首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Mast cells have been documented to have several key functions with regards to malignant neoplasms. However, the functional significance of their accumulation is largely unknown. An analysis of the mast cell profile in mediastinal lymph nodes from lung cancer patients is reported here.  相似文献   

2.

The chromoblastomycosis is a subcutaneous mycosis with a high morbidity rate, Fonsecaea pedrosoi being the largest etiologic agent of this mycosis, usually confined to the skin and subcutaneous tissues. Rarely people get the cure, because the therapies shown to be deficient and few studies report the host–parasite relationship. Dendritic cells (DCs) are specialized in presenting antigens to naïve T lymphocytes inducing primary immune responses. Therefore, we propose to study the migratory capacity of DCs after infection with conidia of F. pedrosoi. The phenotype of DCs was evaluated using cells obtained from footpad and lymph nodes of BALB/c mice after 12, 24 and 72 h of infection. After 24 and 72 h of infection, we found a significant decrease in DCs in footpad and a significant increase in the lymph nodes after 72 h. The expression of surface markers and co-stimulatory molecules were reduced in cells obtained from footpad. To better assess the migratory capacity of DCs migration from footpad, CFSE-stained conidia were injected subcutaneously. We found that after 12 and 72 h, CD11c+ cells were increased in regional lymph nodes, leading us to believe that DCs (CD11c+) were able to phagocytic conidia present in footpad and migrated to regional lymph nodes.

  相似文献   

3.
4.
5.
The lymphatic sinuses in human lymph nodes (LNs) are crucial to LN function yet their structure remains poorly defined. Much of our current knowledge of lymphatic sinuses derives from rodent models, however human LNs differ substantially in their sinus structure, most notably due to the presence of trabeculae and trabecular lymphatic sinuses that rodent LNs lack. Lymphatic sinuses are bounded and traversed by lymphatic endothelial cells (LECs). A better understanding of LECs in human LNs is likely to improve our understanding of the regulation of cell trafficking within LNs, now an important therapeutic target, as well as disease processes that involve lymphatic sinuses. We therefore sought to map all the LECs within human LNs using multicolor immunofluorescence microscopy to visualize the distribution of a range of putative markers. PROX1 was the only marker that uniquely identified the LECs lining and traversing all the sinuses in human LNs. In contrast, LYVE1 and STAB2 were only expressed by LECs in the paracortical and medullary sinuses in the vast majority of LNs studied, whilst the subcapsular and trabecular sinuses lacked these molecules. These data highlight the existence of at least two distinctive populations of LECs within human LNs. Of the other LEC markers, we confirmed VEGFR3 was not specific for LECs, and CD144 and CD31 stained both LECs and blood vascular endothelial cells (BECs); in contrast, CD59 and CD105 stained BECs but not LECs. We also showed that antigen-presenting cells (APCs) in the sinuses could be clearly distinguished from LECs by their expression of CD169, and their lack of expression of PROX1 and STAB2, or endothelial markers such as CD144. However, both LECs and sinus APCs were stained with DCN46, an antibody commonly used to detect CD209.  相似文献   

6.
Circulating plasmacytoid dendritic cells (pDC) decline during HIV-1 infection, but at the same time they express markedly higher levels of interferon alpha (IFNα), which is associated with HIV-1 disease progression. Here we show an accumulation of pDC in lymph nodes (LN) of treatment-naïve HIV-1 patients. This phenomenon was associated with elevated expression of the LN homing marker, CCR7, on pDC in peripheral blood of HIV-1 patients, which conferred increased migratory capacity in response to CCR7 ligands in ex vivo functional assays. LN-homed pDC of HIV-1 patients presented higher CD40 and lower BDCA2 levels, but unchanged CD83 and CD86 expression. In addition, these cells expressed markedly higher amounts of IFNα compared to uninfected individuals, and were undergoing faster rates of cell death. These results demonstrate for the first time that in asymptomatic, untreated HIV-1 patients circulating pDC up-regulate CCR7 expression, accumulate in lymph nodes, and express high amounts of IFNα before undergoing cell death. Since IFNα inhibits cell proliferation and modulates immune responses, chronically high levels of this cytokine in LN of HIV-1 patients may impair differentiation and immune function of bystander CD4+ T cells, thus playing into the mechanisms of AIDS immunopathogenesis.  相似文献   

7.
8.
9.
10.

Background

Although evidence exists that regulatory T cells (Tregs) can suppress the effector phase of immune responses, it is clear that their major role is in suppressing T cell priming in secondary lymphoid organs. Recent experiments using two photon laser microscopy indicate that dendritic cells (DCs) are central to Treg cell function and that the in vivo mechanisms of T cell regulation are more complex than those described in vitro.

Principal Findings

Here we have sought to determine whether and how modulation of Treg numbers modifies the lymph node (LN) microenvironment. We found that pro-inflammatory chemokines—CCL2 (MCP-1) and CCL3 (MIP-la)—are secreted in the LN early (24 h) after T cell activation, that this secretion is dependent on antigen-specific DC–T cell interactions, and that it was inversely related to the frequency of Tregs specific for the same antigen. Furthermore, we demonstrate that Tregs modify the chemoattractant properties of antigen-presenting DCs, which, as the frequency of Tregs increases, fail to produce CCL2 and CCL3 and to attract antigen-specific T cells.

Conclusions

These results substantiate a major role of Tregs in LN patterning during antigen-specific immune responses.  相似文献   

11.
Plasmacytoid dendritic cells (pDC) are essential innate immune system cells that are lost from the circulation in human immunodeficiency virus (HIV)–infected individuals associated with CD4+ T cell decline and disease progression. pDC depletion is thought to be caused by migration to tissues or cell death, although few studies have addressed this directly. We used precise methods of enumeration and in vivo labeling with 5-bromo-2′-deoxyuridine to track recently divided pDC in blood and tissue compartments of monkeys with acute pathogenic simian immunodeficiency virus (SIV) infection. We show that pDC are lost from blood and peripheral lymph nodes within 14 days of infection, despite a normal frequency of pDC in bone marrow. Paradoxically, pDC loss masked a highly dynamic response characterized by rapid pDC mobilization into blood and a 10- to 20-fold increase in recruitment to lymph nodes relative to uninfected animals. Within lymph nodes, pDC had increased levels of apoptosis and necrosis, were uniformly activated, and were infected at frequencies similar to CD4+ T cells. Nevertheless, remaining pDC had essentially normal functional responses to stimulation through Toll-like receptor 7, with half of lymph node pDC producing both TNF-α and IFN-α. These findings reveal that cell migration and death both contribute to pDC depletion in acute SIV infection. We propose that the rapid recruitment of pDC to inflamed lymph nodes in lentivirus infection has a pathologic consequence, bringing cells into close contact with virus, virus-infected cells, and pro-apoptotic factors leading to pDC death.  相似文献   

12.

Purpose

Results of the American College of Surgeons Oncology Group (ACOSOG) Z0011 trial indicated that complete axillary node dissection (ALND) may not be warranted in some breast cancer patients with low tumor burden who are undergoing breast-conserving surgery following whole-breast irradiation. However, this study did not address patients undergoing mastectomy or those undergoing breast-conserving surgery without whole-breast radiotherapy. Given that lymph node ratio (LNR; ratio of positive lymph nodes to the total number removed) has been shown to be a prognostic factor in breast cancer, we first sought to determine the prognostic value of LNR in a low risk population comparable to that of the Z0011 trial and further to investigate whether the prognostic significance differs with local treatment modality.

Method

We used the Surveillance Epidemiology and End Results (SEER) database to identify breast cancer patients with T1-T2 tumor and 1–2 positive nodes. Patients were subclassified by the local therapy they underwent for the primary tumor. The prognostic value of LNR in predicting disease-specific survival (DSS) was examined in each treatment group.

Results

A total of 53,109 patients were included. In the subgroup of 20,602 patients who underwent lumpectomy following radiotherapy, LNR was not found to be significantly associated with DSS in both the univariate and multivariate model. For the 4,664 patients treated with mastectomy following radiotherapy, 6,811 treated with lumpectomy without radiotherapy and 21,031 with mastectomy without radiotherapy, LNR independently predict DSS in each of these subgroups.

Conclusions

Our results add evidence to the concept that axillary dissection could be omitted in patients with one or two positive nodes following breast-conserving surgery and whole breast radiation.  相似文献   

13.
Mucosal-associated invariant T (MAIT) cells are characterized by the combined expression of the semi-invariant T cell receptor (TCR) Vα7.2, the lectin receptor CD161, as well as IL-18R, and play an important role in antibacterial host defense of the gut. The current study characterized CD161+ MAIT and CD161TCRVα7.2+ T cell subsets within a large cohort of HIV patients with emphasis on patients with slow disease progression and elite controllers. Mononuclear cells from blood and lymph node samples as well as plasma from 63 patients and 26 healthy donors were analyzed by multicolor flow cytometry and ELISA for IL-18, sCD14 and sCD163. Additionally, MAIT cells were analyzed after in vitro stimulation with different cytokines and/or fixed E.coli. Reduced numbers of CD161+ MAIT cells during HIV infection were detectable in the blood and lymph nodes of all patient groups, including elite controllers. CD161+ MAIT cell numbers did not recover even after successful antiretroviral treatment. The loss of CD161+ MAIT cells was correlated with higher levels of MAIT cell activation; an increased frequency of the CD161TCRVα7.2+T cell subset in HIV infection was observed. In vitro stimulation of MAIT cells with IL-18 and IL-12, IL-7 and fixed E.coli also resulted in a rapid and additive reduction of the MAIT cell frequency defined by CD161, IL-18R and CCR6. In summary, the irreversible reduction of the CD161+ MAIT cell subset seems to be an early event in HIV infection that is independent of later stages of the disease. This loss appears to be at least partially due to the distinctive vulnerability of MAIT cells to the pronounced stimulation by microbial products and cytokines during HIV-infection.  相似文献   

14.
The pattern of actinomycin D-resistant RNA synthesis was examined during primary infection of HeLa cells by virulent Edmonston measles virus and in two HeLa clones persistently infected by the same strain of virus. One of these clones, K11, produces infectious virus of low virulence for HeLa cells, and the other, K11A-HG-1, has thus far failed to yield infectious virus. The patterns of virus-specific RNA synthesized in these three types of infection are qualitatively similar to each other and to the patterns of virus-specific RNA synthesis in other paramyxovirus infections. There were, however, quantitative differences. In addition, virions of the virulent Edmonston strain of measles virus were found to contain high-molecular-weight RNA with a sedimentation constant identical to that of Newcastle disease virus.  相似文献   

15.
16.
Enlarged lymph nodes of mice with lpr mutation consist predominantly of CD4?CD8? (double-negative: DN) T cells. Among them, TCRBV8S3 (Vβ 8.3) T cells are overrepresented as compared to those in single-positive (SP) T cells. To address the question of whether the expansion of oligoclonal T cells is responsible for the increase in TCRBV8S3 cells, we examined the TCRBJ gene repertoires of BV8S3 DN and SP T cells from multiple MRL lpr/lpr mice. The BJ repertoires of BV3 (Vβ3), BV8S1 (Vβ8.1) and BV8S2 (Vβ8.2) were studied for comparison with those of BV8S3 T cells. The employed method, which was based on a PCR-ELISA technique, was newly developed and allowed us to make a precise quantitation of TCRBJ gene usage of the multiple lymphocyte samples. The results showed that there were no biases of the BJ gene usage by BV8S3 DN T cells as well as other BV T cells. Furthermore, the BJ gene usage of CD4 and CD8 BV8S3 T cells was conserved by the DN T cells. It is suggested that the BV8S3 DN T cells were not expanded by specific antigens. The expansion may result from aberrant regulation specific to the BV8S3-expressing T cells.  相似文献   

17.
The purpose of this study was to assess the usefulness of HER2 levels in ultrasonographically guided fine-needle aspiration biopsy (US-FNA) aspirates of axillary lymph nodes (ALNs) in the determination of lymph node metastasis or the characterization of primary breast cancer, and to correlate the HER2 levels in US-FNA aspirates (FNA-HER2s) of metastatic ALNs with the HER2 statuses of corresponding primary breast cancers. An institutional review board approved the study. Between January and October 2010, 164 patients with 167 ALNs examined by US-FNA were included. FNA-HER2s of ALNs were measured by chemiluminescence immunoassay, and they were correlated with cytologic/final diagnoses. Receiver operating characteristics (ROC) curve analysis was performed to evaluate the diagnostic ability to differentiate benign and metastatic ALNs. Additionally, FNA-HER2s of metastatic ALNs were correlated with HER2 status and other clinicopathologic variables of the primary breast cancers. Among the 167 ALNs, 138 were metastatic and 29 were benign. The mean FNA-HER2 (6.3 ng/ml) of metastatic ALNs was higher than that of benign ALNs. All 29 benign ALNs showed no measurable value of FNA-HER2 (0.0 ng/ml). The area under the ROC curves of FNA-HER2 of ALNs was 0.679 for the diagnosis of ALN metastasis. The FNA-HER2 statuses of 108 metastatic ALNs (79.4%) were concordant with the HER2 statuses of the corresponding primary breast cancers. In a subgroup analysis of HER2-positive cancers with ALN metastasis, distant metastasis was significantly associated with FNA-HER2-negativity of metastatic ALNs (P = 0.04). Although FNA-HER2 of ALNs did not improve the diagnostic performance of FNA cytology in preoperative diagnosis of ALN metastasis of overall patients, FNA-HER2-positive metastatic ALNs were significantly associated with HER2-positivity of primary breast cancers. Additionally, FNA-HER2 analysis of ALN may help to develop more personalized treatment protocol for breast cancer patients by determining the concordance or discordance of HER2 status between primary cancers and metastatic ALNs.  相似文献   

18.
Acute Plasmodium falciparum malaria in African children allows expansion of latent Epstein-Barr virus infection, leading to colonization of lymph nodes by virus-infected lymphoblasts in 60% of cases as demonstrated by in situ hybridization for the detection of EBER-1 and EBER-2 RNA. This probably arises against a background of malaria-induced immunosuppression to EBV and concurrent lymphoid activation. The relevance of the results to the pathogenesis of African endemic Burkitt's lymphoma is discussed.  相似文献   

19.
We compared HEp-2-derived cells cured of persistent poliovirus infection by RNA interference (RNAi) with parental cells, to investigate possible changes in the efficiency of RNAi. Lower levels of poliovirus replication were observed in cured cells, possibly facilitating virus silencing by antiviral small interfering RNAs (siRNAs). However, green fluorescent protein (GFP) produced from a measles virus vector and also GFP and luciferase produced from plasmids that do not replicate in human cells were more effectively silenced by specific siRNAs in cured than in control cells. Thus, cells displaying enhanced silencing were selected during curing by RNAi. Our results strongly suggest that the RNAi machinery of cured cells is more efficient than that of parental cells.Small interfering RNAs (siRNAs) mediate RNA interference (RNAi), a natural biological phenomenon regulating a wide range of cellular pathways (8, 20). RNAi-based therapies with siRNAs or small hairpin RNAs (shRNAs) have been developed against several viral infections, and a reduction of the viral yield by several orders of magnitude has frequently been obtained (4, 9). However, virus clearance from cells and the complete cure of persistent virus infections have only rarely been reported (24, 25). We have developed several models of persistent virus infection by using poliovirus (PV), a positive-strand RNA virus of the Picornaviridae family (5, 7, 16, 21). We previously studied the effects of antiviral siRNAs applied months after the infection of HEp-2 cells with a persistent PV mutant (7, 25). We used a mixture (“the Mix”) of two synthetic siRNAs targeting the viral RNA genome in the 5′ noncoding (NC) region and the 3D polymerase (3Dpol) (siRNA-5′NC and siRNA-3Dpol, respectively; synthesized by Sigma-Proligo). When repeated transfections with the Mix were performed in persistently PV-infected cultures, most cultures stopped producing virus (25). Here, we investigate the important issue of changes in RNAi efficacy following siRNA treatment, 2 to 5 months after the cure. The efficiency of gene silencing in cells was stable during this period.We used the HEp-Q4 and -Q5 cell lines, which were cured of persistent PV infection after transfections with the Mix (25). The cured cells and their parental cell line, HEp-2, had similar growth rates (data not shown). To compare PV silencing efficiencies in the three cell lines, they were transfected either with the Mix or with an irrelevant siRNA (siRNA-IRR) in the presence of Lipofectamine 2000 (Invitrogen) in 24-well plates as previously described (25). Treated and mock-treated cells were infected 16 h posttransfection with PV strain Sabin 3, at a multiplicity of infection (MOI) of 1 50% infectious dose (ID50) per cell. The viral progeny was titrated 24 h postinfection, as previously described (16). HEp-Q4 and HEp-Q5 were permissive to PV infection, although viral yields were about 1 log lower in these cells than in HEp-2 cells (Fig. (Fig.1A).1A). Virus silencing was observed in all three cell lines treated with the Mix; however, silencing was significantly more efficient in HEp-Q4 (≈2.2 times more efficient; P = 0.013, Student''s t test) and HEp-Q5 (≈5.6 times more efficient; P = 0.015) than in HEp-2 cells (Fig. 1A and B). Similar results were obtained with an shRNA (Thermo Scientific) targeting the same region as the siRNA-5′NC (data not shown).Open in a separate windowFIG. 1.Efficiency of enterovirus silencing in HEp-2, HEp-Q4, and HEp-Q5 cells after transfection with specific siRNAs. (A) Yield of progeny virus produced by cells infected at an MOI of 1 ID50, 16 h posttransfection with the antiviral Mix containing two anti-PV siRNAs (20 pmol), the irrelevant siRNA-IRR (20 pmol), or no siRNA. Samples were harvested 24 h postinfection. Each bar represents the mean value ± SEM of six infected cultures from three independent experiments. (B to E) For each cell line, silencing efficiency is expressed as the ratio of infectious virus yield (titer in ID50/ml) in the presence of the irrelevant siRNA-IRR to infectious virus yield (titer in ID50/ml) in the presence of the antiviral siRNAs in cured cells, normalized with respect to the silencing efficiency in HEp-2 cells. S2, PV strain Sabin 2. (F) GFP silencing efficiency for each cell line is expressed as a ratio [1 − (mean GFP levels in the presence of siRNA-eGFP)/(mean GFP levels in the presence of siRNA-IRR)] in cured cells, normalized with respect to the efficiency of silencing in HEp-2 cells. Each bar represents the mean value ± SEM of at least four cultures from two independent experiments. *, P < 0.05 based on Student''s t test comparing HEp-Q4 and HEp-Q5 with HEp-2 cells.We investigated whether the differences in silencing efficacies between the three cell lines were due to differences in siRNA transfection efficiency by transfecting HEp-2, HEp-Q4, and HEp-Q5 cells with fluorescein isothiocyanate-conjugated siRNA (siRNA-FITC; 20 pmol/well; Cell Signaling) and testing them between 4 and 48 h posttransfection. The fluorescence of transfected cells was measured with a FACScan flow cytometer (Becton Dickinson), and data were analyzed with CellQuest software (Becton Dickinson). The percentages of siRNA-FITC-positive cells were similar for all cell types (Fig. (Fig.2A).2A). The mean fluorescence per positive cell and the percentage of cells displaying fluorescence peaked 16 and 24 h posttransfection, respectively, and decreased thereafter (Fig. (Fig.2).2). These findings suggest both that the presence of siRNAs in cells was similarly transient in the three cell types, as previously reported (27), and that the high silencing efficiencies in cured cells were not a consequence of higher transfection efficiencies. All subsequent experiments were performed between 16 and 40 h posttransfection.Open in a separate windowFIG. 2.Transfection efficiencies of fluorescein-conjugated siRNAs in HEp-2, HEp-Q4, and HEp-Q5 cells. A fluorescent siRNA-FITC (20 pmol) was used to transfect each of the three cell lines in the presence of Lipofectamine 2000. Fluorescent cells were analyzed 4 to 48 h posttransfection by using a FACScan flow cytometer (Becton Dickinson). The percentage of fluorescent cells (A) and the mean fluorescence per positive cell, in arbitrary units (B), are shown. Each bar represents the mean value ± SEM. (C) Representative FACS plots (cell granularity versus cell size), showing the similarities between the three cell populations.Fluorescence-activated cell sorting (FACS) plots for granularity versus cell size were very similar for the three cell lines (Fig. (Fig.2C),2C), as were those for cell numbers versus fluorescence (not shown), suggesting highly related cell populations. Although highly probable, it remains to be confirmed that the cured cells originated from a subpopulation of HEp-2 cells.Virus silencing was also investigated in cured cells infected with Sabin 2 or coxsackievirus A17 (CAV17) strain 67591 (22) or in cells transfected with Sabin 2 RNA. The experimental conditions used for Sabin 2 and CAV17 were identical to those for Sabin 3, except that only the 3D polymerase was targeted by siRNAs. Sabin 2 RNA (1 μg) was prepared as previously described (12) and used with siRNA-3Dpol (20 pmol/well) for the cotransfection of cells in the presence of Lipofectamine 2000. Virus yields were determined 7.5 h after transfection. In all cases, virus silencing was more effective in HEp-Q4 and -Q5 cells than in HEp-2 cells (Fig. 1C to E). Additional experiments were performed with a PV replicon encoding the green fluorescent protein (GFP), PV-eGFP (28) (2 μg/well), which was used with siRNA-eGFP (20 pmol/well; Ambion) for cotransfection. GFP fluorescence was measured by flow cytometry, 16 h after transfection. As for PV, a higher silencing efficiency was observed in cured cells than in HEp-2 cells (Fig. (Fig.1F1F).We then investigated whether the lower level of viral multiplication in HEp-Q4 and -Q5 cells in the absence of siRNAs involved an entry or postentry step. We quantified the expression of the PV receptor (CD155) at the surface of cells. We used flow cytometry after indirect immunofluorescence labeling with anti-CD155 antibodies, as previously described (16). More than 98.4% ± 2% (mean ± standard error of the mean [SEM]) of cured cells, like HEp-2 cells, tested positive for CD155 (data not shown). In the absence of siRNAs, a decrease in viral replication was also observed in HEp-Q4 and -Q5 cells infected with the Sabin 2 PV strain in cells, in which the early stages of the viral cycle were bypassed by transfection with Sabin 2 RNA, and in cells infected with the CAV17 virus, which uses a cell receptor other than CD155 (12) (data not shown). Together, these results suggest that PV multiplication is reduced at a postentry step, probably at replication, in cured cells.We investigated whether PV silencing was also enhanced in other HEp-derived cells in which Sabin 3 PV multiplication was reduced by using HEp-S31 (cl18) cells that had been cured of persistent PV infection by growth at a supraoptimal temperature rather than by RNAi (2). PV yield was ≈1.6 logs lower in HEp-S31 (cl18) cells than in HEp-2 cells (data not shown). Sabin 3 PV silencing in HEp-S31 (cl18) cells was 1.7 ± 0.9 times more effective (mean of six experiments) than that in HEp-2 cells (relative efficacy of 1) (data not shown), but this difference was not significant. However, these results do not exclude the possibility that reduced PV replication facilitates PV silencing by the Mix in cured cells. We therefore pursued our work with a different virus.We investigated whether the high silencing efficiency in HEp-Q4 and -Q5 cells was specific to enteroviruses by using a measles virus expressing GFP, MV-eGFP (26), and siRNA-eGFP to silence GFP expression. Cells were transfected with either siRNA-eGFP or siRNA-IRR, infected with MV-eGFP (1 ID50 per cell, 16 h posttransfection), and the GFP silencing efficiency was determined 40 h posttransfection by flow cytometry. For each cell line, silencing efficiency was expressed as a percentage {[1 − (percentage of siRNA-eGFP-transfected cells expressing GFP)/(percentage of siRNA-IRR-transfected cells expressing GFP)] × 100}. GFP silencing was significantly stronger in HEp-Q4 cells (≈14%; P = 0.048) and HEp-Q5 cells (≈17%; P = 0.010) than in HEp-2 cells (Fig. (Fig.3A).3A). There was no significant difference in the silencing efficiency of GFP between HEp-Q4 and -Q5 cells (Fig. (Fig.3A).3A). The anti-PV Mix did not silence GFP expression (data not shown), indicating that the silencing of GFP was not due to anti-PV siRNAs persisting in cured cells months after the initial treatment.Open in a separate windowFIG. 3.Efficiency of GFP and luciferase silencing in HEp-2, HEp-Q4, and HEp-Q5 cells after transfection with specific siRNAs. (A and B) GFP silencing, expressed as a percentage calculated for each cell line as follows: {[1 − (GFP expression in the presence of siRNA-eGFP)/(GFP expression in the presence of the irrelevant siRNA-IRR)] × 100}. (A) Cells were infected 16 h posttransfection with a measles virus encoding eGFP (MV-eGFP [26]) at an MOI of 1 ID50/cell, and fluorescent cells were analyzed 24 h after infection (40 h posttransfection). Each bar represents the mean value ± SEM of three independent experiments. (B) Cells were cotransfected with pEGFP-C1 and siRNA-eGFP or siRNA-IRR and analyzed 40 h later. Each bar represents the mean value ± SEM of four independent experiments. (C) Luciferase silencing efficiency for each cell line, expressed as the ratio of luciferase activity in the presence of the irrelevant siRNA-IRR to luciferase activity in the presence of the specific siRNAs in cured cells, normalized with respect to silencing efficiency in HEp-2 cells. Relative efficiencies are shown as in Fig. Fig.11 for luciferase, because the enzymatic reaction amplified the signal. Each bar represents the mean value ± SEM of triplicates from three independent experiments. *, P < 0.05 based on Student''s t test comparing HEp-Q4 and HEp-Q5 with HEp-2 cells.To test whether the high silencing efficiency in HEp-Q4 and -Q5 cells was dependent on viral infection, plasmid vectors pEGFP-C1 (Clontech Laboratories) and pRL-CMV (Promega) were used to generate GFP (6) and Renilla luciferase (18), respectively. These plasmids do not replicate in human cells. Cells (106) were cotransfected with pEGFP-C1 (1 μg) and siRNAs (20 pmol) in the presence of Lipofectamine 2000, as recommended by the manufacturer. GFP fluorescence was analyzed by flow cytometry 40 h posttransfection. Silencing efficiencies were expressed as a percentage {[1 − (mean GFP levels in the presence of siRNA-eGFP)/(mean GFP levels in the presence of siRNA-IRR)] × 100)}. Mean silencing efficiency was significantly higher in HEp-Q4 (≈15%; P = 0.003) and HEp-Q5 (≈15%; P = 0.002) cells than in HEp-2 cells (Fig. (Fig.3B).3B). The efficiency with which the GFP encoded by pEGFP-C1 was silenced was similar in HEp-Q4 and -Q5 cells.The efficacy of siRNAs was then assessed with pRL-CMV, which encodes the Renilla luciferase and Silencer Renilla luciferase (AM4630; Ambion). Cells (106) were cotransfected with the plasmid (100 ng) and either specific or irrelevant siRNA (7 pmol) in the presence of Lipofectamine 2000. Luciferase assays were performed with a Dual-Glo luciferase assay system (Promega), as recommended by the manufacturer at 40 h posttransfection, and luminescence was measured with a luminometer (Centro LB960; Berthold). The results of the sensitive luciferase assays confirmed that the relative efficiency of silencing was significantly higher in cured than in parental cells (Fig. (Fig.3C).3C). By contrast, results obtained in HEp-S31 (cl18) cells, cured without siRNAs, were not significantly different from those obtained in control HEp-2 cells (data not shown), strongly suggesting that the treatment of HEp-Q4 and -Q5 cells with specific siRNAs selected cells in which siRNAs mediated silencing more efficiently than in parental cells.The difference in silencing efficiency between cured and HEp-2 cells may be due to differences in the abundance and/or efficacy of cellular factors involved in gene silencing. Some major actors of the RNAi pathway, particularly those associated with the RNA-induced silencing complex (RISC), have been identified (3, 10, 13, 19). The active endonucleolytic core of the RISC includes the guide strand of the siRNA and a slicer protein called Argonaute 2 (Ago2) (17). We used Western blotting to study Ago-2 and other factors contributing to the function of RISC (3, 10, 11, 14, 19, 23): the endonuclease Dicer, the transactivation response RNA binding protein (TRBP), the protein activator of double-stranded RNA-dependent protein kinase (PACT), and the RNA helicase A (RHA) (Fig. (Fig.4).4). Exportin 5, which plays a role upstream from the dicing process in the export of small RNA precursors (29), was included as a control.Open in a separate windowFIG. 4.Comparative analysis of proteins involved in RNAi in HEp-2, HEp-Q4, and HEp-Q5 cell lines. Whole-cell lysates were tested for Exportin 5 (A), Dicer (B), Ago-2 (C), the helicase RHA (D), TRBP (E to H) and PACT (I) by Western blotting with the corresponding specific antibodies. Blots were subsequently stripped and reprobed with antiactin antibodies to confirm equal protein loading. (E and F) TRBP levels in HEp-Q4 and HEp-Q5 cells were determined by densitometry and are plotted in arbitrary units, as ratios relative to the level of actin and to the level of TRBP in HEp-2 cells. In panel F the symbols correspond to TRBP levels determined in nine different experiments. (G) TRBP levels in HEp-2 cells transfected with pcDNA-TRBP (14) and in cells cotransfected with pcDNA-TRBP and siRNA-TRBP. (H) TRBP levels were compared in human IMR5 cells, HEpS31 (cl18) cells previously cured of persistent PV infection by growth at a supraoptimal temperature, and the control HEp-2 cell line. TRBP/actin densitometry and PACT/actin densitometry results are indicated in arbitrary units in the histograms below the corresponding Western blot results shown in panels H and I.Proteins (30 to 50 μg) from each cell line were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (10 to 20% Tricine gels; Invitrogen) and transferred to nitrocellulose membranes (Amersham Biosciences) as previously described (1). The membranes were incubated with one of the following primary antibodies (1): anti-Ago2 monoclonal antibody (MAb; Abcam), anti-RHA MAb (Abcam), and anti-TRBP2 MAb (Santa Cruz Biotechnology); rabbit antibodies against Dicer (Santa Cruz Biotechnology); anti-PACT MAb (Santa Cruz Biotechnology), and anti-Exportin 5 MAb (Abcam). The antiactin MAb (AC-40; Sigma-Aldrich) was used to check for equal protein loading. Membranes were then washed and treated with appropriate horseradish peroxidase-conjugated secondary antibodies (Amersham Biosciences) for 2 h at room temperature. Protein bands were detected with an enhanced chemiluminescence detection kit (ECL+; Amersham Biosciences) and a G:box (Syngene).Exportin 5, Dicer, Ago-2, and RHA were similarly abundant in all three cell lines (Fig. 4A to D), suggesting that quantitative differences in protein levels were unlikely to be responsible for the enhanced silencing in HEp-Q4 and -Q5 cells. There was significantly more TRBP in HEp-Q4 (≈21%; P = 0.026) and HEp-Q5 (≈28%; P = 0.016) cells than in HEp-2 cells, as indicated by the results of nine experiments (Fig. 4E and F). The specificity of the anti-TRBP antibody was checked on extracts of HEp-2 cells transfected with a plasmid encoding TRBP, pcDNA-TRBP (14), with and without silencing by siRNA-TRBP (Fig. (Fig.4G).4G). GFP silencing was not enhanced in HEp-2 cells overproducing TRBP, and it was not decreased by downregulating TRBP gene expression with siRNA-TRBP (data not shown). These results suggest that the high levels of TRBP in the cured cell lines are not the cause of the enhanced silencing in these cells.There was less TRBP protein in HEp-S31 (cl18) cells (2) than in HEp-2 and other control cells (IMR5) (Fig. (Fig.4H),4H), indicating that high levels of TRBP are not necessarily selected in cells persistently infected with PV. PACT was slightly downregulated in the cured cells (Fig. (Fig.4I).4I). Moreover, PACT is unlikely to be involved in the enhanced silencing in cured cells, because we used synthetic siRNAs and PACT functions principally during siRNA production by Dicer (14). We did not investigate the activities or subcellular distributions of the various factors involved in RNAi in the three cell lines, and they may differ. It is also possible that other factors, not tested here, contribute to the efficacy of siRNAs in cured cells. The molecular details of the mechanism involved remain to be determined.Overall, our results suggest that both a decrease in viral replication and the enhancement of gene silencing contributed to the mechanism by which cells persistently infected with poliovirus were cured by RNAi. Our results also indicate that cells displaying enhanced silencing may be selected during treatment with siRNAs. This may result in profound changes to cell phenotype, because RNAi plays an essential role in the regulation of cellular gene expression (15).  相似文献   

20.
Lipid mixtures within artificial membranes undergo a separation into liquid-disordered and liquid-ordered phases. However, the existence of this segregation into microscopic liquid-ordered phases has been difficult to prove in living cells, and the precise organization of the plasma membrane into such phases has not been elucidated in plant cells. We developed a multispectral confocal microscopy approach to generate ratiometric images of the plasma membrane surface of Bright Yellow 2 tobacco (Nicotiana tabacum) suspension cells labeled with an environment sensitive fluorescent probe. This allowed the in vivo characterization of the global level of order of this membrane, by which we could demonstrate that an increase in its proportion of ordered phases transiently occurred in the early steps of the signaling triggered by cryptogein and flagellin, two elicitors of plant defense reactions. The use of fluorescence recovery after photobleaching revealed an increase in plasma membrane fluidity induced by cryptogein, but not by flagellin. Moreover, we characterized the spatial distribution of liquid-ordered phases on the membrane of living plant cells and monitored their variations induced by cryptogein elicitation. We analyze these results in the context of plant defense signaling, discuss their meaning within the framework of the “membrane raft” hypothesis, and propose a new mechanism of signaling platform formation in response to elicitor treatment.The adaptive capacity of biological membranes is a primary determinant of cell survival in fluctuating conditions. In particular, membrane physical properties are adjusted in the perception of and response to environmental modifications (including temperature, mechanical, and osmotic stresses) in various organisms (Los and Murata, 2004; Vígh et al., 2007; Verstraeten et al., 2010), including plants (Vaultier et al., 2006; Königshofer et al., 2008). Moreover, it has been shown that modifications of plasma membrane (PM) physical properties induced by pharmacological treatments can trigger signaling events in tobacco (Nicotiana tabacum) suspension cells (Bonneau et al., 2010). This reinforces the need to analyze the relationships between membrane organization and signaling in greater detail.Fluidity, a physical property of the PM, is a measure of the rotational and translational motions of molecules within the membrane, and consequently this reflects the level of lipid order in the bilayer. Lipid order is comprised of structure, microviscosity, and membrane phase; the latter feature includes lipid shape, packing, and curvature (Rilfors et al., 1984; van der Meer et al., 1984; Bloom et al., 1991). Lipid self-association induces a physical segregation into lipid bilayers, wherein a liquid-ordered (Lo) phase coexists with a liquid-disordered (Ld) phase (Veatch and Keller, 2005; Gaus et al., 2006; Klymchenko et al., 2009; Heberle et al., 2010). The Lo phase couples a high rotational mobility with a high conformational order in the lipid acyl chain, two physical properties that could be spatially resolved by fluorescence microscopy (Kubiak et al., 2011). Moreover, some observations indicate that Lo size or proportion could be controlled by temperature or cholesterol content (Roche et al., 2008; Orth et al., 2011).This preferential association of some lipids in complex mixtures has resulted in the “membrane raft” hypothesis within the cell biology field. This theory postulates the existence of small (20–200 nm), short-lived, sterol-, and sphingolipid-enriched Lo assemblies within the membrane. An important feature is that these aggregations are believed to coalesce, upon a biological stimulus, into larger structures whose dynamics can regulate many cellular processes (Simons and Ikonen, 1997; Pike, 2006; Lingwood and Simons, 2010; Simons and Gerl, 2010). An increased resistance to solubilization by detergents of Lo versus Ld phases has led researchers to consider that membrane fractions insoluble to nonionic detergents at low temperatures could contain the putative “raft” fractions. One caveat of this theory is that recovered detergent-insoluble membrane fractions (DIMs) only exist after detergent treatment and do not correspond to the native membrane structure (Lichtenberg et al., 2005). Nevertheless, their significant enrichment in sterols, sphingolipids, and specific subsets of proteins, some of which displaying a clustered distribution within the PM (Simons and Gerl, 2010), has encouraged their use as a biochemical counterpart of Lo microdomains existing in biological membranes.Plant DIMs with a lipid content similar to animal DIMs have been isolated from several species, including tobacco cells, and are enriched in proteins involved in signaling and stress responses (Mongrand et al., 2004; Borner et al., 2005; Morel et al., 2006; Lefebvre et al., 2007; Kierszniowska et al., 2009). Moreover, immunoelectron microscopy experiments have revealed that lateral segregation of lipids and proteins occurs at the nanoscale level at the tobacco PM, thus correlating detergent insolubility with membrane domain localization of presumptive raft proteins (Raffaele et al., 2009; Furt et al., 2010; Demir et al., 2013). Together, these data point to the existence of specialized lipid domains in plants. Concomitantly, the presence of sterol-rich Lo membrane domains was observed in vivo at the tip of the growing pollen tube in Picea meyeri, using both filipin and the fluorescent probe 1-[2-hydroxy-3-(N,N-dimethyl-N-hydroxyethyl)ammoniopropyl]-4-[β-[2-(di-n-butylamino)-6-napthyl]vinyl] pyridinium dibromide (di-4-ANEPPDHQ; Liu et al., 2009). This observation argues in favor of a sterol-dependent organization of ordered domains at the plant PM surface. In addition, the combined use of fluorescent lipid analogs and the environmental dye laurdan has revealed different lipid phases that emerge in the PM of Arabidopsis (Arabidopsis thaliana) protoplasts during restoration of the cell wall (Blachutzik et al., 2012). Despite these details, necessary data concerning the presence and in vivo characterization of Lo domains at a micrometer to nanometer scale are still lacking.The importance of a more refined resolution for observing Lo domains was proposed in several recent reviews (Bagatolli, 2006; Duggan et al., 2008; García-Sáez and Schwille, 2010; Owen et al., 2010a; Stöckl and Herrmann, 2010; Klenerman et al., 2011). Although the physical properties of biological membranes have been studied in situ by various techniques, including two-channel ratiometric microscopy (Owen et al., 2010c) and microscopy imaging of partitioning of fluorescent lipids and proteins (Rosetti et al., 2010) or environmentally sensitive probes (Parasassi et al., 1990; Jin et al., 2006), membrane segregation into microscopic Lo- and Ld-like phases has been difficult to observe in living cells. Furthermore, only a few studies have demonstrated that a microscopic phase separation involving an ordered phase similar to the Lo domain of model membranes could occur in biomembranes using PM giant vesicles (Baumgart et al., 2007; Lingwood et al., 2008; Sengupta et al., 2008). A potentially powerful approach for imaging small ordered membrane domains relies on environment-sensitive probes coupled with fluorescence spectroscopy (Gaus et al., 2003, 2006; Oncul et al., 2010). In particular, analysis of the fluorescence of the di-4-ANEPPDHQ probe, which exhibits an emission shift independent of local chemical composition under different lipid packing conditions (Jin et al., 2005; Demchenko et al., 2009; Dinic et al., 2011), recently enabled the imaging of plant membrane domains at the micrometer scale (Liu et al., 2009). The relevance of this approach has been confirmed by mapping membrane domains using generalized anisotropy-based images of di-4-ANEPPDHQ-stained T cell immunological synapses (Owen et al., 2010c), together with the characterization of membrane organization of nonadherent cells (such as living zebrafish embryo tissues) labeled with this dye (Owen et al., 2012a).The function of dynamic PM compartmentalization in the detection and transduction of environmental signals in plant cells has only recently begun to emerge, along with a crucial role for sterols in this organization (for review, see Zappel and Panstruga, 2008; Mongrand et al., 2010; Simon-Plas et al., 2011). These observations make it indispensable to align how the surface membrane of living cells might reorganize during signaling with the membrane raft hypothesis. To investigate possible modifications of membrane organization during the initial steps of plant defense signaling, tobacco cells were treated with two well-described elicitors of defense reaction, cryptogein, a small protein able to trigger an hypersensitive reaction (HR) and an acquired resistance in tobacco plants (Ponchet et al., 1999; Garcia Brugger et al., 2006) together with a widely described signaling cascade in tobacco suspension cells, and flg22 (a 22-amino acid peptide corresponding to a conserved domain of bacterial flagellin). The latter peptide is also a potent elicitor in plants, yet it does not induce an HR type of necrosis (Gomez-Gomez and Boller, 2002; Chinchilla et al., 2007). The study of cryptogein response reveals that the earliest steps of the signal transduction pathway mainly involve PM activities (Ponchet et al., 1999; Garcia-Brugger et al., 2006). How the PM is laterally organized and possibly reorganized in response to this stress so it can efficiently trigger a signaling cascade remains unknown.Here, we have developed a confocal multispectral microscopy approach to generate in vivo ratiometric pictures of large areas of the tobacco cell PM labeled with di-4-ANEPPDHQ, allowing the in vivo characterization of the global level of order of this membrane. Although an increase in the proportion of ordered phase within the membrane transiently occurred in the early steps of the cryptogein and flg22 signaling cascades, the fluorescence recovery after photobleaching (FRAP) technique revealed an increase in PM fluidity induced by cryptogein, but not by flagellin. Moreover, we characterized the spatial distribution of Lo phases on the membrane of living plant cells and monitored the variations induced by cryptogein elicitation. The results are discussed within the framework of the “membrane raft” hypothesis, in which we propose a new mechanism of signaling platform formation in the context of plant defense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号