首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein-tyrosine phosphatase 4A3 (PTP4A3) is highly expressed in multiple human cancers and is hypothesized to have a critical, albeit poorly defined, role in the formation of experimental tumors in mice. PTP4A3 is broadly expressed in many tissues so the cellular basis of its etiological contributions to carcinogenesis may involve both tumor and stromal cells. In particular, PTP4A3 is expressed in the tumor vasculature and has been proposed to be a direct target of vascular endothelial growth factor (VEGF) signaling in endothelial cells. We now provide the first in vivo experimental evidence that PTP4A3 participates in VEGF signaling and contributes to the process of pathological angiogenesis. Colon tumor tissue isolated from Ptp4a3-null mice revealed reduced tumor microvessel density compared with wild type controls. Additionally, vascular cells derived from Ptp4a3-null tissues exhibited decreased invasiveness in an ex vivo wound healing assay. When primary endothelial cells were isolated and cultured in vitro, Ptp4a3-null cells displayed greatly reduced migration compared with wild type cells. Exposure to VEGF led to an increase in Src phosphorylation in wild type endothelial cells, a response that was completely ablated in Ptp4a3-null cells. In loss-of-function studies, reduced VEGF-mediated migration was also observed when human endothelial cells were treated with a small molecule inhibitor of PTP4A3. VEGF-mediated in vivo vascular permeability was significantly attenuated in PTP4A3-deficient mice. These findings strongly support a role for PTP4A3 as an important contributor to endothelial cell function and as a multimodal target for cancer therapy and mitigating VEGF-regulated angiogenesis.  相似文献   

2.
During development, the semaphorin family of guidance molecules is required for proper formation of the sympathetic nervous system. Plexins are receptors that mediate semaphorin signaling, but how plexins function during sympathetic development is not fully understood. Using phenotypic analyses of mutant mice in vivo, expression pattern studies, and in vitro assays, we show that plexin-A3 and plexin-A4 are essential for normal sympathetic development. This study confirms our previous in vitro findings that the two plexins differentially regulate the guidance of sympathetic axons. In addition, we find that semaphorin signaling through plexin-A3 and plexin-A4 restricts the migration of sympathetic neurons, but these two plexins function redundantly since migration defects are only observed in plexin-A3/-A4 double mutants. Surprisingly, our analysis also indicates that plexin-A3 and plexin-A4 are not required for guiding neural crest precursors prior to reaching the sympathetic anlagen. Immunoprecipitation studies suggest that these two plexins independently mediate secreted semaphorin signaling. Thus, plexin-A3 and plexin-A4 are expressed in newly-differentiated sympathetic neurons, but not their neural crest precursors. They function cooperatively to regulate the migration of sympathetic neurons and then differentially to guide the sympathetic axons.  相似文献   

3.
4.
Cancer cells must regulate plasticity and invasion to survive and metastasize. However, the identification of targetable mechanisms to inhibit metastasis has been slow. Signaling programs that drive stem and progenitor cells during normal development offer an inroad to discover mechanisms common to metastasis. Using a chick embryo transplant model, we have compared molecular signaling programs of melanoma and their embryonic progenitors, the neural crest. We report that malignant melanoma cells hijack portions of the embryonic neural crest invasion program. Genes associated with neural crest induction, delamination, and migration are dynamically regulated by melanoma cells exposed to an embryonic neural crest microenvironment. Specifically, we demonstrate that metastatic melanoma cells exploit neural crest-related receptor tyrosine kinases to increase plasticity and facilitate invasion while primary melanocytes may actively suppress these responses under the same microenvironmental conditions. We conclude that aberrant regulation of neural crest developmental genes promotes plasticity and invasiveness in malignant melanoma.  相似文献   

5.
6.
Collective cell migration is a fundamental process, occurring during embryogenesis and cancer metastasis. Neural crest cells exhibit such coordinated migration, where aberrant motion can lead to fatality or dysfunction of the embryo. Migration involves at least two complementary mechanisms: contact inhibition of locomotion (a repulsive interaction corresponding to a directional change of migration upon contact with a reciprocating cell), and co-attraction (a mutual chemoattraction mechanism). Here, we develop and employ a parameterized discrete element model of neural crest cells, to investigate how these mechanisms contribute to long-range directional migration during development. Motion is characterized using a coherence parameter and the time taken to reach, collectively, a target location. The simulated cell group is shown to switch from a diffusive to a persistent state as the response-rate to co-attraction is increased. Furthermore, the model predicts that when co-attraction is inhibited, neural crest cells can migrate into restrictive regions. Indeed, inhibition of co-attraction in vivo and in vitro leads to cell invasion into restrictive areas, confirming the prediction of the model. This suggests that the interplay between the complementary mechanisms may contribute to guidance of the neural crest. We conclude that directional migration is a system property and does not require action of external chemoattractants.  相似文献   

7.

Background

Treatment of breast cancer patients with distant metastases represents one of the biggest challenges in today’s gynecological oncology. Therefore, a better understanding of mechanisms promoting the development of metastases is of paramount importance. The serine/threonine kinase AKT was shown to drive cancer progression and metastasis. However, there is emerging data that single AKT isoforms (i.e. AKT1, AKT2 and AKT3) have different or even opposing functions in the regulation of cancer cell migration in vitro, giving rise to the hypothesis that inhibition of distinct AKT isoforms might have undesirable effects on cancer dissemination in vivo.

Methods

The triple negative breast cancer cell line MDA-MB-231 was used to investigate the functional roles of AKT in migration and metastasis. AKT single and double knockdown cells were generated using isoform specific shRNAs. Migration was analyzed using live cell imaging, chemotaxis and transwell assays. The metastatic potential of AKT isoform knockdown cells was evaluated in a subcutaneous xenograft mouse model in vivo.

Results

Depletion of AKT3, but not AKT1 or AKT2, resulted in increased migration in vitro. This effect was even more prominent in AKT2,3 double knockdown cells. Furthermore, combined downregulation of AKT2 and AKT3, as well as AKT1 and AKT3 significantly increased metastasis formation in vivo. Screening for promigratory proteins revealed that downregulation of AKT3 increases the expression of S100A4 protein. In accordance, depletion of S100A4 by siRNA approach reverses the increased migration induced by knockdown of AKT3.

Conclusions

We demonstrated that knockdown of AKT3 can increase the metastatic potential of triple negative breast cancer cells. Therefore, our results provide a rationale for the development of AKT isoform specific inhibitors.  相似文献   

8.
Early acquisition of neural crest competence during hESCs neuralization   总被引:1,自引:0,他引:1  

Background

Neural crest stem cells (NCSCs) are a transient multipotent embryonic cell population that represents a defining characteristic of vertebrates. The neural crest (NC) gives rise to many derivatives including the neurons and glia of the sensory and autonomic ganglia of the peripheral nervous system, enteric neurons and glia, melanocytes, and the cartilaginous, bony and connective tissue of the craniofacial skeleton, cephalic neuroendocrine organs, and some heart vessels.

Methodology/Principal Findings

We present evidence that neural crest (NC) competence can be acquired very early when human embryonic stem cells (hESCs) are selectively neuralized towards dorsal neuroepithelium in the absence of feeder cells in fully defined conditions. When hESC-derived neurospheres are plated on fibronectin, some cells emigrate onto the substrate. These early migratory Neural Crest Stem Cells (emNCSCs) uniformly upregulate Sox10 and vimentin, downregulate N-cadherin, and remodel F-actin, consistent with a transition from neuroepithelium to a mesenchymal NC cell. Over 13% of emNCSCs upregulate CD73, a marker of mesenchymal lineage characteristic of cephalic NC and connexin 43, found on early migratory NC cells. We demonstrated that emNCSCs give rise in vitro to all NC lineages, are multipotent on clonal level, and appropriately respond to developmental factors. We suggest that human emNCSC resemble cephalic NC described in model organisms. Ex vivo emNCSCs can differentiate into neurons in Ret.k- mouse embryonic gut tissue cultures and transplanted emNCSCs incorporate into NC-derived structures but not CNS tissues in chick embryos.

Conclusions/Significance

These findings will provide a framework for further studying early human NC development including the epithelial to mesenchymal transition during NC delamination.  相似文献   

9.
Previous studies on PTP4A3 mainly focused on tumor metastasis due to the close relationship between the overexpression of lung cancer and metastasis. However, the role of PTP4A3 in the proliferation of tumor still has remained unclear. To investigate the role of PTP4A3 in cell growth of lung cancer, we constructed PTP4A3-siRNA expressing lentivirus and infected human lung cancer H1299 cells, and then examined the inhibitory effect of PTP4A3 in vitro. The levels of PTP4A3 mRNA and protein in H1299 cells decreased after PTP4A3-siRNA lentivirus infection. The growth and colony formation of the infected cells were also inhibited, indicating that PTP4A3 gene is closely associated with the proliferation of H1299 cells. In addition, after PTP4A3 specific siRNA lentivirus infection, it was notable that whilst H1299 cells in G1 phase apparently reduced, both of H1299 cells in G2/M phase and the cell apoptosis increased significantly. This finding indicated the close relationship between PTP4A3 gene and apoptosis in the H1299 cells. These results come to their conclusion that PTP4A3 plays an important role in the growth of lung cancer cells. PTP4A3 may be considered as a valuable target for anti-tumor therapeutic strategies.  相似文献   

10.
11.
High-risk neuroblastoma is associated with an overall survival rate of 30–50%. Neuroblastoma-expressed cell adhesion receptors of the integrin family impact cell adhesion, migration, proliferation and survival. Integrin α4 is essential for neural crest cell motility during development, is highly expressed on leukocytes, and is critical for transendothelial migration. Thus, cancer cells that express this receptor may exhibit increased metastatic potential. We show that α4 expression in human and murine neuroblastoma cell lines selectively enhances in vitro interaction with the alternatively spliced connecting segment 1 of fibronectin, as well as vascular cell adhesion molecule-1 and increases migration. Integrin α4 expression enhanced experimental metastasis in a syngeneic tumor model, reconstituting a pattern of organ involvement similar to that seen in patients. Accordingly, antagonism of integrin α4 blocked metastasis, suggesting adhesive function of the integrin is required. However, adhesive function was not sufficient, as mutants of integrin α4 that conserved the matrix-adhesive and promigratory function in vitro were compromised in their metastatic capacity in vivo. Clinically, integrin α4 is more frequently expressed in non-MYNC amplified tumors, and is selectively associated with poor prognosis in this subset of disease. These results reveal an unexpected role for integrin α4 in neuroblastoma dissemination and identify α4 as a potential prognostic indicator and therapeutic target.  相似文献   

12.
This study is sought to determine the physiological mechanisms by which exosomes-encapsulated TIM-3 derived from melanoma cells might mediate CD4+ T cell immune function and macrophage M2 polarization in melanoma. Initially, exosomes were isolated from the human skin-derived melanoma cell line MV3for analysis of TIM-3 expression pattern. Next, the exosomes sourced from MV3 cells manipulated with sh-TIM-3 were co-incubated with CD4+ T cells to detect CD4+ T cell proliferation and MV3 cell migration and invasion, to observe the macrophage M2 polarization, and to determine levels of several EMT-related factors. Finally, melanoma nude mouse models were established to study the in vivo modulatory effects of TIM-3 from MV3 cells-derived exosomes. MV3 cells-derived exosomes inhibited CD4+ T cell immune function and promoted macrophage M2 polarization in melanoma. Our results revealed the abundance of TIM-3 in MV3 cells-derived exosomes. Of importance, silencing of TIM-3 shuttled by MV3 cells-derived exosomes improved CD4+ T cell immune function and inhibited macrophage M2 polarization to attenuate the growth and metastasis of melanoma cells. Collectively, MV3 cells-derived exosomes-loaded TIM-3 suppressed CD4+ T cell immune function and induced macrophage M2 polarization to improve occurrence and development of melanoma, therefore providing us with a potential therapeutic target for effectively combating melanoma.  相似文献   

13.
Semaphorin 3A suppresses tumor growth and metastasis in mice melanoma model   总被引:1,自引:0,他引:1  

Background

Recent understanding on cancer therapy indicated that targeting metastatic signature or angiogenic switch could be a promising and rational approach to combat cancer. Advancement in cancer research has demonstrated the potential role of various tumor suppressor proteins in inhibition of cancer progression. Current studies have shown that axonal sprouting inhibitor, semaphorin 3A (Sema 3A) acts as a potent suppressor of tumor angiogenesis in various cancer models. However, the function of Sema 3A in regulation of melanoma progression is not well studied, and yet to be the subject of intense investigation.

Methodology/Principal Findings

In this study, using multiple in vitro and in vivo approaches we have demonstrated that Sema 3A acts as a potent tumor suppressor in vitro and in vivo mice (C57BL/6) models. Mouse melanoma (B16F10) cells overexpressed with Sema 3A resulted in significant inhibition of cell motility, invasiveness and proliferation as well as suppression of in vivo tumor growth, angiogenesis and metastasis in mice models. Moreover, we have observed that Sema 3A overexpressed melanoma clone showed increased sensitivity towards curcumin and Dacarbazine, anti-cancer agents.

Conclusions

Our results demonstrate, at least in part, the functional approach underlying Sema 3A mediated inhibition of tumorigenesis and angiogenesis and a clear understanding of such a process may facilitate the development of novel therapeutic strategy for the treatment of cancer.  相似文献   

14.
During vertebrate development, trunk neural crest cells delaminate along the entire length of the dorsal neural tube and initially migrate as a non-segmented sheet. As they enter the somites, neural crest cells rearrange into spatially restricted segmental streams. Extracellular matrix components are likely to play critical roles in this transition from a sheet-like to a stream-like mode of migration, yet the extracellular matrix components and their modifying enzymes critical for this transition are largely unknown. Here, we identified the glycosyltransferase Lh3, known to modify extracellular matrix components, and its presumptive substrate Collagen18A1, to provide extrinsic signals critical for neural crest cells to transition from a sheet-like migration behavior to migrating as a segmental stream. Using live cell imaging we show that in lh3 null mutants, neural crest cells fail to transition from a sheet to a stream, and that they consequently enter the somites as multiple streams, or stall shortly after entering the somites. Moreover, we demonstrate that transgenic expression of lh3 in a small subset of somitic cells adjacent to where neural crest cells switch from sheet to stream migration restores segmental neural crest cell migration. Finally, we show that knockdown of the presumptive Lh3 substrate Collagen18A1 recapitulates the neural crest cell migration defects observed in lh3 mutants, consistent with the notion that Lh3 exerts its effect on neural crest cell migration by regulating post-translational modifications of Collagen18A1. Together these data suggest that Lh3–Collagen18A1 dependent ECM modifications regulate the transition of trunk neural crest cells from a non-segmental sheet like migration mode to a segmental stream migration mode.  相似文献   

15.
Tu CT  Yang TC  Huang HY  Tsai HJ 《PloS one》2012,7(3):e32899

Background

Although the embryonic expression pattern of ADP ribosylation factor-like 6 interacting protein 1 (Arl6ip1) has been reported, its function in neural crest development is unclear.

Methods/Principal Findings

We found that knockdown of Arl6ip1 caused defective embryonic neural crest derivatives that were particularly severe in craniofacial cartilages. Expressions of the ectodermal patterning factors msxb, dlx3b, and pax3 were normal, but the expressions of the neural crest specifier genes foxd3, snai1b, and sox10 were greatly reduced. These findings suggest that arl6ip1 is essential for specification of neural crest derivatives, but not neural crest induction. Furthermore, we revealed that the streams of crestin- and sox10-expressing neural crest cells, which migrate ventrally from neural tube into trunk, were disrupted in arl6ip1 morphants. This migration defect was not only in the trunk neural crest, but also in the enteric tract where the vagal-derived neural crest cells failed to populate the enteric nervous system. We found that this migration defect was induced by dampened Shh signaling, which may have resulted from defective cilia. These data further suggested that arl6ip1 is required for neural crest migration. Finally, by double-staining of TUNEL and crestin, we confirmed that the loss of neural crest cells could not be attributed to apoptosis.

Conclusions/Significance

Therefore, we concluded that arl6ip1 is required for neural crest migration and sublineage specification.  相似文献   

16.
Hyaluronan (HA) is a major extracellular matrix component whose tissue levels are dynamically regulated during embryonic development. Although the synthesis of HA has been shown to exert a substantial influence on embryonic morphogenesis, the functional importance of the catabolic aspect of HA turnover is poorly understood. Here, we demonstrate that the transmembrane hyaluronidase TMEM2 plays an essential role in neural crest development and the morphogenesis of neural crest derivatives, as evidenced by the presence of severe craniofacial abnormalities in Wnt1-Cre–mediated Tmem2 knockout (Tmem2CKO) mice. Neural crest cells (NCCs) are a migratory population of cells that gives rise to diverse cell lineages, including the craniofacial complex, the peripheral nervous system, and part of the heart. Analysis of Tmem2 expression during NCC formation and migration reveals that Tmem2 is expressed at the site of NCC delamination and in emigrating Sox9-positive NCCs. In Tmem2CKO embryos, the number of NCCs emigrating from the neural tube is greatly reduced. Furthermore, linage tracing reveals that the number of NCCs traversing the ventral migration pathway and the number of post-migratory neural crest derivatives are both significantly reduced in a Tmem2CKO background. In vitro studies using Tmem2-depleted mouse O9-1 neural crest cells demonstrate that Tmem2 expression is essential for the ability of these cells to form focal adhesions on and to migrate into HA-containing substrates. Additionally, we show that Tmem2-deficient NCCs exhibit increased apoptotic cell death in NCC-derived tissues, an observation that is corroborated by in vitro experiments using O9-1 cells. Collectively, our data demonstrate that TMEM2-mediated HA degradation plays an essential role in normal neural crest development. This study reveals the hitherto unrecognized functional importance of HA degradation in embryonic development and highlights the pivotal role of Tmem2 in the developmental process.  相似文献   

17.
Most breast cancer mortality is due to clinical relapse associated with metastasis. CXCL12/CXCR4-dependent cell migration is a critical process in breast cancer progression; however, its underlying mechanism remains to be elucidated. Here, we show that the water/glycerol channel protein aquaporin-3 (AQP3) is required for CXCL12/CXCR4-dependent breast cancer cell migration through a mechanism involving its hydrogen peroxide (H2O2) transport function. Extracellular H2O2, produced by CXCL12-activated membrane NADPH oxidase 2 (Nox2), was transported into breast cancer cells via AQP3. Transient H2O2 accumulation was observed around the membrane during CXCL12-induced migration, which may be facilitated by the association of AQP3 with Nox2. Intracellular H2O2 then oxidized PTEN and protein tyrosine phosphatase 1B (PTP1B) followed by activation of the Akt pathway. This contributed to directional cell migration. The expression level of AQP3 in breast cancer cells was related to their migration ability both in vitro and in vivo through CXCL12/CXCR4- or H2O2-dependent pathways. Coincidentally, spontaneous metastasis of orthotopic xenografts to the lung was reduced upon AQP3 knockdown. These findings underscore the importance of AQP3-transported H2O2 in CXCL12/CXCR4-dependent signaling and migration in breast cancer cells and suggest that AQP3 has potential as a therapeutic target for breast cancer.  相似文献   

18.
19.
Lumican, a small leucine rich proteoglycan, inhibits MMP-14 activity and melanoma cell migration in vitro and in vivo. Snail triggers epithelial-mesenchymal transitions endowing epithelial cells with migratory and invasive properties during tumor progression. The aim of this work was to investigate lumican effects on MMP-14 activity and migration of Snail overexpressing B16F1 (Snail-B16F1) melanoma cells and HT-29 colon adenocarcinoma cells. Lumican inhibits the Snail induced MMP-14 activity in B16F1 but not in HT-29 cells. In Snail-B16F1 cells, lumican inhibits migration, growth, and melanoma primary tumor development. A lumican-based strategy targeting Snail-induced MMP-14 activity might be useful for melanoma treatment.

Highlights

Snail stimulates MMP-14 activity in Snail overexpressing B16F1 melanoma cells but not in HT29 cells; Lumican inhibits the Snail-induced MMP-14 activity in Snail-B16F1 cells; Lumican inhibits the migration and growth of Snail-B16F1 cells in vitro; Lumican inhibits melanoma primary tumor growth of Snail-B16F1 cells in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号