首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 131 毫秒
1.
A number of studies and meta-analyses conclude that aerobic fitness (walking) interventions improve cognition. Such interventions typically compare improvements from these interventions to an active control group in which participants engage in non-aerobic activities (typically stretching and toning) for an equivalent amount of time. However, in the absence of a double-blind design, the presence of an active control group does not necessarily control for placebo effects; participants might expect different amounts of improvement for the treatment and control interventions [1]. We conducted a large survey to explore whether people expect greater cognitive benefits from an aerobic exercise intervention compared to a control intervention. If participants expect greater improvement following aerobic exercise, then the benefits of such interventions might be due in part to a placebo effect. In general, expectations did not differ between aerobic and non-aerobic interventions. If anything, some of the results suggest the opposite (e.g., respondents expected the control, non-aerobic intervention to yield bigger memory gains). These results provide the first evidence that cognitive improvements following aerobic fitness training are not due to differential expectations.  相似文献   

2.
Training has been shown to improve perceptual performance on limited sets of stimuli. However, whether training can generally improve top-down biasing of visual search in a target-nonspecific manner remains unknown. We trained subjects over ten days on a visual search task, challenging them with a novel target (top-down goal) on every trial, while bottom-up uncertainty (distribution of distractors) remained constant. We analyzed the changes in saccade statistics and visual behavior over the course of training by recording eye movements as subjects performed the task. Subjects became experts at this task, with twofold increased performance, decreased fixation duration, and stronger tendency to guide gaze toward items with color and spatial frequency (but not necessarily orientation) that resembled the target, suggesting improved general top-down biasing of search.  相似文献   

3.
Normal aging is associated with a degradation of perceptual abilities and a decline in higher-level cognitive functions, notably working memory. To remediate age-related deficits, cognitive training programs are increasingly being developed. However, it is not yet definitively established if, and by what mechanisms, training ameliorates effects of cognitive aging. Furthermore, a major factor impeding the success of training programs is a frequent failure of training to transfer benefits to untrained abilities. Here, we offer the first evidence of direct transfer-of-benefits from perceptual discrimination training to working memory performance in older adults. Moreover, using electroencephalography to evaluate participants before and after training, we reveal neural evidence of functional plasticity in older adult brains, such that training-induced modifications in early visual processing during stimulus encoding predict working memory accuracy improvements. These findings demonstrate the strength of the perceptual discrimination training approach by offering clear psychophysical evidence of transfer-of-benefit and a neural mechanism underlying cognitive improvement.  相似文献   

4.
During saccadic eye movements, the processing of visual information is transiently interrupted by a mechanism known as “saccadic suppression” [1] that is thought to ensure perceptual stability [2]. If, as proposed in the premotor theory of attention [3], covert shifts of attention rely on sub-threshold recruitment of oculomotor circuits, then saccadic suppression should also occur during covert shifts. In order to test this prediction, we designed two experiments in which participants had to orient towards a cued letter, with or without saccades. We analyzed the time course of letter identification score in an “attention” task performed without saccades, using the saccadic latencies measured in the “saccade” task as a marker of covert saccadic preparation. Visual conditions were identical in all tasks. In the “attention” task, we found a drop in perceptual performance around the predicted onset time of saccades that were never performed. Importantly, this decrease in letter identification score cannot be explained by any known mechanism aligned on cue onset such as inhibition of return, masking, or microsaccades. These results show that attentional allocation triggers the same suppression mechanisms as during saccades, which is relevant during eye movements but detrimental in the context of covert orienting.  相似文献   

5.
Xu JP  He ZJ  Ooi TL 《Current biology : CB》2010,20(20):1864-1868
Much knowledge of sensory cortical plasticity is gleaned from perceptual learning studies that improve visual performance [1-7]. Although the improvements are likely caused by modifications of excitatory and inhibitory neural networks, most studies were not primarily designed to differentiate their relative contributions. Here we designed a novel push-pull training protocol to reduce sensory eye dominance (SED), a condition that is mainly caused by unbalanced interocular inhibition [8-10]. During the training, an attention cue presented to the weak eye precedes the binocular competitive stimulation. The cue stimulates the weak eye (push) while causing interocular inhibition of the strong eye (pull). We found that this push-pull protocol reduces SED (shifts the balance toward the weak eye) and improves stereopsis more so than the push-only protocol, which solely stimulates the weak eye without inhibiting the strong eye. The stronger learning effect with the push-pull training than the push-only training underscores the crucial involvement of a putative inhibitory mechanism in sensory plasticity. The design principle of the push-pull protocol can potentially lend itself as an effective, noninvasive treatment of amblyopia.  相似文献   

6.
The well-documented observation of bilateral performance gains following unilateral motor training, a phenomenon known as cross-limb transfer, has important implications for rehabilitation. It has recently been shown that provision of a mirror image of the active hand during unilateral motor training has the capacity to enhance the efficacy of this phenomenon when compared to training without augmented visual feedback (i.e., watching the passive hand), possibly via action observation effects [1]. The current experiment was designed to confirm whether mirror-visual feedback (MVF) during motor training can indeed elicit greater performance gains in the untrained hand compared to more standard visual feedback (i.e., watching the active hand). Furthermore, discussing the mechanisms underlying any such MVF-induced behavioural effects, we suggest that action observation and the cross-activation hypothesis may both play important roles in eliciting cross-limb transfer. Eighty participants practiced a fast-as-possible two-ball rotation task with their dominant hand. During training, three different groups were provided with concurrent visual feedback of the active hand, inactive hand or a mirror image of the active hand with a fourth control group receiving no training. Pre- and post-training performance was measured in both hands. MVF did not increase the extent of training-induced performance changes in the untrained hand following unilateral training above and beyond those observed for other types of feedback. The data are consistent with the notion that cross-limb transfer, when combined with MVF, is mediated by cross-activation with action observation playing a less unique role than previously suggested. Further research is needed to replicate the current and previous studies to determine the clinical relevance and potential benefits of MVF for cases that, due to the severity of impairment, rely on unilateral training programmes of the unaffected limb to drive changes in the contralateral affected limb.  相似文献   

7.

Background

A variety of studies have demonstrated gains in cognitive ability following cognitive training interventions. However, other studies have not shown such gains, and questions remain regarding the efficacy of specific cognitive training interventions. Cognitive training research often involves programs made up of just one or a few exercises, targeting limited and specific cognitive endpoints. In addition, cognitive training studies typically involve small samples that may be insufficient for reliable measurement of change. Other studies have utilized training periods that were too short to generate reliable gains in cognitive performance.

Methods

The present study evaluated an online cognitive training program comprised of 49 exercises targeting a variety of cognitive capacities. The cognitive training program was compared to an active control condition in which participants completed crossword puzzles. All participants were recruited, trained, and tested online (N = 4,715 fully evaluable participants). Participants in both groups were instructed to complete one approximately 15-minute session at least 5 days per week for 10 weeks.

Results

Participants randomly assigned to the treatment group improved significantly more on the primary outcome measure, an aggregate measure of neuropsychological performance, than did the active control group (Cohen’s d effect size = 0.255; 95% confidence interval = [0.198, 0.312]). Treatment participants showed greater improvements than controls on speed of processing, short-term memory, working memory, problem solving, and fluid reasoning assessments. Participants in the treatment group also showed greater improvements on self-reported measures of cognitive functioning, particularly on those items related to concentration compared to the control group (Cohen’s d = 0.249; 95% confidence interval = [0.191, 0.306]).

Conclusion

Taken together, these results indicate that a varied training program composed of a number of tasks targeted to different cognitive functions can show transfer to a wide range of untrained measures of cognitive performance.

Trial Registration

ClinicalTrials.gov NCT-02367898  相似文献   

8.
The posterior parietal cortex (PPC) is thought to play an important role in the sensorimotor transformations associated with reaching movements. In humans, damage to the PPC, particularly bilateral lesions, leads to impairments of visually guided reaching movements (optic ataxia). Recent accounts of optic ataxia based upon electrophysiological recordings in monkeys have proposed that this disorder arises because of a breakdown in the tuning fields of parietal neurons responsible for integrating spatially congruent retinal, eye, and hand position signals to produce coordinated eye and hand movements . We present neurological evidence that forces a reconceptualization of this view. We report a detailed case study of a patient with a limb-dependent form of optic ataxia who can accurately reach with either hand to objects that he can foveate (thereby demonstrating coordinated eye-hand movements) but who cannot effectively decouple reach direction from gaze direction for movements executed using his right arm. The demonstration that our patient's misreaching is confined to movements executed using his right limb, and only for movements that are directed to nonfoveal targets, rules out explanations based upon simple perceptual or motor deficits but indicates an impairment in the ability to dissociate the eye and limb visuomotor systems when appropriate.  相似文献   

9.
The main study objective was to investigate the effect of interactive television-based cognitive training on cognitive performance of 119 healthy older adults, aged 60–87 years. Participants were randomly allocated to a cognitive training group or to an active control group in a single-blind controlled two-group design. Before and after training interactive television cognitive performance was assessed on well validated tests of fluid, higher-order ability, and system usability was evaluated. The participants in the cognitive training group completed a television-based cognitive training programme, while the participants in the active control group completed a TV-based programme of personally benefiting activities. Significant improvements were observed in well validated working memory and executive function tasks in the cognitive training but not in the control group. None of the groups showed statistically significant improvement in life satisfaction score. Participants'' reports of “adequate” to “high” system usability testify to the successful development and implementation of the interactive television-based system and compliant cognitive training contents. The study demonstrates that cognitive training delivered by means of an interactive television system can generate genuine cognitive benefits in users and these are measurable using well-validated cognitive tests. Thus, older adults who cannot use or afford a computer can easily use digital interactive television to benefit from advanced software applications designed to train cognition.  相似文献   

10.
The phenomenon of cross-limb transfer, in which unilateral strength training can result in bilateral strength gains, has recently been tested for ballistic movements. Performance gains associated with repetitive motor practice, and the associated transfer, occur within a few minutes. In this study, young and older adults were trained to perform ballistic abductions of their dominant (right) index finger as quickly as possible. Performance was assessed bilaterally before, during, and after this training. Both groups exhibited large performance gains in the right hand as a result of training (P < 0.001; young 84% improvement, older 70% improvement), which were not significantly different between groups (P = 0.40). Transcranial magnetic stimulation revealed that the performance improvements were accompanied by increases in excitability, together with decreases in intracortical inhibition, of the projections to both the trained muscle and the homologous muscle in the contralateral limb (P < 0.05). The young group also exhibited performance improvements as a result of cross-limb transfer in the left (untrained) hand (P < 0.005), equivalent to 75% of the performance increase in the trained hand. In contrast, there were no significant performance gains in the left hand for the older group (P = 0.23). This was surprising given that the older group exhibited a significantly greater degree of mirror activity than the young group (P < 0.01) in the left first dorsal interosseus muscle (FDI) during right hand movements. Our findings suggest that older adults exhibit a reduced capacity for cross-limb transfer, which may have implications for motor rehabilitation programs after stroke.  相似文献   

11.
Several recent studies have reported that cognitive training in adults does not lead to generalized performance improvements [1, 2], whereas many studies with younger participants (children 4 years and older) have reported distal transfer [3, 4]. This is consistent with convergent evidence [5-8] for greater neural and behavioral plasticity earlier in development. We used gaze-contingent paradigms to train 11-month-old infants on a battery of attentional control tasks. Relative to an active control group, and following only a relatively short training period, posttraining assessments revealed improvements in cognitive control and sustained attention, reduced saccadic reaction times, and reduced latencies to disengage visual attention. Trend changes were also observed in spontaneous looking behavior during free play, but no change was found in working memory. The amount of training correlated with the degree of improvement on some measures. These findings are to our knowledge the first demonstration of distal transfer following attentional control training in infancy. Given the longitudinal relationships identified between early attentional control and learning in academic settings [9, 10], and the causal role that impaired control of attention may play in disrupting learning in several disorders [11-14], the current results open a number of avenues for future work.  相似文献   

12.
The gold standard to acquire motor skills is through intensive training and practicing. Recent studies have demonstrated that behavioral gains can also be acquired by mere exposure to repetitive sensory stimulation to drive the plasticity processes. Single application of repetitive electric stimulation (rES) of the fingers has been shown to improve tactile perception in young adults as well as sensorimotor performance in healthy elderly individuals. The combination of repetitive motor training with a preceding rES has not been reported yet. In addition, the impact of such a training on somatosensory tactile and spatial sensitivity as well as on somatosensory cortical activation remains elusive. Therefore, we tested 15 right-handed participants who underwent repetitive electric stimulation of all finger tips of the left hand for 20 minutes prior to one hour of motor training of the left hand over the period of two weeks. Overall, participants substantially improved the motor performance of the left trained hand by 34%, but also showed a relevant transfer to the untrained right hand by 24%. Baseline ipsilateral activation fMRI-magnitude in BA 1 to sensory index finger stimulation predicted training outcome for somatosensory guided movements: those who showed higher ipsilateral activation were those who did profit less from training. Improvement of spatial tactile discrimination was positively associated with gains in pinch grip velocity. Overall, a combination of priming rES and repetitive motor training is capable to induce motor and somatosensory performance increase and representation changes in BA1 in healthy young subjects.  相似文献   

13.
This study investigated whether training-related improvements in facial expression categorization are facilitated by spontaneous changes in gaze behaviour in adults and nine-year old children. Four sessions of a self-paced, free-viewing training task required participants to categorize happy, sad and fear expressions with varying intensities. No instructions about eye movements were given. Eye-movements were recorded in the first and fourth training session. New faces were introduced in session four to establish transfer-effects of learning. Adults focused most on the eyes in all sessions and increased expression categorization accuracy after training coincided with a strengthening of this eye-bias in gaze allocation. In children, training-related behavioural improvements coincided with an overall shift in gaze-focus towards the eyes (resulting in more adult-like gaze-distributions) and towards the mouth for happy faces in the second fixation. Gaze-distributions were not influenced by the expression intensity or by the introduction of new faces. It was proposed that training enhanced the use of a uniform, predominantly eyes-biased, gaze strategy in children in order to optimise extraction of relevant cues for discrimination between subtle facial expressions.  相似文献   

14.
Improvement in prosthetic training using intermanual transfer (the transfer of motor skills from the trained, “unaffected” hand to the untrained, “affected” hand) has been shown in previous studies. The aim of this study is to determine the influence of the inter-training interval on the magnitude of the intermanual transfer effects. This was done using a mechanistic, randomized, single-blinded pretest-posttest design. Sixty-four able-bodied, right-handed participants were randomly assigned to the Short and Long Interval Training Groups and the Short and Long Interval Control Groups. The Short and Long Interval Training Groups used a prosthesis simulator in their training program. The Short and Long Interval Control Groups executed a sham training program, that is, a dummy training program in which the same muscles were trained as with the prosthesis simulator. The Short Interval Training Group and the Short Interval Control Groups trained on consecutive days, while the Long Interval Training Group and Long Interval Control Group trained twice a week. To determine the improvement in skills, a test was administered before, immediately after, and at two points in time after the training. Training was performed with the “unaffected” arm; tests were performed with the “affected” arm. The outcome measurements were: the movement time (the time from the beginning of the movement until completion of the task); the duration of maximum hand opening, (the opening of the prosthetic hand while grasping an object); and the grip-force control (the error from the required grip-force during a tracking task). Intermanual transfer was found in movement times, but not in hand opening or grip-force control. The length of the inter-training interval did not affect the magnitude of intermanual transfer effects. No difference in the intermanual transfer effect in upper-limb prosthesis training was found for training on a daily basis as compared to training twice a week.

Trial Registration

Nederlands Trial Register NTR3888  相似文献   

15.
Visuomotor origins of covert spatial attention   总被引:6,自引:0,他引:6  
Moore T  Armstrong KM  Fallah M 《Neuron》2003,40(4):671-683
Covert spatial attention produces biases in perceptual performance and neural processing of behaviorally relevant stimuli in the absence of overt orienting movements. The neural mechanism that gives rise to these effects is poorly understood. This paper surveys past evidence of a relationship between oculomotor control and visual spatial attention and more recent evidence of a causal link between the control of saccadic eye movements by frontal cortex and covert visual selection. Both suggest that the mechanism of covert spatial attention emerges as a consequence of the reciprocal interactions between neural circuits primarily involved in specifying the visual properties of potential targets and those involved in specifying the movements needed to fixate them.  相似文献   

16.

Background

High order cognitive processing and learning, such as reading, interact with lower-level sensory processing and learning. Previous studies have reported that visual perceptual training enlarges visual span and, consequently, improves reading speed in young and old people with amblyopia. Recently, a visual perceptual training study in Chinese-speaking children with dyslexia found that the visual texture discrimination thresholds of these children in visual perceptual training significantly correlated with their performance in Chinese character recognition, suggesting that deficits in visual perceptual processing/learning might partly underpin the difficulty in reading Chinese.

Methodology/Principal Findings

To further clarify whether visual perceptual training improves the measures of reading performance, eighteen children with dyslexia and eighteen typically developed readers that were age- and IQ-matched completed a series of reading measures before and after visual texture discrimination task (TDT) training. Prior to the TDT training, each group of children was split into two equivalent training and non-training groups in terms of all reading measures, IQ, and TDT. The results revealed that the discrimination threshold SOAs of TDT were significantly higher for the children with dyslexia than for the control children before training. Interestingly, training significantly decreased the discrimination threshold SOAs of TDT for both the typically developed readers and the children with dyslexia. More importantly, the training group with dyslexia exhibited significant enhancement in reading fluency, while the non-training group with dyslexia did not show this improvement. Additional follow-up tests showed that the improvement in reading fluency is a long-lasting effect and could be maintained for up to two months in the training group with dyslexia.

Conclusion/Significance

These results suggest that basic visual perceptual processing/learning and reading ability in Chinese might at least partially rely on overlapping mechanisms.  相似文献   

17.
Covert spatial attention produces biases in perceptual and neural responses in the absence of overt orienting movements. The neural mechanism that gives rise to these effects is poorly understood. Here we report the relation between fixational eye movements, namely eye vergence, and covert attention. Visual stimuli modulate the angle of eye vergence as a function of their ability to capture attention. This illustrates the relation between eye vergence and bottom-up attention. In visual and auditory cue/no-cue paradigms, the angle of vergence is greater in the cue condition than in the no-cue condition. This shows a top-down attention component. In conclusion, observations reveal a close link between covert attention and modulation in eye vergence during eye fixation. Our study suggests a basis for the use of eye vergence as a tool for measuring attention and may provide new insights into attention and perceptual disorders.  相似文献   

18.

Background

Previous studies of frequency discrimination training (FDT) for tinnitus used repetitive task-based training programmes relying on extrinsic factors to motivate participation. Studies reported limited improvement in tinnitus symptoms.

Purpose

To evaluate FDT exploiting intrinsic motivations by integrating training with computer-gameplay.

Methods

Sixty participants were randomly assigned to train on either a conventional task-based training, or one of two interactive game-based training platforms over six weeks. Outcomes included assessment of motivation, tinnitus handicap, and performance on tests of attention.

Results

Participants reported greater intrinsic motivation to train on the interactive game-based platforms, yet compliance of all three groups was similar (∼70%) and changes in self-reported tinnitus severity were not significant. There was no difference between groups in terms of change in tinnitus severity or performance on measures of attention.

Conclusion

FDT can be integrated within an intrinsically motivating game. Whilst this may improve participant experience, in this instance it did not translate to additional compliance or therapeutic benefit.

Trial Registration

ClinicalTrials.gov NCT02095262  相似文献   

19.
A single glance at your crowded desk is enough to locate your favorite cup. But finding an unfamiliar object requires more effort. This superiority in recognition performance for learned objects has at least two possible sources. For familiar objects observers might: 1) select more informative image locations upon which to fixate their eyes, or 2) extract more information from a given eye fixation. To test these possibilities, we had observers localize fragmented objects embedded in dense displays of random contour fragments. Eight participants searched for objects in 600 images while their eye movements were recorded in three daily sessions. Performance improved as subjects trained with the objects: The number of fixations required to find an object decreased by 64% across the 3 sessions. An ideal observer model that included measures of fragment confusability was used to calculate the information available from a single fixation. Comparing human performance to the model suggested that across sessions information extraction at each eye fixation increased markedly, by an amount roughly equal to the extra information that would be extracted following a 100% increase in functional field of view. Selection of fixation locations, on the other hand, did not improve with practice.  相似文献   

20.

Background

The aim of this longitudinal study was to investigate how the kinematic organization of upper limb movements changes from fetal to post-natal life. By means of off-line kinematical techniques we compared the kinematics of hand-to-mouth and hand-to-eye movements, in the same individuals, during prenatal life and early postnatal life, as well as the kinematics of hand-to-mouth and reaching-toward-object movements in the later age periods.

Methodology/Principal Findings

Movements recorded at the 14th, 18th and 22nd week of gestation were compared with similar movements recorded in an ecological context at 1, 2, 3, 4, 8, and 12 months after birth. The results indicate a similar kinematic organization depending on movement type (i.e., eye, mouth) for the infants at one month and for the fetuses at 22 weeks of gestation. At two and three months such differential motor planning depending on target is lost and no statistical differences emerge. Hand to eye movements were no longer observed after the fourth month of life, therefore we compared kinematics for hand to mouth with hand to object movements. Results of these analyses revealed differences in the performance of hand to mouth and reaching to object movements in the length of the deceleration phase of the movement, depending on target.

Conclusion/Significance

Data are discussed in terms of how the passage from intrauterine to extra-uterine environments modifies motor planning. These results provide novel evidence of how different types of upper extremity movements, those directed towards one’s own face and those directed to external objects, develop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号