed proteins (DEPs) were enriched in xenobiotic metabolism pathways. In the detoxification pathway, the levels of 25 cytochrome P450s, 5 glutathione S-transferases, and 2 uridine diphosphate (UDP)-glucuronosyltransferases were changed, most of which were upregulated in T. confusum exposed to terpinen-4-ol. The results indicated that terpinen-4-ol was potentially metabolized and detoxified by enzymes like P450s in T. confusum.  相似文献   

19.
We investigated the role of cyclic electron flow around photosystem 1 (CEF1) and state transition (ST) in two soybean cultivars that differed in salt tolerance. The CEF1 and maximum photochemical efficiency (Fv/Fm) were determined under control and NaCl (50 mM) stress and the NaCl-induced light-harvesting complex 2 (LHC2) phosphorylation in vitro was analysed in light and dark. NaCl induced the increase of CEF1 more greatly in wild soybean Glycine cyrtoloba (cv. ACC547) than in cultivated soybean Glycine max (cv. Melrose). The Fv/Fm was reduced less in G. cyrtoloba than in G. max after 10-d NaCl stress. In G. cyrtoloba, the increase of CEF1 was associated with enhancement of LHC2 phosphorylation in thylakoid membrane under both dark and light. However, in G. max the NaCl treatment decreased the LHC2 phosphorylation. Treatment with photosynthetic electron flow inhibitors (DCMU, DBMIB) inhibited LHC2 phosphorylation more in G. max than in G. cyrtoloba. Thus the NaCl-induced up-regulation in CEF1 and ST might contribute to salt resistance of G. cyrtoloba.  相似文献   

20.

Folate deficiency is a public health concern affecting all age groups worldwide. The available evidence reveals that adding probiotic bacteria to the yoghurt starter cultures during yoghurt production process under fermentation conditions increases the folate content of yoghurt. The present study was conducted to measure two folate derivatives, i.e., 5-methyltetrahydrofolate and 5-formyltetrahydrofolate, in bio-fortified yoghurt samples including (1) yoghurt containing Streptococcus thermophilus and Lactobacillus bulgaricus, (2) probiotic yoghurt containing Lactobacillus acidophilus LA-5 and Bifidobacterium lactis BB-12, (3) probiotic yoghurt containing native strains of Lactobacillus plantarum 15HN, (4) probiotic yoghurt containing native strains of Lactococcus lactis 44Lac, and (5) probiotic yoghurt containing commercial strains of Lactobacillus plantarum LAT BY PL. During storage at 4 °C for 21 days, the highest levels of 5-methyltetrahydrofolate and 5-formyltetrahydrofolate, which were statistically significant, were detected in the yoghurt made using Lact. plantarum 15HN. Moreover, the highest total folate concentration (1487 ± 96.42 μg/L) was specified in the yoghurt containing Lact. plantarum 15HN on the 7th day. It can be conjectured that this product can be suggested as a proper alternative to synthetic folic acid and may not have the side effects of using synthetic folic acid overdoses.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号