首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell protection against different noxious stimuli like oxidative stress or chemical toxins plays a central role in the treatment of many diseases. The inducible heme oxygenase isoform, heme oxygenase-1 (HO-1), is known to protect cells against a variety of harmful conditions including apoptosis. Because a number of medium strong electrophiles from a series of α-X-substituted 2’,3,4,4’-tetramethoxychalcones (α-X-TMCs, X = H, F, Cl, Br, I, CN, Me, p-NO2-C6H4, Ph, p-OMe-C6H4, NO2, CF3, COOEt, COOH) had proven to activate Nrf2 resulting in HO-1 induction and inhibit NF-κB downstream target genes, their protective effect against staurosporine induced apoptosis and reactive oxygen species (ROS) production was investigated. RAW264.7 macrophages treated with 19 different chalcones (15 α-X-TMCs, chalcone, 2’-hydroxychalcone, calythropsin and 2’-hydroxy-3,4,4’-trimethoxychalcone) prior to staurosporine treatment were analyzed for apoptosis and ROS production, as well as HO-1 protein expression and enzyme activity. Additionally, Nrf2 and NF-κB activity was assessed. We found that amongst all tested chalcones only E-α-(4-methoxyphenyl)-2’,3,4,4''-tetramethoxychalcone (E-α-p-OMe-C6H4-TMC) demonstrated a distinct, statistically significant antiapoptotic effect in a dose dependent manner, showing no toxic effects, while its double bond isomer Z-α-p-OMe-C6H4-TMC displayed no significant activity. Also, E-α-p-OMe-C6H4-TMC induced HO-1 protein expression and increased HO-1 activity, whilst inhibition of HO-1 by SnPP-IX abolished its antiapoptotic effect. The only weakly electrophilic chalcone E-α-p-OMe-C6H4-TMC reduced the staurosporine triggered formation of ROS, while inducing the translocation of Nrf2 into the nucleus. Furthermore, staurosporine induced NF-κB activity was attenuated following E-α-p-OMe-C6H4-TMC treatment. Overall, E-α-p-OMe-C6H4-TMC demonstrated its effective cytoprotective potential via a non-toxic induction of HO-1 in RAW264.7 macrophages. The observed cytoprotective effect may partly be related to both, the activation of the Nrf2- and inhibition of the NF-κB pathway.  相似文献   

2.
Aloe-emodin (AE) is one of the most important active components of Rheum officinale Baill. The present study aimed to investigate that AE could attenuate scopolamine-induced cognitive deficits via inhibiting acetylcholinesterase (AChE) activity and modulating oxidative stress. Kunming (KM) mice were received intraperitoneal injection of scopolamine (2 mg/kg) to induce cognitive impairment. Learning and memory performance were assessed in the Morris water maze (MWM). After behavioral testing, the mice were sacrificed and their hippocampi were removed for biochemical assays (superoxide dismutase (SOD), glutathione peroxidase (GPx), malondialdehyde (MDA), AChE and acetylcholine (ACh)). In vitro, we also performed the AChE activity assay and H2O2-induced PC12 cells toxicity assay. After 2 h exposure to 200 μM H2O2 in PC12 cells, the cytotoxicity were evaluated by cell viability (MTT), nitric oxide (NO)/lactate dehydrogenase (LDH) release and intracellular reactive oxygen species (ROS) production. Our results confirmed that AE showed significant improvement in cognitive deficit in scopolamine-induced amnesia animal model. Besides, it increased SOD, GPx activities and ACh content, while decreased the level of MDA and AChE activity in AE treated mice. In addition, AE was found to inhibit AChE activity (IC50 = 18.37 μg/ml) in a dose-dependent manner. Furthermore, preincubation of PC12 cells with AE could prevent cytotoxicity induced by H2O2 and reduce significantly extracellular release of NO, LDH and intracellular accumulation of ROS. The study indicated that AE could have neuroprotective effects against Alzheimer’s disease (AD) via inhibiting the activity of AChE and modulating oxidative stress.  相似文献   

3.
Oxidative stress is considered to be a major factor contributing to pathogenesis and progression of many diseases. A novel andrographolide-lipoic acid conjugate (AL-1) could protect pancreatic β-cells from reactive oxygen species (ROS)-induced oxidative injury. However, its protective mechanism is still unclear. In this work, we used proteomics to identify AL-1-regulated proteins in β-cells and found that 13 of the 71 proteins regulated by AL-1 were closely associated with antioxidation. These differential proteins were mainly involved in the ERK1/2 and AKT1 signaling pathways. Functional investigation demonstrated that AL-1 exerted its protective effects on H2O2-induced cell death of β-cells by generating NADPH oxidase-dependent ROS to activate ERK1/2 and AKT1 signaling pathways. As a consequence, the expressions of antioxidant proteins including Trx1, Prx1 and Prx5, and anti-apoptotic proteins including PDCD6IP, prohibitin, galectin-1 and HSP were upregulated. AL-1 probably worked as a “vaccinum” to activate the cellular antioxidant system by inducing the generation of low concentration ROS which then reciprocally protected β-cells from oxidative damage caused by high-level ROS from H2O2. To the best of our knowledge, this is the first comprehensive proteomic analysis illustrating a novel molecular mechanism for the protective effects of antioxidants on β-cells from H2O2-induced cell death.  相似文献   

4.
This study confirmed the ameliorating effect of immature persimmon (Diospyros kaki) ethanolic extract (IPEE) on neuronal cytotoxicity in amyloid beta (Aβ)1–42-induced ICR mice. The administration of IPEE ameliorated the cognitive dysfunction in Aβ1–42-induced mice by improving the spatial working memory, the short-term and long-term memory functions. IPEE protected the cerebral cholinergic system, such as the acetylcholine (ACh) level and acetylcholinesterase (AChE) activity, and antioxidant system, such as the superoxide dismutase (SOD), reduced glutathione (GSH) and malondialdehyde (MDA) contents. In addition, mitochondrial dysfunction against Aβ1–42-induced toxicity was reduced by regulating the reactive oxygen species (ROS), mitochondrial membrane potential and ATP contents. In addition, IPEE regulated the expression levels of tau signaling, such as TNF-α, p-JNK, p-Akt, p-GSK3β, p-tau, p-NF-κB, BAX and caspase 3. Finally, gallic acid, ellagic acid and quercetin 3-O-(6″-acetyl-glucoside) were identified as the physiological compounds of IPEE using ultra-performance liquid chromatography ion mobility separation quadrupole time-of-flight/tandem mass spectrometry (UPLC IMS Q-TOF/MS2).  相似文献   

5.
6.

Objectives

We aimed to investigate the protective effect of Lycium barbarum polysaccharides (LBPs) against oxidative stress–induced apoptosis and senescence in human lens epithelial cells.

Methods

To study apoptosis, SRA01/04 cells, a human lens epithelial cell lines, were exposed to 200 µM hydrogen peroxide (H2O2) for 24 h with or without pretreatment with LBPs. Cell viability was measured using a Cell Counting Kit-8 (CCK-8) assay. Cell apoptosis, intracellular reactive oxygen species (ROS), and the loss of mitochondria membrane potential (Δψm) were detected by flow cytometric analyses. Expression levels of Bcl-2 and Bax proteins were measured by western blot analysis. The levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) were quantized using commercial enzymatic kits according to the manufacturer''s instructions. To study senescence, SRA01/04 cells were pre-incubated with LBPs and all cells were then exposed to 100 µM H2O2 for 96 h. Cellular senescence was assessed by morphologic examination and senescence-associated β-galactosidase (SA-β-gal) staining.

Results

LBPs significantly reduced H2O2-induced cell apoptosis, the generation of ROS, the loss of Δψm, and the levels of MDA. LBPs also inhibited H2O2-induced downregulated Bcl-2 and upregulated Bax proteins and increased the levels of SOD and GSH enzyme activity. Moreover, LBPs significantly attenuated H2O2-induced cellular senescence.

Conclusions

These findings suggested that LBPs protect human lens epithelial cells from H2O2-induced apoptosis by modulating the generation of ROS, loss of Δψm, Bcl-2 family, and antioxidant enzyme activity and attenuating cellular senescence.  相似文献   

7.
Index     
Hydrogen peroxide (H2O2) can induce cell damage by generating reactive oxygen species (ROS), resulting in DNA damage and cell death. The aim of this study is to elucidate the protective effects of fisetin (3,7,3′,4′,-tetrahydroxy flavone) against H2O2-induced cell damage. Fisetin reduced the level of superoxide anion, hydroxyl radical in cell free system, and intracellular ROS generated by H2O2. Moreover, fisetin protected against H2O2-induced membrane lipid peroxidation, cellular DNA damage, and protein carbonylation, which are the primary cellular outcomes of H2O2 treatment. Furthermore, fisetin increased the level of reduced glutathione (GSH) and expression of glutamate-cysteine ligase catalytic subunit, which is decreased by H2O2. Conversely, a GSH inhibitor abolished the cytoprotective effect of fisetin against H2O2-induced cells damage. Taken together, our results suggest that fisetin protects against H2O2-induced cell damage by inhibiting ROS generation, thereby maintaining the protective role of the cellular GSH system.  相似文献   

8.
Sensitization of vagal lung C-fibers (VLCFs) induced by mediators contributes to the pathogenesis of airway hypersensitivity, which is characterized by exaggerated sensory and reflex responses to stimulants. Reactive oxygen species (ROS) are mediators produced during airway inflammation. However, the role of ROS in VLCF-mediated airway hypersensitivity has remained elusive. Here, we report that inhalation of aerosolized 0.05% H2O2 for 90 s potentiated apneic responses to intravenous capsaicin (a TRPV1 receptor agonist), α,β-methylene-ATP (a P2X receptor agonist), and phenylbiguanide (a 5-HT3 receptor agonist) in anesthetized rats. The apneic responses to these three stimulants were abolished by vagatomy or by perivagal capsaicin treatment, a procedure that blocks the neural conduction of VLCFs. The potentiating effect of H2O2 on the apneic responses to these VLCF stimulants was prevented by catalase (an enzyme that degrades H2O2) and by dimethylthiourea (a hydroxyl radical scavenger). The potentiating effect of H2O2 on the apneic responses to capsaicin was attenuated by HC-030031 (a TRPA1 receptor antagonist) and by iso-pyridoxalphosphate-6-azophenyl-2′,5′-disulphonate (a P2X receptor antagonist). The potentiating effect of H2O2 on the apneic responses to α,β-methylene-ATP was reduced by capsazepine (a TRPV1 receptor antagonist), and by HC-030031. The potentiating effect of H2O2 on the apneic responses to phenylbiguanide was totally abolished when all three antagonists were combined. Consistently, our electrophysiological studies revealed that airway delivery of aerosolized 0.05% H2O2 for 90 s potentiated the VLCF responses to intravenous capsaicin, α,β-methylene-ATP, and phenylbiguanide. The potentiating effect of H2O2 on the VLCF responses to phenylbiguanide was totally prevented when all antagonists were combined. Inhalation of 0.05% H2O2 indeed increased the level of ROS in the lungs. These results suggest that 1) increased lung ROS sensitizes VLCFs, which leads to exaggerated reflex responses in rats and 2) the TRPV1, TRPA1, and P2X receptors are all involved in the development of this airway hypersensitivity.  相似文献   

9.
Cellular stimuli generate reactive oxygen species (ROS) via the local action of NADPH oxidases (Nox) to modulate cytoskeletal organization and cell migration through unknown mechanisms. Cofilin is a major regulator of cellular actin dynamics whose activity is controlled by phosphorylation/dephosphorylation at Ser3. Here we show that Slingshot-1L (SSH-1L), a selective cofilin regulatory phosphatase, is involved in H2O2-induced cofilin dephosphorylation and activation. SSH-1L is activated by its release from a regulatory complex with 14-3-3ζ protein through the redox-mediated oxidation of 14-3-3ζ by H2O2. The ROS-dependent activation of the SSH-1L-cofilin pathway stimulates the SSH-1L–dependent formation of cofilin-actin rods in cofilin-GFP–expressing HeLa cells. Similarly, the formation of endogenous ROS stimulated by angiotensin II (AngII) also activates the SSH-1L-cofilin pathway via oxidation of 14-3-3ζ to increase AngII-induced membrane ruffling and cell motility. These results suggest that the formation of ROS by NADPH oxidases engages a SSH-1L-cofilin pathway to regulate cytoskeletal organization and cell migration.  相似文献   

10.
The mitochondrial DNA polymerase as a target of oxidative damage   总被引:16,自引:0,他引:16       下载免费PDF全文
The mitochondrial respiratory chain is a source of reactive oxygen species (ROS) that are responsible for oxidative modification of biomolecules, including proteins. Due to its association with mitochondrial DNA, DNA polymerase γ (pol γ) is in an environment to be oxidized by hydrogen peroxide and hydroxyl radicals that may be generated in the presence of iron ions associated with DNA. We tested whether human pol γ was a possible target of ROS with H2O2 and investigated the effect on the polymerase activities and DNA binding efficiency. A 1 h treatment with 250 µM H2O2 significantly inhibited DNA polymerase activity of the p140 subunit and lowered its DNA binding efficiency. Addition of p55 to the p140 catalytic subunit prior to H2O2 treatment offered protection from oxidative inactivation. Oxidatively modified amino acid residues in pol γ  resulting from H2O2 treatment were observed in vitro as well as in vivo, in SV40-transfected human fibroblasts. Pol γ was detected as one of the major oxidized mitochondrial matrix proteins, with a detectable decline in polymerase activity. These results suggest pol γ as a target of oxidative damage, which may result in a reduction in mitochondrial DNA replication and repair capacities.  相似文献   

11.
A new series of 3-O-substituted xanthone derivatives were synthesised and evaluated for their anti-cholinergic activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The results indicated that the xanthone derivatives possessed good AChE inhibitory activity with eleven of them (5, 8, 11, 17, 19, 21-23, 26-28) exhibited significant effects with the IC50 values ranged 0.88 to 1.28 µM. The AChE enzyme kinetic study of 3-(4-phenylbutoxy)-9H-xanthen-9-one (23) and ethyl 2-((9-oxo-9H-xanthen-3-yl)oxy)acetate (28) showed a mixed inhibition mechanism. Molecular docking study showed that 23 binds to the active site of AChE and interacts via extensive π–π stacking with the indole and phenol side chains of Trp86 and Tyr337, besides the hydrogen bonding with the hydration site and π–π interaction with the phenol side chain of Y72. This study revealed that 3-O-alkoxyl substituted xanthone derivatives are potential lead structures, especially 23 and 28 which can be further developed into potent AChE inhibitors.  相似文献   

12.
Aminosalicylates, corticosteroids and immunosuppressants are currently the therapeutic choices in inflammatory bowel diseases (IBD), however, with limited remission and often serious side effects. Meanwhile complementary and alternative medicine (CAM) use is increasing, particularly herbal medicine. Boswellia serrata is a traditional Ayurvedic remedy with anti-inflammatory properties, of interest for its usefulness in IBDs. The mechanism of this pharmacological potential of Boswellia serrata was investigated in colonic epithelial cell monolayers exposed to H2O2 or INF-γ+TNF-α, chosen as in vitro experimental model of intestinal inflammation. The barrier function was evaluated by the transepithelial electrical resistance (TEER) and paracellular permeability assay, and by the tight junction proteins (zonula occludens-1, ZO-1 and occludin) immunofluorescence. The expression of phosphorylated NF-κB and reactive oxygen species (ROS) generation were determined by immunoblot and cytofluorimetric assay, respectively. Boswellia serrata oleo-gum extract (BSE) and its pure derivative acetyl-11-keto-β-boswellic acid (AKBA), were tested at 0.1-10 μg/ml and 0.027μg/ml, respectively. BSE and AKBA safety was demonstrated by no alteration of intestinal cell viability and barrier function and integrity biomarkers. H2O2 or INF-γ+TNF-α treatment of Caco-2 cell monolayers significantly reduced TEER, increased paracellular permeability and caused the disassembly of tight junction proteins occludin and ZO-1. BSE and AKBA pretreatment significantly prevented functional and morphological alterations and also the NF-κB phosphorylation induced by the inflammatory stimuli. At the same concentrations BSE and AKBA counteracted the increase of ROS caused by H2O2 exposure. Data showed the positive correlation of the antioxidant activity with the mechanism involved in the physiologic maintenance of the integrity and function of the intestinal epithelium. This study elucidates the pharmacological mechanisms mediated by BSE, in protecting intestinal epithelial barrier from inflammatory damage and supports its use as safe adjuvant in patients affected by IBD.  相似文献   

13.
Spraying mustard (Sinapis alba L.) seedlings with salicylic acid (SA) solutions between 10 and 500 μm significantly improved their tolerance to a subsequent heat shock at 55°C for 1.5 h. The effects of SA were concentration dependent, with higher concentrations failing to induce thermotolerance. The time course of thermotolerance induced by 100 μm SA was similar to that obtained with seedlings acclimated at 45°C for 1 h. We examined the hypothesis that induced thermotolerance involved H2O2. Heat shock at 55°C caused a significant increase in endogenous H2O2 and reduced catalase activity. A peak in H2O2 content was observed within 5 min of either SA treatment or transfer to the 45°C acclimation temperature. Between 2 and 3 h after SA treatment or heat acclimation, both H2O2 and catalase activity significantly decreased below control levels. The lowered H2O2 content and catalase activity occurred in the period of maximum thermoprotection. It is suggested that thermoprotection obtained either by spraying SA or by heat acclimation may be achieved by a common signal transduction pathway involving an early increase in H2O2.  相似文献   

14.
Glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells requires an increase in intracellular free Ca2+ concentration ([Ca2+]). Glucose uptake into β-cells promotes Ca2+ influx and reactive oxygen species (ROS) generation. In other cell types, Ca2+ and ROS jointly induce Ca2+ release mediated by ryanodine receptor (RyR) channels. Therefore, we explored here if RyR-mediated Ca2+ release contributes to GSIS in β-cell islets isolated from male rats. Stimulatory glucose increased islet insulin secretion, and promoted ROS generation in islets and dissociated β-cells. Conventional PCR assays and immunostaining confirmed that β-cells express RyR2, the cardiac RyR isoform. Extended incubation of β-cell islets with inhibitory ryanodine suppressed GSIS; so did the antioxidant N-acetyl cysteine (NAC), which also decreased insulin secretion induced by glucose plus caffeine. Inhibitory ryanodine or NAC did not affect insulin secretion induced by glucose plus carbachol, which engages inositol 1,4,5-trisphosphate receptors. Incubation of islets with H2O2 in basal glucose increased insulin secretion 2-fold. Inhibitory ryanodine significantly decreased H2O2-stimulated insulin secretion and prevented the 4.5-fold increase of cytoplasmic [Ca2+] produced by incubation of dissociated β-cells with H2O2. Addition of stimulatory glucose or H2O2 (in basal glucose) to β-cells disaggregated from islets increased RyR2 S-glutathionylation to similar levels, measured by a proximity ligation assay; in contrast, NAC significantly reduced the RyR2 S-glutathionylation increase produced by stimulatory glucose. We propose that RyR2-mediated Ca2+ release, induced by the concomitant increases in [Ca2+] and ROS produced by stimulatory glucose, is an essential step in GSIS.  相似文献   

15.

Background

Epigallocatechin-3-gallate (EGCG) has been documented for its beneficial effects protecting oxidative stress to cardiac cells. Previously, we have shown the EGCG-mediated cardiac protection by attenuating reactive oxygen species and cytosolic Ca2+ in cardiac cells during oxidative stress and myocardial ischemia. Here, we aimed to seek a deeper elucidation of the molecular anti-oxidative capabilities of EGCG in an H2O2-induced oxidative stress model of myocardial ischemia injury using H9c2 rat cardiomyoblasts.

Results

Proteomics analysis was used to determine the differential expression of proteins in H9c2 cells cultured in the conditions of control, 400 μM H2O2 exposure for 30 min with and/or without 10 to 20 μM EGCG pre-treatment. In this model, eight proteins associated with energy metabolism, mitochondrial electron transfer, redox regulation, signal transduction, and RNA binding were identified to take part in EGCG-ameliorating H2O2-induced injury in H9c2 cells. H2O2 exposure increased oxidative stress evidenced by increases in reactive oxygen species and cytosolic Ca2+ overload, increases in glycolytic protein, α-enolase, decreases in antioxidant protein, peroxiredoxin-4, as well as decreases in mitochondrial proteins, including aldehyde dehydrogenase-2, ornithine aminotransferase, and succinate dehydrogenase ubiquinone flavoprotein subunit. All of these effects were reversed by EGCG pre-treatment. In addition, EGCG attenuated the H2O2-induced increases of Type II inositol 3, 4-bisphosphate 4-phosphatase and relieved its subsequent inhibition of the downstream signalling for Akt and glycogen synthase kinase-3β (GSK-3β)/cyclin D1 in H9c2 cells. Pre-treatment with EGCG or GSK-3β inhibitor (SB 216763) significantly improved the H2O2-induced suppression on cell viability, phosphorylation of pAkt (S473) and pGSK-3β (S9), and level of cyclin D1 in cells.

Conclusions

Collectively, these findings suggest that EGCG blunts the H2O2-induced oxidative effect on the Akt activity through the modulation of PIP3 synthesis leading to the subsequent inactivation of GSK-3β mediated cardiac cell injury.  相似文献   

16.
To verify the hypothesis that cell redox status regulates the process of microspore embryogenesis (ME), reactive oxygen species (ROS) generation and the activity of enzymatic and non-enzymatic antioxidants were analyzed in eight doubled haploid lines of triticale with significant differences in embryogenic potential. The analyses were performed in anthers excised from freshly cut tillers (control) and from low temperature (LT) pre-treated tillers (3 weeks at 4 °C) in which ME has been initiated. Significant associations between ME effectiveness and the variables studied were found. In control cultures, high superoxide dismutase (SOD) activity appeared crucial for microspore viability. On the other hand, positive though non-linear correlation between ME effectiveness and H2O2 generation, and negative correlation with catalase (CAT) activity suggest that some threshold level of H2O2 is important for successful ME initiation. LT tillers pre-treatment significantly increased H2O2 accumulation, which had a negative effect on ME effectiveness. However, even high level of H2O2 did not endanger cell viability as long as the cells exhibited high activity of ROS-decomposing enzymes (SOD, CAT and POX). The ability to sustain antioxidative enzyme activity under cold stress in the dark was another important requirement for high effectiveness of ME, allowing for the generation of the signal initiating microspore reprogramming and simultaneously protecting the cells from the toxic effects of ROS production. The role of antioxidative enzymes cannot be replaced even by high activity of non-enzymatic antioxidants. In conclusion, genetically controlled but environmentally modified cell tolerance to oxidative stress seems to play an important role in triticale ME.  相似文献   

17.
Background: Recently published research demonstrated direct renoprotective effects of the glucagon-like peptide-1 receptor agonist GLP 1 RA, but the relevant molecular mechanisms are still not clear. The aim of this research was to assess the effects of Liraglutide in a cell culture model of diabetic nephropathy on cell viability, antioxidant (GSH) and transforming growth factor beta 1 (TGF- β1) levels and extracellular matrix (ECM) expression. The metabolic activity in hyperglycemic conditions and the effect of Liraglutide treatment were assessed by measuring Akt, pAkt, GSK3β, pGSK3β, pSTAT3, SOCS3, iNOS and NOX4 protein expression with Western blot. F actin distribution was used to assess the structural changes of the cells upon treatment. Materials and methods: The cells were exposed to high glucose (HG30 mM) followed by 0.5 mM H2O2 and a combination of glucose and H2O2 during 24 h. Subsequently, the cells were treated with different combinations of HG30, H2O2 and Liraglutide. Cell viability was determined by an MTT colorimetric test, and the GSH, TGF-β1 concentration and ECM expression were measured using a spectrophotometric/microplate reader assay and an ELISA kit, respectively. Western blotting was used to detect the protein level of Akt, pAkt, GSK3β, pGSK3β, pSTAT3, SOCS3, iNOS and NOX4. The F-actin cytoskeleton was visualized with Phalloidin stain and subsequently quantified. Results: Cell viability was decreased as well as GSH levels in cells treated with a combination of HG30/H2O2, and HG30 alone (p < 0.001). The addition of Liraglutide improved the viability in cells treated with HG30, but it did not affect the cell viability in the cell treated with the addition of H2O2. GSH increased with the addition of Liraglutide in HG30/H2O2 (p < 0.001) treated cells, with no effect in cells treated only with HG30. TGF-β1 levels (p < 0.001) were significantly increased in HG30 and HG30/H2O2. The addition of Liraglutide significantly decreased the TGF-β1 levels (p < 0.01; p < 0.05) in all treated cells. The synthesis of collagen was significantly increased in HG30/H2O2 (p < 0.001), while the addition of Liraglutide in HG30/H2O2 significantly decreased collagen (p < 0.001). Akt signaling was not significantly affected by treatment. The GSK3b and NOX4 levels were significantly reduced (p < 0.01) after the peroxide and glucose treatment, with the observable restoration upon the addition of Liraglutide suggesting an important role of Liraglutide in oxidative status regulation and mitochondrial activity. The treatment with Liraglutide significantly upregulated STAT3 (p < 0.01) activity, with no change in SOCS3 indicating a selective regulation of the STAT 3 signaling pathway in glucose and the oxidative overloaded environment. A significant reduction in the distribution of F-actin was observed in cells treated with HG30/H2O2 (p < 0.01). The addition of Liraglutide to HG30-treated cells led to a significant decrease of distribution of F-actin (p < 0.001). Conclusion: The protective effect of Liraglutide is mediated through the inhibition of TGF beta, but this effect is dependent on the extent of cellular damage and the type of toxic environment. Based on the WB analysis we have revealed the signaling pathways involved in cytoprotective and cytotoxic effects of the drug itself, and further molecular studies in vitro and vivo are required to elucidate the complexity of the pathophysiological mechanisms of Liraglutide under conditions of hyperglycemia and oxidative stress.  相似文献   

18.
Hydrogen peroxide (H2O2), a major reactive oxygen species (ROS) produced during oxidative stress, is toxic to the cells. Hence, H2O2 has been extensively used to study the effects of antioxidant and cytoprotective role of phytochemicals. In the present investigation H2O2 was used to induce oxidative stress via ROS production within PC12 and L132 cells. Cytoprotective propensity of Bacopa monniera extract (BME) was confirmed by cell viability assays, ROS estimation, lipid peroxidation, mitochondria membrane potential assay, comet assay followed by gene expression studies of antioxidant enzymes in PC12 and L132 cells treated with H2O2 for 24 h with or without BME pre-treatment. Our results elucidate that BME possesses radical scavenging activity by scavenging 2,2-diphenyl-1-picrylhydrazyl, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), superoxide radical, and nitric oxide radicals. The IC50 value of BME against these radicals was found to be 226.19, 15.17, 30.07, and 34.55 µg/ml, respectively). The IC50 of BME against ROS, lipid peroxidation and protein carbonylation was found to be 1296.53, 753.22, and 589.04 µg/ml in brain and 1137.08, 1079.65, and 11101.25 µg/ml in lung tissues, respectively. Further cytoprotective potency of the BME ameliorated the mitochondrial and plasma membrane damage induced by H2O2 as evidenced by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase leakage assays in both PC12 and L132 cells. H2O2 induced cellular, nuclear and mitochondrial membrane damage was restored by BME pre-treatment. H2O2 induced depleted antioxidant status was also replenished by BME pre-treatment. This was confirmed by spectrophotometric analysis, semi-quantitative RT-PCR and western blot studies. These results justify the traditional usage of BME based on its promising antioxidant and cytoprotective property.  相似文献   

19.

Background

Hydrogen sulfide (H2S) has been shown to have cytoprotective effects in models of hypertension, ischemia/reperfusion and Alzheimer''s disease. However, little is known about its effects or mechanisms of action in atherosclerosis. Therefore, in the current study we evaluated the pharmacological effects of H2S on antioxidant defenses and mitochondria protection against hydrogen peroxide (H2O2) induced endothelial cells damage.

Methodology and Principal Findings

H2S, at non-cytotoxic levels, exerts a concentration dependent protective effect in human umbilical vein endothelial cells (HUVECs) exposed to H2O2. Analysis of ATP synthesis, mitochondrial membrane potential (ΔΨm) and cytochrome c release from mitochondria indicated that mitochondrial function was preserved by pretreatment with H2S. In contrast, in H2O2 exposed endothelial cells mitochondria appeared swollen or ruptured. In additional experiments, H2S was also found to preserve the activities and protein expressions levels of the antioxidants enzymes, superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase in H2O2 exposed cells. ROS and lipid peroxidation, as assessed by measuring H2DCFDA, dihydroethidium (DHE), diphenyl-l-pyrenylphosphine (DPPP) and malonaldehyde (MDA) levels, were also inhibited by H2S treatment. Interestingly, in the current model, D, L-propargylglycine (PAG), a selective inhibitor of cystathionine γ-lyase (CSE), abolished the protective effects of H2S donors.

Innovation

This study is the first to show that H2S can inhibit H2O2 mediated mitochondrial dysfunction in human endothelial cells by preserving antioxidant defences.

Significance

H2S may protect against atherosclerosis by preventing H2O2 induced injury to endothelial cells. These effects appear to be mediated via the preservation of mitochondrial function and by reducing the deleterious effects of oxidative stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号