首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As camouflaged targets share visual characteristics with the environment within which they are embedded, searchers rarely have access to a perfect visual template of such targets. Instead, they must rely on less specific representations to guide search. Although search for camouflaged and non-specified targets have both received attention in the literature, to date they have not been explored in a combined context. Here we introduce a new paradigm for characterizing behavior during search for camouflaged targets in natural scenes, while also exploring how the fidelity of the target template affects search processes. Search scenes were created from forest images, with targets a distortion (varied size) of that image at a random location. In Experiment 1 a preview of the target was provided; in Experiment 2 there was no preview. No differences were found between experiments on nearly all measures. Generally, reaction times and accuracy improved with familiarity on the task (more so for small targets). Analysis of eye movements indicated that performance benefits were related to improvements in both Search and Target Verification time. Combined, our data suggest that search for camouflaged targets can be improved over a short time-scale, even when targets are poorly defined.  相似文献   

2.
3.
Parallel visual search mechanisms have been reported previously only in mammals and birds, and not animals lacking an expanded telencephalon such as bees. Here we report the first evidence for parallel visual search in fish using a choice task where the fish had to find a target amongst an increasing number of distractors. Following two-choice discrimination training, zebrafish were presented with the original stimulus within an increasing array of distractor stimuli. We found that zebrafish exhibit no significant change in accuracy and approach latency as the number of distractors increased, providing evidence of parallel processing. This evidence challenges theories of vertebrate neural architecture and the importance of an expanded telencephalon for the evolution of executive function.  相似文献   

4.
Existing visual search research has demonstrated that the receipt of reward will be beneficial for subsequent perceptual and attentional processing of features that have characterized targets, but detrimental for processing of features that have characterized irrelevant distractors. Here we report a similar effect of reward on location. Observers completed a visual search task in which they selected a target, ignored a salient distractor, and received random-magnitude reward for correct performance. Results show that when target selection garnered rewarding outcome attention is subsequently a.) primed to return to the target location, and b.) biased away from the location that was occupied by the salient, task-irrelevant distractor. These results suggest that in addition to priming features, reward acts to guide visual search by priming contextual locations of visual stimuli.  相似文献   

5.
It is known that faces are rapidly and even unconsciously categorized into social groups (black vs. white, male vs. female). Here, I test whether preferences for specific social groups guide attention, using a visual search paradigm. In Experiment 1 participants searched displays of neutral faces for an angry or frightened target face. Black target faces were detected more efficiently than white targets, indicating that black faces attracted more attention. Experiment 2 showed that attention differences between black and white faces were correlated with individual differences in automatic race preference. In Experiment 3, using happy target faces, the attentional preference for black over white faces was eliminated. Taken together, these results suggest that automatic preferences for social groups guide attention to individuals from negatively valenced groups, when people are searching for a negative emotion such as anger or fear.  相似文献   

6.

Purpose

To investigate the effect of ageing on visuomotor function and subsequently evaluate the effect of visual field loss on such function in older adults.

Methods

Two experiments were performed: 1) to determine the effect of ageing on visual localisation and subsequent pointing precision, and 2) to determine the effect of visual field loss on these outcome measures. For Experiment 1, we measured visual localisation and pointing precision radially at visual eccentricities of 5, 10 and 15° in 25 older (60–72 years) and 25 younger (20–31 years) adults. In the pointing task, participants were asked to point to a target on a touchscreen at a natural pace that prioritised accuracy of the touch. In Experiment 2, a subset of these tasks were performed at 15° eccentricity under both monocular and binocular conditions, by 8 glaucoma (55–76 years) and 10 approximately age-matched controls (61–72 years).

Results

Visual localisation and pointing precision was unaffected by ageing (p>0.05) and visual field loss (p>0.05), although movement time was increased in glaucoma (p = 0.01).

Conclusion

Visual localisation and pointing precision to high contrast stimuli within the central 15° of vision are unaffected by ageing. Even in the presence of significant visual field loss, older adults with glaucoma are able perform such tasks with reasonable precision provided the target can be perceived and movement time is not restricted.  相似文献   

7.
8.

Background

Although limited in capacity, visual working memory (VWM) plays an important role in many aspects of visually-guided behavior. Recent experiments have demonstrated an electrophysiological marker of VWM encoding and maintenance, the contralateral delay activity (CDA), which has been shown in multiple tasks that have both explicit and implicit memory demands. Here, we investigate whether the CDA is evident during visual search, a thoroughly-researched task that is a hallmark of visual attention but has no explicit memory requirements.

Methodology/Principal Findings

The results demonstrate that the CDA is present during a lateralized search task, and that it is similar in amplitude to the CDA observed in a change-detection task, but peaks slightly later. The changes in CDA amplitude during search were strongly correlated with VWM capacity, as well as with search efficiency. These results were paralleled by behavioral findings showing a strong correlation between VWM capacity and search efficiency.

Conclusions/Significance

We conclude that the activity observed during visual search was generated by the same neural resources that subserve VWM, and that this activity reflects the maintenance of previously searched distractors.  相似文献   

9.
How should the efficiency of searching for real objects in real scenes be measured? Traditionally, when searching for artificial targets, e.g., letters or rectangles, among distractors, efficiency is measured by a reaction time (RT) × Set Size function. However, it is not clear whether the set size of real scenes is as effective a parameter for measuring search efficiency as the set size of artificial scenes. The present study investigated search efficiency in real scenes based on a combination of low-level features, e.g., visible size and target-flanker separation factors, and high-level features, e.g., category effect and target template. Visible size refers to the pixel number of visible parts of an object in a scene, whereas separation is defined as the sum of the flank distances from a target to the nearest distractors. During the experiment, observers searched for targets in various urban scenes, using pictures as the target templates. The results indicated that the effect of the set size in real scenes decreased according to the variances of other factors, e.g., visible size and separation. Increasing visible size and separation factors increased search efficiency. Based on these results, an RT × Visible Size × Separation function was proposed. These results suggest that the proposed function is a practicable predictor of search efficiency in real scenes.  相似文献   

10.
Decisions typically comprise several elements. For example, attention must be directed towards specific objects, their identities recognized, and a choice made among alternatives. Pairs of competing accumulators and drift-diffusion processes provide good models of evidence integration in two-alternative perceptual choices, but more complex tasks requiring the coordination of attention and decision making involve multistage processing and multiple brain areas. Here we consider a task in which a target is located among distractors and its identity reported by lever release. The data comprise reaction times, accuracies, and single unit recordings from two monkeys’ lateral interparietal area (LIP) neurons. LIP firing rates distinguish between targets and distractors, exhibit stimulus set size effects, and show response-hemifield congruence effects. These data motivate our model, which uses coupled sets of leaky competing accumulators to represent processes hypothesized to occur in feature-selective areas and limb motor and pre-motor areas, together with the visual selection process occurring in LIP. Model simulations capture the electrophysiological and behavioral data, and fitted parameters suggest that different connection weights between LIP and the other cortical areas may account for the observed behavioral differences between the animals.  相似文献   

11.
In repeated visual search tasks, facilitation of reaction times (RTs) due to repetition of the spatial arrangement of items occurs independently of RT facilitation due to improvements in general task performance. Whereas the latter represents typical procedural learning, the former is a kind of implicit memory that depends on the medial temporal lobe (MTL) memory system and is impaired in patients with amnesia. A third type of memory that develops during visual search is the observers’ explicit knowledge of repeated displays. Here, we used a visual search task to investigate whether procedural memory, implicit contextual cueing, and explicit knowledge of repeated configurations, which all arise independently from the same set of stimuli, are influenced by sleep. Observers participated in two experimental sessions, separated by either a nap or a controlled rest period. In each of the two sessions, they performed a visual search task in combination with an explicit recognition task. We found that (1) across sessions, MTL-independent procedural learning was more pronounced for the nap than rest group. This confirms earlier findings, albeit from different motor and perceptual tasks, showing that procedural memory can benefit from sleep. (2) Likewise, the sleep group compared with the rest group showed enhanced context-dependent configural learning in the second session. This is a novel finding, indicating that the MTL-dependent, implicit memory underlying contextual cueing is also sleep-dependent. (3) By contrast, sleep and wake groups displayed equivalent improvements in explicit recognition memory in the second session. Overall, the current study shows that sleep affects MTL-dependent as well as MTL-independent memory, but it affects different, albeit simultaneously acquired, forms of MTL-dependent memory differentially.  相似文献   

12.
Human performance on various visual tasks can be improved substantially via training. However, the enhancements are frequently specific to relatively low-level stimulus dimensions. While such specificity has often been thought to be indicative of a low-level neural locus of learning, recent research suggests that these same effects can be accounted for by changes in higher-level areas–in particular in the way higher-level areas read out information from lower-level areas in the service of highly practiced decisions. Here we contrast the degree of orientation transfer seen after training on two different tasks—vernier acuity and stereoacuity. Importantly, while the decision rule that could improve vernier acuity (i.e. a discriminant in the image plane) would not be transferable across orientations, the simplest rule that could be learned to solve the stereoacuity task (i.e. a discriminant in the depth plane) would be insensitive to changes in orientation. Thus, given a read-out hypothesis, more substantial transfer would be expected as a result of stereoacuity than vernier acuity training. To test this prediction, participants were trained (7500 total trials) on either a stereoacuity (N = 9) or vernier acuity (N = 7) task with the stimuli in either a vertical or horizontal configuration (balanced across participants). Following training, transfer to the untrained orientation was assessed. As predicted, evidence for relatively orientation specific learning was observed in vernier trained participants, while no evidence of specificity was observed in stereo trained participants. These results build upon the emerging view that perceptual learning (even very specific learning effects) may reflect changes in inferences made by high-level areas, rather than necessarily fully reflecting changes in the receptive field properties of low-level areas.  相似文献   

13.
Salient distractors draw our attention spontaneously, even when we intentionally want to ignore them. When this occurs, the real targets close to or overlapping with the distractors benefit from attention capture and thus are detected and discriminated more quickly. However, a puzzling opposite effect was observed in a search display with a column of vertical collinear bars presented as a task-irrelevant distractor [6]. In this case, it was harder to discriminate the targets overlapping with the salient distractor. Here we examined whether this effect originated from factors known to modulate attentional capture: (a) low probability—the probability occurrence of target location at the collinear column was much less (14%) than the rest of the display (86%), and observers might strategically direct their attention away from the collinear distractor; (b) attentional control setting—the distractor and target task interfered with each other because they shared the same continuity set in attentional task; and/or (c) lack of time to establish the optional strategy. We tested these hypotheses by (a) increasing to 60% the trials in which targets overlapped with the same collinear distractor columns, (b) replacing the target task to be connectivity-irrelevant (i.e., luminance discrimination), and (c) having our observers practice the same search task for 10 days. Our results speak against all these hypotheses and lead us to conclude that a collinear distractor impairs search at a level that is unaffected by probabilistic information, attentional setting, and learning.  相似文献   

14.
This paper presents a novel framework for Visual Exploratory Search of Relationship Graphs on Smartphones (VESRGS) that is composed of three major components: inference and representation of semantic relationship graphs on the Web via meta-search, visual exploratory search of relationship graphs through both querying and browsing strategies, and human-computer interactions via the multi-touch interface and mobile Internet on smartphones. In comparison with traditional lookup search methodologies, the proposed VESRGS system is characterized with the following perceived advantages. 1) It infers rich semantic relationships between the querying keywords and other related concepts from large-scale meta-search results from Google, Yahoo! and Bing search engines, and represents semantic relationships via graphs; 2) the exploratory search approach empowers users to naturally and effectively explore, adventure and discover knowledge in a rich information world of interlinked relationship graphs in a personalized fashion; 3) it effectively takes the advantages of smartphones’ user-friendly interfaces and ubiquitous Internet connection and portability. Our extensive experimental results have demonstrated that the VESRGS framework can significantly improve the users’ capability of seeking the most relevant relationship information to their own specific needs. We envision that the VESRGS framework can be a starting point for future exploration of novel, effective search strategies in the mobile Internet era.  相似文献   

15.
Studies dealing with developmental aspects of binocular eye movement behaviour during reading are scarce. In this study we have explored binocular strategies during reading and during visual search tasks in a large population of normal young readers. Binocular eye movements were recorded using an infrared video-oculography system in sixty-nine children (aged 6 to 15) and in a group of 10 adults (aged 24 to 39). The main findings are (i) in both tasks the number of progressive saccades (to the right) and regressive saccades (to the left) decreases with age; (ii) the amplitude of progressive saccades increases with age in the reading task only; (iii) in both tasks, the duration of fixations as well as the total duration of the task decreases with age; (iv) in both tasks, the amplitude of disconjugacy recorded during and after the saccades decreases with age; (v) children are significantly more accurate in reading than in visual search after 10 years of age. Data reported here confirms and expands previous studies on children''s reading. The new finding is that younger children show poorer coordination than adults, both while reading and while performing a visual search task. Both reading skills and binocular saccades coordination improve with age and children reach a similar level to adults after the age of 10. This finding is most likely related to the fact that learning mechanisms responsible for saccade yoking develop during childhood until adolescence.  相似文献   

16.
Observers often fail to notice even dramatic changes to their environment, a phenomenon known as change blindness. If training could enhance change detection performance in general, then it might help to remedy some real-world consequences of change blindness (e.g. failing to detect hazards while driving). We examined whether adaptive training on a simple change detection task could improve the ability to detect changes in untrained tasks for young and older adults. Consistent with an effective training procedure, both young and older adults were better able to detect changes to trained objects following training. However, neither group showed differential improvement on untrained change detection tasks when compared to active control groups. Change detection training led to improvements on the trained task but did not generalize to other change detection tasks.  相似文献   

17.
18.
Considerable research has been carried out on visual search, with single or multiple targets. However, most studies have used artificial stimuli with low ecological validity. In addition, little is known about the effects of target complexity and expertise in visual search. Here, we investigate visual search in three conditions of complexity (detecting a king, detecting a check, and detecting a checkmate) with chess players of two levels of expertise (novices and club players). Results show that the influence of target complexity depends on level of structure of the visual display. Different functional relationships were found between artificial (random chess positions) and ecologically valid (game positions) stimuli: With artificial, but not with ecologically valid stimuli, a “pop out” effect was present when a target was visually more complex than distractors but could be captured by a memory chunk. This suggests that caution should be exercised when generalising from experiments using artificial stimuli with low ecological validity to real-life stimuli.  相似文献   

19.
20.

Background

Humans detect faces with direct gazes among those with averted gazes more efficiently than they detect faces with averted gazes among those with direct gazes. We examined whether this “stare-in-the-crowd” effect occurs in chimpanzees (Pan troglodytes), whose eye morphology differs from that of humans (i.e., low-contrast eyes, dark sclera).

Methodology/Principal Findings

An adult female chimpanzee was trained to search for an odd-item target (front view of a human face) among distractors that differed from the target only with respect to the direction of the eye gaze. During visual-search testing, she performed more efficiently when the target was a direct-gaze face than when it was an averted-gaze face. This direct-gaze superiority was maintained when the faces were inverted and when parts of the face were scrambled. Subsequent tests revealed that gaze perception in the chimpanzee was controlled by the contrast between iris and sclera, as in humans, but that the chimpanzee attended only to the position of the iris in the eye, irrespective of head direction.

Conclusion/Significance

These results suggest that the chimpanzee can discriminate among human gaze directions and are more sensitive to direct gazes. However, limitations in the perception of human gaze by the chimpanzee are suggested by her inability to completely transfer her performance to faces showing a three-quarter view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号