首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antibacterial activity of ZnO nanoparticles has been investigated and presented in this paper. Nanoparticles were prepared via non-hydrolytic solution process using zinc acetate di-hydrate (Zn(CH3COO)2·2H2O) and aniline (C6H5NH2) in 6 h refluxing at ∼65 °C. In the presence of four pathogens such as Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, and Klebsiella pneumoniae, the antibacterial study of zinc oxide nanoparticles were observed. The antibacterial activity of ZnO nanoparticles (ZnO-NPs) were studied by spectroscopic method taking different concentrations (5–45 μg/ml) of ZnO-NPs. Our investigation reveals that the lowest concentration of ZnO-NPs solution inhibiting the growth of microbial strain is found to be 5 μg/ml for K. pneumoniae, whereas for E. coli, S. aureus, and S. typhimurium, it was calculated to be 15 μg/ml. The diameter of each ZnO-NPs lies between “20 and 30 nm” as observed from FESEM and transmission electron microscopy images. The composition of synthesized material was analyzed by the Fourier transform infrared spectroscopy, and it shows the band of ZnO at 441 cm−1. Additionally, on the basis of morphological and chemical observations, the chemical reaction mechanism of ZnO-NPs was also proposed.  相似文献   

2.
Aims: The aim of this study is to assess the antibacterial activity of sodium citrate against Streptococcus pneumoniae and several oral bacteria. Methods and Results: The antibacterial activity was determined by broth microdilution method. The results showed that although Enterocuccus faecium OB7084 and Klebsiella pneumoniae OB7088 had high tolerance to sodium citrate, several oral bacteria including Fusobacterium nucleatum JCM8532T, Streptococcus mutans JCM5705T and Strep. pneumoniae NBRC102642T were susceptible. Furthermore, the bactericidal activity of sodium citrate against Strep. pneumoniae NBRC102642T was not influenced by pH in the range of 5·0–8·0, whereas that of sodium lactate was weakened at neutral or weak alkaline pH. When Strep. pneumoniae NBRC102642T was treated with sodium citrate for 2 h, many burst cells were observed. However, addition of MgCl2 or CaCl2 to an assay medium weakened the antimicrobial activity although ZnCl2 or MnCl2 did not influence. Conclusions: Independent of pH, sodium citrate inhibited the growth of oral bacteria, which suggests that the mechanism is different from that of sodium lactate. Significance and Impact of the Study: The results presented in this study would be available for understanding the antimicrobial property of sodium citrate.  相似文献   

3.
The nucleotide sequence of a plasmid-borne 3.9 kb XhoI-SmaI fragment comprising the 3-region of the nifM gene, the nifL and nifA genes and the 5-region of nifB gene of Enterobacter agglomerans was determined. The genes were identified by their homology to the corresponding nif genes of Klebsiella pneumoniae. A typical 54-dependent promoter and a consensus NtrC-binding motif were identified upstream of nifL. The predicted amino acid sequence of NifL showed close similarities to NifL of K. pneumoniae and Azotobacter vinelandii. However, no histidine residue was found to correspond to histidine-304 of A. vinelandii NifL, which had been proposed to be required for the repressor activity of NifL. The NifA sequence with a putative DNA binding motif (Q(X3) A (X3) G (X5)I) and an ATP binding site in the C-terminal and central domains, respectively, resembles that of other known NifA proteins. The function of the nifL and nifA genes was demonstrated in vivo using a binary plasmid system by their ability to activate a nifH promoter-lacZ fusion at different temperatures and concentrations of NH 4 + . Maximal promoter activity occurred at 25°C, and it appears that the sensitivity of NifA to elevated temperatures is independent of NifL. The expression of nifL inhibited promoter activity in the presence of NifA when the initial NH 4 + concentration in the medium exceeded 4 mM.Communicated by H. Böhme  相似文献   

4.
Enhanced 2,3-butanediol (BD) production was carried out by Klebsiella pneumoniae SDM. The nutritional requirements for BD production by K. pneumoniae SDM were optimized statistically in shake flask fermentations. Corn steep liquor powder and (NH4)2HPO4 were identified as the most significant factors by the two-level Plackett–Burman design. Steepest ascent experiments were applied to approach the optimal region of the two factors and a central composite design was employed to determine their optimal levels. The optimal medium was used to perform fed-batch fermentations with K. pneumoniae SDM. BD production was then studied in a 5-l bioreactor applying different fed-batch strategies, including pulse fed batch, constant feed rate fed batch, constant residual glucose concentration fed batch, and exponential fed batch. The maximum BD concentration of 150 g/l at 38 h with a diol productivity of 4.21 g/l h was obtained by the constant residual glucose concentration feeding strategy. To the best of our knowledge, these results were new records on BD fermentation. Cuiqing Ma and Ailong Wang contributed equally to this work.  相似文献   

5.
This study aimed to investigate the efficacy of soaking as a cheap processing method in improving the nutritional utilization of Cajanus cajan for partial replacement of soybean meal in formulated diets of the African catfish Clarias gariepinus (Burchell, 1822). The nutrient profile of soaked C. cajan revealed a significant reduction (≤50%) in all anti‐nutritional factors. Proximate and amino acids were also affected by this processing method. Six practical diets (35 g/kg crude protein, 19.1 KJ/g diet) containing substitution levels of 0, 10, 20, 30, 40 and 50% Ccajan for soybean protein (included at 578 g/kg) were then formulated and fed to triplicate groups (n = 50 in each group) of Cgariepinus fingerlings (1.41 ± 0.06 g) in a hapa pond system (1 × 1 × 1 m3) for 56 days (mean temperature 25.3 ± 0.6). The results revealed that fish survival was not significantly affected until a 40% substitution of soybean was reached. However, beyond 20% soybean substitution, growth was significantly reduced (≥7%; p ≤ .05). Fish fed the highest substitution of soaked C. cajan meal (50% soybean replacement) had the poorest performance. The cost of the compound diets was substantially reduced with the inclusion of soaked Ccajan. Production costs of 1 kg fish using the diet with an inclusion of up to 20% soaked C. cajan meal replacement were comparable to using the control diet. It was concluded that soaking C. cajan seed for 24 hr improved the nutritional profile of the ingredients to replace 20% of the soybean (included at 57.8%) protein in the diet of Cgariepinus with no negative effect on growth and nutrient utilization.  相似文献   

6.
A fermentation medium for avilamycin production by Streptomyces viridochromogenes Tü57-1 has been optimized. Important components and their concentrations were investigated using fractional factorial design and Box–Behnken Design. The results showed that soybean flour, soluble starch, MgSO4·7H2O and CaCl2·2H2O are important for avilamycin production. A polynomial model related to medium components and avilamycin yield had been established. A high coefficient of determination (R 2 = 0.92) was obtained that indicated good agreement between the experimental and predicted values of avilamycin yield. Student’s T-test of each coefficient showed that all the linear and quadratic terms had significant effect (P > |T| < 0.05) on avilamycin yield. The significance of tested components was related to MgSO4·7H2O (0.37 g/L), CaCl2·2H2O (0.39 g/L), soybean flour (21.97 g/L) and soluble starch (37.22 g/L). The yield of avilamycin reached 88.33 ± 0.94 mg/L (p < 0.05) that was 2.8-fold the initial yield.  相似文献   

7.
The goal of this study was to show that the metabolism of Klebsiella pneumoniae under different aeration strategies could be monitored and predicted by the application of chemometric models and fluorescence spectroscopy. Multi-wavelength fluorescence was applied to the on-line monitoring of process parameters for K. pneumoniae cultivations. Differences observed in spectra collected under aerobiosis and anaerobiosis can be explained by the different metabolic states of the cells. To predict process variables such as biomass, glycerol, and 1,3-propanediol (1,3-PD), chemometric models were developed on the basis of the acquired fluorescence spectra, which were measured continuously. Although glycerol and 1,3-PD are not fluorescent compounds, the results showed that this technique could be successfully applied to the on-line monitoring of variables in order to understand the process and thus improve 1,3-PD production. The root mean square errors of predictions were 0.78 units, 10 g/L, and 2.6 g/L for optical density, glycerol, and 1,3-PD, respectively.  相似文献   

8.
Five bacterial strains screened from a batch of 39 samples could convert glycerol anaerobically to 1,3-propanediol (1,3-PD). One of the strains, XJ-Li, which could synthesize 1,3-PD with a higher concentration, was identified and characterized. Phylogenetic analysis of the strain XJ-Li included the study of morphology, physiological and biochemical characteristics. In addition, 16SrDNA sequences were created. The results indicated that this strain is a member of Klebsiella pneumoniae. The optimal cultivation parameters for pH and temperature were determined as 8.0 and 40 °C, respectively. The optimized nitrogen source and carbon source were 6.0 g/L of (NH4)2SO4 and 20 g/L of glycerol, respectively. After 8 h in batch fermentation, both the 1,3-PD concentration and glycerol consumption reached the maximum, with 12.2 g/L of 1,3-PD and 1.53 g/L h of productivity, and a molar yield of 1,3-PD to glycerol of 0.75. Fed-batch fermentation also indicated a higher molar yield of 0.70, and the concentration of 1,3-PD reached 38.1 g/L after 66.4 g/L of glycerol consumption. The results of batch and fed-batch fermentations demonstrated that K. pneumoniae XJ-Li would be an excellent 1,3-PD producer.  相似文献   

9.
The effects of cultivation medium compositions including soybean meal, peptone, soybean oil and cornstarch for actinomycin X2 production by Streptomyces spp JAU4234 were accessed by using response surface methodology. The 2(4) full factorial designs and the paths of steepest ascent were effective in searching for the major factors of actinomycin X2 production. In this study, cornstarch and soybean oil showed negative effect on actinomycin X2 production based on the first-order regression coefficients derived from MINITAB software. Subsequently, a central composite design for optimization was further investigated. Preliminary studies showed that soybean meal and peptone were believed to be the major factors for actinomycin X2 production. Estimated optimum compositions for the production of actionmycin X2 were as follows (g/l): soybean meal 21.65 and peptone 9.41, and result in a maximum actionmycin X2 production of 617.4 mg/l. This value was closed to the 612 mg/l actionmycin X2 production from actual experimental observations. The yield of actionmycin X2 was increased by 36.9% by culturing the strain Streptomyces spp JAU4234 in the nutritionally optimized fermentation medium.  相似文献   

10.
The present study is aimed at assessing the ability of Klebsiella pneumoniae and Klebsiella variicola to oxidize trivalent arsenic into its pentavalent form. K. pneumoniae could tolerate As(III) (26.6 mM) and K. variicola could tolerate As(III) (24 mM). K. pneumoniae was able to resist Cd2+ and Hg2+ (1.3 mM), Cr6+ and Cu2+ (6.6 mM) and Ni2+ (5.3 mM). K. variicola resisted Cd2+ (2.6 mM), Hg2+ (4 mM), Cr6+ (6.6 mM), Cu2+ (9.3 mM) and Ni2+ (5.3 mM). The optimum temperature and pH for K. pneumoniae and K. variicola were 7 and 30°C, respectively. K. pneumoniae could oxidize 36% As(III), 64% and 87% from the medium after 24, 48 and 72 h, respectively. Likewise K. variicola was also able to oxidize 33% As(III) after 24 h, 59% after 48 h and 83% after 72 h from the medium. The presence of an induced protein having molecular weight around 14 kDa in the presence of arsenic points out a possible role of this protein in arsenite oxidation. The bacterial isolates can be employed to bioremediate As-containing wastes.  相似文献   

11.
The filtration in 1,3-propanediol (1,3-PD) downstream process is influenced by the large amounts of capsular polysaccharides (CPS) produced by Klebsiella pneumoniae CGMCC 1.6366. The morphological and fermentation properties were investigated with the CPS-deficient mutant K. pneumoniae CGMCC 1.6366 CPS. Similar biomass was obtained with CGMCC 1.6366, and the mutant strain in batch cultures indicating the cell growth was slightly inhibited by CPS defection. The viscosity of fermentation broth by mutant strain decreased by 27.45%. The flux with ceramic membrane filter was enhanced from 168.12 to 303.6 l h−1 m−2, exhibiting the great importance for downstream processing of 1,3-PD fermentation. The products spectrum of mutant isolate changed remarkably regarding to the concentration of fermentation products. The synthesis of important 1,3-PD and 2,3-butanediol was enhanced from 9.73 and 4.06 g l−1 to 10.37 and 4.77 g l−1 in batch cultures. The noncapsuled K. pneumoniae provided higher 1,3-PD yield of 0.54 mol mol−1 than that of encapsuled wild parent in batch cultures. The fed-batch fermentation of mutant strain resulted in 1,3-PD concentration, yield, and productivity of 78.13 g l−1, 0.53 mol mol−1, and 1.95 g l−1 h−1, respectively.  相似文献   

12.
Although the de novo biosynthetic mechanism of 3-hydroxypropionic acid (3-HP) in glycerol-fermenting microorganisms is still unclear, the propanediol utilization protein (PduP) of Lactobacillus species has been suggested to be a key enzyme in this regard. To verify this hypothesis, a pduP gene from Lactobacillus reuteri was cloned and expressed, and the encoded protein was characterized. Recombinant L. reuteri PduP exhibited broad substrate specificity including 3-hydroxypropionaldehyde and utilized both NAD+ and NADP+ as a cofactor. Among various aldehyde substrates tested, the specific activity was highest for propionaldehyde, at pH 7.8 and 37 °C. The K m and V max values for propionaldehyde in the presence of NAD+ were 1.18 mM and 0.35 U mg−1, respectively. When L. reuteri pduP was overexpressed in Klebsiella pneumoniae, 3-HP production remarkably increased as compared to the wild-type strain (from 0.18 g L−1 to 0.72 g L−1) under shake-flask culture conditions, and the highest titer (1.38 g L−1 3-HP) was produced by the recombinant strain under batch fermentation conditions in a bioreactor. This is the first report stating the enzymatic properties of PduP protein and the probable role in biosynthesis of 3-HP in glycerol fermentation.  相似文献   

13.
Zusammenfassung Cadaverin wird mit einer höheren Ausbeute als Lysin in Arthrobactin von Arthrobacter pascens und Ferrioxamin E von Streptomyces glaucescens eingebaut. Von einem racemischen Lysingemisch kann nur das L-Isomere eingebaut werden. Die Aktivität der L-Lysindecarboxylase wurde in vivo und in vitro gemessen. Das Enzym ist durch Lysin nicht induzierbar und wird durch 5·10-6 M Fe3+ vollständig reprimiert. Bei Klebsiella pneumoniae, dem Produzenten von Aerobactin, konnte nur eine geringfügige Lysindecarboxylase-Aktivität nachgewiesen werden.
Cadaverin is an intermediate in the biosynthesis of arthrobactin and ferrioxamin E
Cadaverin was more readily incorporated than lysine into arthrobactin from Arthrobacter pascens and into ferrioxamin E from Streptomyces glaucescens. From a racemic mixture only the L-isomer of lysine is incorporated. The L-lysine decarboxylase activity was measured in vivo and in vitro. The enzyme from Arthrobacter pascens is not inducable by lysine and completely repressed by 5·10-6 M Fe3+. In Klebsiella pneumoniae, the producer of aerobactin, only a very low activity of L-lysine decarboxylase was detected.
  相似文献   

14.
Summary The utility of spraying some known N2-fixing microorganisms on rice leaves grown both in N-less sand culture and under field conditions was examined. The effect was compared with that of spraying a phyllosphere N2-fixing isolate of Klebsiella, KUPBR2, and application of nitrogenous fertilizers. All the growth parameters studied including dry weight and N-content were enhanced. Under field conditions number of tillers was increased by 26% withKlebsiella pneumoniae M5al and by 65% with Aphanothece. The dry weight of the plants was enhanced by 61–119%. The yield per 10 m2 was almost doubled with Aphanothece, Beijerinckia 8007,Mycobacterium flavum, K. pneumoniae M5al and KUPBR2. The increases observed withStreptomyces sp. G12 though less spectacular was significant at 1% level with respect to several growth parameters.K. pneumoniae M5al,M. flavum andStreptomyces sp. G12 exhibited nitrogenase activity both in laboratory culture and in association with rice plants.  相似文献   

15.
Thanatin was first discovered from the hemipteran insect Podisus maculiventris and showed a promising antimicrobial activity. Multidrug-resistant (MDR) clinical isolates of Klebsiella pneumoniae have developed resistance to current therapies. As an attempt to resolve this problem, the efficacy of thanatin and its analogues against clinical isolates of K. pneumoniae was studied in vitro and in vivo. S-thanatin showed an improved antimicrobial activity with the tested MIC values was 2–8-fold lower than those of other thanatin analogs. Antimicrobial assay indicated a high activity of S-thanatin against K. pneumoniae in vitro with MIC between 4 and 8 μg/ml. Its in vivo activity was evaluated using a K. pneumoniae-infected mice model. Adult male ICR mice were randomly grouped and given an intraperitoneal (i.p.) administration of 2 × 1010 colony-forming units of K. pneumoniae (CI 120204205). Afterwards, mouse groups were subjected to i.p. administration of saline or S-thanatin (5, 10, or 15 mg/kg). After an inspection of 72 h, the mice were finally sacrificed for analysis of in vivo bacterial growth and plasma endotoxin level. The results showed that S-thanatin administration apparently improved the survival rate and reduced the bacterial CFU from intra-abdominal fluid in mice. The plasma endotoxin level was improved as well. All above implied that S-thanatin, as an alternative, may provide a novel strategy for treating K. pneumoniae infection and other infections due to multidrug-resistant bacteria.  相似文献   

16.
A new actinomycete strain designated MITKK-103 was isolated from the soil of a flowerpot using a humic acid agar medium. The newly isolated strain was able to produce a large amount of actinomycin X2 even under nonoptimized growing conditions and serves as a promising source of this antibiotic. Actinomycin X2 has higher cytotoxicity toward cultured human leukemia (HL-60) cells than does actinomycin D, and it induces cell death via apoptosis. A nearly complete 16S ribosomal DNA (rDNA) sequence from the isolate was determined and found to have high identity (98.5–100%) with Streptomyces galbus, Streptomyces griseofuscus, and Streptomyces padanus, indicating that MITKK-103 belongs to the genus Streptomyces. The isolate clustered with species belonging to the S. padanus clade in a 16S-rDNA-based phylogenetic tree and showed 75% overall homology to S. padanus ATCC 25646 in DNA–DNA relatedness analysis. Although the growth of the isolate was somewhat different from the three species mentioned, the strain MITKK-103 most closely resembles S. padanus on the basis of the morphological and phenotypic characteristics, phylogenetic analysis, and genotypic data. As such, this is the first report of a strain of S. padanus capable of producing actinomycins.  相似文献   

17.
Streptomyces sp. No. B-1625, which was identified as a strain of Streptomyces antibioticus, is a typical producer of actinomycin, but also produces minor acidic antibiotic components (FA), besides actinomycins X2, D and X. The FA-components, which were obtained with a high-producing mutant, 11M-21, showed antibacterial and antitumor activities, and also similar visible and UV absorption spectra to those characteristic of actinomycin. The FA-components were separated into five components, FA1 FA, FA, FA and FA, on TLC. Among them, one component, FA, isolated in a purified state as an orange powder, has a composition of C, 52.97: H, 6.34: N, 10.48%, and is active against B. subtilis at a MIC of 5mcg/ml. The FA component showed pKa′ of 5.4 and 12.0 and λmax at 443, 427 and 233 nm. From these properties, FA is considered to be an acidic actinomycin congener.  相似文献   

18.
Klebsiella pneumoniae converts glycerol to the specialty chemical 1,3-propanediol (1,3-PDO), which is used for the production of polytrimethylene terepthalate (PTT). In this study, an NAD+-dependent gamma-glutamyl-gamma-aminobutyraldehyde dehydrogenase (PuuC) of K. pneumoniae DSM 2026, which oxidizes 3-hydroxypropionaldehyde to a platform chemical 3-hydroxypropionic acid (3-HP), was cloned and overexpressed in K. pneumoniae DSM 2026 for the co-production of 3-HP and 1,3-PDO from glycerol. In addition, the gene dhaT, encoding NADH-dependent 1,3-propanediol oxidoreductase (1,3-PDOR), was deleted from the chromosome for the balanced production of 3-HP and 1,3-PDO. The recombinant K. pneumoniae ∆dhaT, expressing puuC, produced 3.6 g 3-HP and 3.0 g 1,3-PDO per liter with an average yield of 81% on glycerol carbon in shake flask culture under microaerobic conditions. When a fed-batch culture was carried out under microaerobic conditions at pH 7.0 in a 5-l bioreactor, the recombinant K. pneumoniae ∆dhaT (puuC) strain produced 16.0 g 3-HP and 16.8 g 1,3-PDO per liter with a cumulative yield of 51% on glycerol carbon in 24 h. The production of 1,3-PDO in the dhaT-deletion mutant was attributed to the expression of NAD(P)H-dependent hypothetical oxidoreductase. This study demonstrates the feasibility of obtaining two commercially valuable chemicals, 3-HP and 1,3-PDO, at a significant scale.  相似文献   

19.
Silages are important feedstuffs. Homofermentative lactic acid bacterial inoculants are often used to control silage fermentation. However, some research pointed out those homofermentative lactic acid bacteria (LAB) impaired the aerobic stability of wheat, sorghum, and corn silages. Adding heterofermentative LAB can produce more acetic acid, thereby stabilizing silages during aerobic exposure. Alfalfa is difficult to ensile. The present work was to study the effects of L. buchneri (heterofermentative LAB), alone or in combination with L. plantarum (homofermentative LAB) on the fermentation, aerobic stability, bacteria diversity and ruminal degradability of alfalfa silage. After 90 days ensiling, the pH, NH3-N/TN, butyric acid content and molds counts of control were the highest. The inoculated silages had more lactic acid, acetic acid content and more lactic acid bacteria than the control. Inoculating LAB inhibited harmful microorganisms, such as Enterobacterium and Klebsiella pneumoniae. The L. buchneri L. plantarum-inoculated silage had more acetic acid and less yeasts than other three treatments (P < 0.05), and lower NH3-N/TN than control (< 0.05). The CO2 production of L. buchneri L. plantarum-inoculated silage was less than that of L. plantarum-inoculated silage (P < 0.05). Inoculating LAB in alfalfa silages can decrease pH, increase the production of lactic and acetic acids, reduce the number of yeasts and molds, and inhibit Enterobacterium and K. pneumoniae. Inoculating with L. buchneri or L. buchneri L. plantarum can improve aerobic stability of alfalfa silages. A combination of L. buchneri and L. plantarum is preferable because it enhanced alfalfa silage quality and aerobic stability.  相似文献   

20.
3‐Hydroxypropionic acid (3‐HP) is an important platform chemical that can be used to synthesize a range of chemical compounds. A previous study demonstrated that recombinant Escherichia coli stains can produce 3‐HP from glycerol in the presence of vitamin B12 (coenzyme B12), when overexpressed with a coenzyme B12‐dependent glycerol dehydratase (DhaB) and an aldehyde dehydrogenase. The present study examined the production of 3‐HP in recombinant Klebsiella pneumoniae strains, which naturally synthesizes vitamin B12 and does not require supplementation of the expensive vitamin. The NAD+‐dependent gamma‐glutamyl‐gamma‐aminobutyraldehyde dehydrogenase (PuuC) of K. pneumoniae alone or with its DhaB was overexpressed homologously, and two major oxidoreductases, DhaT and YqhD, were disrupted. Without vitamin B12 addition, the recombinant K. pneumoniae ΔdhaTΔyqhD overexpressing PuuC could produce ~3.8 g/L 3‐HP in 12 h of flask culture. However, this was possible only under the appropriate aeration conditions; 1,3‐propanediol (1,3‐PDO) (instead of 3‐HP) was mainly produced when aeration was insufficient, whereas a very small amount of both 3‐HP and 1,3‐PDO were produced when aeration was too high. The production of a small amount of 3‐HP under improper aeration conditions was attributed to either slow NAD+ regeneration (under low aeration) or reduced vitamin B12 synthesis (under high aeration). In a glycerol fed‐batch bioreactor experiment under a constant DO of 5%, the strain, K. pneumoniae ΔdhaTΔyqhD, overexpressing both PuuC and DhaB could produce >28 g/L 3‐HP in 48 h with a yield of >40% on glycerol. Only small amount of 3‐HP was produced when cultivation was carried out at a constant aeration of 1 vvm or constant 10% DO. These results show that K. pneumoniae is potentially useful for the production of 3‐HP in an economical culture medium that does not require vitamin B12. The results also suggest that the aeration conditions should be optimized carefully for the efficient production of 3‐HP while using this strain. Biotechnol. Bioeng. 2013; 110: 511–524. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号