首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Poleward range extensions of coral reef species can reshuffle temperate communities by generating competitive interactions that did not exist previously. However, novel environmental conditions and locally adapted native temperate species may slow tropical invasions by reducing the ability of invaders to access local resources (e.g. food and shelter). We test this hypothesis on wild marine fish in a climate warming hotspot using a field experiment encompassing artificial prey release. We evaluated seven behaviours associated with foraging and aggressive interactions in a common range-extending coral reef fish (Abudefduf vaigiensis) and a co-shoaling temperate fish (Microcanthus strigatus) along a latitudinal temperature gradient (730 km) in SE Australia. We found that the coral reef fish had reduced foraging performance (i.e. slower prey perception, slower prey inspection, decreased prey intake, increased distance to prey) in their novel temperate range than in their subtropical range. Furthermore, higher abundance of temperate fishes was associated with increased retreat behaviour by coral reef fish (i.e. withdrawal from foraging on released prey), independent of latitude. Where their ranges overlapped, temperate fish showed higher foraging and aggression than coral reef fish. Our findings suggest that lower foraging performance of tropical fish at their leading range edge is driven by the combined effect of environmental factors (e.g. lower seawater temperature and/or unfamiliarity with novel conditions in their extended temperate ranges) and biological factors (e.g. increased abundance and larger body sizes of local temperate fishes). Whilst a future increase in ocean warming is expected to alleviate current foraging limitations in coral reef fishes at leading range edges, under current warming native temperate fishes at their trailing edges appear able to slow the range extension of coral reef fishes into temperate ecosystems by limiting their access to resources.

  相似文献   

2.
Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56·0-93·5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1° C and water 0·8° C), moderate warming (air 3° C and water 2·4° C) and major warming (air 5° C and water 4° C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin.  相似文献   

3.
Beck  H. J.  Feary  D. A.  Nakamura  Y.  Booth  D. J. 《Coral reefs (Online)》2017,36(2):639-651

Warming waters and changing ocean currents are increasing the supply of tropical fish larvae to temperature regions where they are exposed to novel habitats, namely temperate macroalgae and barren reefs. Here, we use underwater surveys on the temperate reefs of south-eastern (SE) Australia and western Japan (~33.5°N and S, respectively) to investigate how temperate macroalgal and non-macroalgal habitats influence recruitment success of a range of tropical fishes. We show that temperate macroalgae strongly affected recruitment of many tropical fish species in both regions and across three recruitment seasons in SE Australia. Densities and richness of recruiting tropical fishes, primarily planktivores and herbivores, were over seven times greater in non-macroalgal than macroalgal reef habitat. Species and trophic diversity (K-dominance) were also greater in non-macroalgal habitat. Temperate macroalgal cover was a stronger predictor of tropical fish assemblages than temperate fish assemblages, reef rugosities or wave exposure. Tropical fish richness, diversity and density were greater on barren reef than on reef dominated by turfing algae. One common species, the neon damselfish (Pomacentrus coelestis), chose non-macroalgal habitat over temperate macroalgae for settlement in an aquarium experiment. This study highlights that temperate macroalgae may partly account for spatial variation in recruitment success of many tropical fishes into higher latitudes. Hence, habitat composition of temperate reefs may need to be considered to accurately predict the geographic responses of many tropical fishes to climate change.

  相似文献   

4.
Little is known about how animals from tropical and subtropical climates adjust their energy expenditure to cope with seasonal changes of climate and food availability. To provide such information, we studied the thermal physiology, torpor patterns and energetics of the nocturnal blossom-bat (Syconycteris australis 18 g) from a subtropical habitat in both summer and winter. In both seasons, S. australis frequently entered daily torpor at ambient temperatures between 12 and 25°C when food and water were withheld. Unlike patterns observed in temperate animals, mean minimum metabolic rates during torpor were lower in summer (0.47 ± 0.07 ml O2 g−1 h−1) than in winter (0.75 ± 0.11 ml O2 g−1 h−1). Body temperatures during torpor were regulated at 19.3 ± 1.0°C in summer and at 23.4 ± 2.0°C in winter. Torpor bout duration was significantly longer in summer (7.3 ± 0.6 h) than in winter (5.5 ± 0.3 h), but in both seasons, bout duration was not affected by ambient temperature. Consequently, average daily metabolic rates were also significantly lower in summer than in winter. Body temperatures and metabolic rates in normothermic bats did not change with season. Our findings on seasonal changes of torpor in this bat from the subtropics are opposite to those made for many species from cold climates which generally show deeper and longer torpor in winter and are often entirely homeothermic in summer. More pronounced torpor in subtropical S. australis in summer may be due to low or unpredictable nectar availability, short nights which limit the time available for foraging, and long days without access to food. Thus, the reversed seasonal response of this subtropical bat in comparison to temperate species may be an appropriate response to ecological constraints. Received: 6 May 1997 / Accepted: 19 October 1997  相似文献   

5.
Long‐lived animals with a low annual reproductive output need a long time to recover from population crashes and are, thus, likely to face high extinction risk, if the current global environmental change will increase mortality rates. To aid conservation of those species, knowledge on the variability of mortality rates is essential. Unfortunately, however, individual‐based multiyear data sets that are required for that have only rarely been collected for free‐ranging long‐lived mammals. Here, we used a five‐year data set comprising activity data of 1,445 RFID‐tagged individuals of two long‐lived temperate zone bat species, Natterer's bats (Myotis nattereri) and Daubenton's bats (Myotis daubentonii), at their joint hibernaculum. Both species are listed as being of high conservation interest by the European Habitats Directive. Applying mixed‐effects logistic regression, we explored seasonal survival differences in these two species which differ in foraging strategy and phenology. In both species, survival over the first winter of an individual's life was much lower than survival over subsequent winters. Focussing on adults only, seasonal survival patterns were largely consistent with higher winter and lower summer survival but varied in its level across years in both species. Our analyses, furthermore, highlight the importance of species‐specific time periods for survival. Daubenton's bats showed a much stronger difference in survival between the two seasons than Natterer's bats. In one exceptional winter, the population of Natterer's bats crashed, while the survival of Daubenton's bats declined only moderately. While our results confirm the general seasonal survival pattern typical for hibernating mammals with higher winter than summer survival, they also show that this pattern can be reversed under particular conditions. Overall, our study points toward a high importance of specific time periods for population dynamics and suggests species‐, population‐, and age class‐specific responses to global climate change.  相似文献   

6.
The ecological consequences of winter in freshwater systems are an understudied but rapidly emerging research area. Here, we argue that winter periods of reduced temperature and light (and potentially oxygen and resources) could play an underappreciated role in mediating the coexistence of species. This may be especially true for temperate and subarctic lakes, where seasonal changes in the thermal environment might fundamentally structure species interactions. With climate change already shortening ice‐covered periods on temperate and polar lakes, consideration of how winter conditions shape biotic interactions is urgently needed. Using freshwater fishes in northern temperate lakes as a case study, we demonstrate how physiological trait differences (e.g. thermal preference, light sensitivity) drive differential behavioural responses to winter among competing species. Specifically, some species have a higher capacity for winter activity than others. Existing and new theory is presented to argue that such differential responses to winter can promote species coexistence. Importantly, if winter is a driver of niche differences that weaken competition between, relative to within species, then shrinking winter periods could threaten coexistence by tipping the scales in favour of certain sets of species over others.  相似文献   

7.
Using an exclosure experiment in managed woodland in eastern England, we examined species and guild responses to vegetation growth and its modification by deer herbivory, contrasting winter and the breeding season over 4 years. Species and guild responses, in terms of seasonal presence recorded by multiple point counts, were examined using generalized linear mixed models. Several guilds or migrant species responded positively to deer exclusion and none responded negatively. The shrub‐layer foraging guild was recorded less frequently in older and browsed vegetation, in both winter and spring. Exclusion of deer also increased the occurrence of ground‐foraging species in both seasons, although these species showed no strong response to vegetation age. The canopy‐foraging guild was unaffected by deer exclusion or vegetation age in either season. There was seasonal variation in the responses of some individual resident species, including a significantly lower occurrence of Eurasian Wren Troglodytes troglodytes and European Robin Erithacus rubecula in browsed vegetation in winter, but no effect of browsing on those species in spring. Ordinations of bird assemblage compositions also revealed seasonal differences in response to gradients of vegetation structure generated by canopy‐closure and exclusion of deer. Positive impacts of deer exclusion in winter are probably linked to reduced thermal cover and predator protection afforded by browsed vegetation, whereas species that responded positively in spring were also dependent on a dense understorey for nesting. The effects on birds of vegetation development and its modification by herbivores extend beyond breeding assemblages, with different mechanisms implicated and different species affected in winter.  相似文献   

8.
A harsh storm during winter 1980 reduced food abundance for fishes on a temperate reef off Santa Barbara, California. Following this event, five surfperch species modified their foraging patterns. After the storm removed kelp from the reef, sea urchins overgrazed the algae and benthic turf which harbor surfperch food. When suitable foraging areas contracted, species converged in microhabitat use (fall 1980-spring 1981); however, as overall fish abundance decreased during the following summer and fall, species diverged in microhabitat utilization. Although species' diets did not change substantially, they converged slightly when foraging microhabitat overlap increased. During the 15-month study, seasonal changes in diet corresponded with variation in food abundance. Persistence in resident fish community structure suggested the absence of competitive displacement. Nonresident and subadult fishes, however, abandoned the reef because they may have been unable to use lowered food supplies.  相似文献   

9.
10.
Microorganisms dominate the decomposition of organic matter and their activities are strongly influenced by temperature. As the carbon (C) flux from soil to the atmosphere due to microbial activity is substantial, understanding temperature relationships of microbial processes is critical. It has been shown that microbial temperature relationships in soil correlate with the climate, and microorganisms in field experiments become more warm‐tolerant in response to chronic warming. It is also known that microbial temperature relationships reflect the seasons in aquatic ecosystems, but to date this has not been investigated in soil. Although climate change predictions suggest that temperatures will be mostly affected during winter in temperate ecosystems, no assessments exist of the responses of microbial temperature relationships to winter warming. We investigated the responses of the temperature relationships of bacterial growth, fungal growth, and respiration in a temperate grassland to seasonal change, and to 2 years’ winter warming. The warming treatments increased winter soil temperatures by 5–6°C, corresponding to 3°C warming of the mean annual temperature. Microbial temperature relationships and temperature sensitivities (Q10) could be accurately established, but did not respond to winter warming or to seasonal temperature change, despite significant shifts in the microbial community structure. The lack of response to winter warming that we demonstrate, and the strong response to chronic warming treatments previously shown, together suggest that it is the peak annual soil temperature that influences the microbial temperature relationships, and that temperatures during colder seasons will have little impact. Thus, mean annual temperatures are poor predictors for microbial temperature relationships. Instead, the intensity of summer heat‐spells in temperate systems is likely to shape the microbial temperature relationships that govern the soil‐atmosphere C exchange.  相似文献   

11.
The gecko Oedura marmorata was studied in two different climatic zones: the arid zone of central Australia and in the wet-dry tropics of northern Australia. Doubly labelled water was used to measure field metabolic rate (FMR) and water flux rates of animals in the field during the temperate seasons of spring, summer and winter, and during the tropical wet and dry seasons. FMRs were highest in the tropical wet season and lowest in the temperate winter. The geckos in central Australia expended less energy than predicted for a similarly sized iguanid lizard, but geckos from the tropics expended about the same amount of energy as predicted for an iguanid. Water flux rates of geckos from the arid zone were extremely low in all seasons compared to other reptiles, and although water flux was higher in tropical geckos, the rates were low compared to other tropical reptiles. The standard metabolic rates (SMRs) of geckos were similar between the two regions and among the seasons. Geckos selected higher body temperatures (T bs) in a laboratory thermal gradient in the summer (33.5°C) and wet (33.8°C) seasons compared to the winter (31.7°C) and dry (31.4°C) seasons. The mean T bs selected in the laboratory thermal gradient by geckos from the two regions were not different at a given time of year. The energy expended during each season was partitioned into components of resting metabolism, T b and activity. Most of the energy expended by geckos from central Australia could be attributed to the effects of temperature on resting lizards in all three seasons, but the energy expended by tropical geckos includes a substantial component due to activity during both seasons. This study revealed variability in patterns of ecological energetics between populations of closely related geckos, differences which cannot be entirely attributed to seasonal or temperature effects. Received: 14 November 1997 / Accepted: 4 May 1998  相似文献   

12.
  1. Traits that are significant to the thermal ecology of temperate or montane species are expected to prominently co-vary with the thermal environment experienced by an organism. The Himalayan Pieris canidia butterfly exhibits considerable variation in wing melanisation. We investigated: (i) whether variation in wing melanisation and (ii) activity period of this montane butterfly was influenced by the seasonally and elevationally changing thermal landscape.
  2. We discovered that wing melanisation varied across elevation, seasons, sex, and wing surfaces, with the variation strongly structured in space and time: colder seasons and higher elevations produced more melanic individuals. Notably, melanisation did not vary uniformly across all wing surfaces: (i) melanisation of the ventral hindwing co-varied much more prominently with elevation, but (ii) melanisation on all other surfaces varied with seasonal changes in the thermal environment.
  3. Observed wing surface-specific patterns indicated thermoregulatory function for this variation in melanisation. Such wing surface-specific responses to seasonal and elevational variation in temperature have rarely been reported in montane insects.
  4. Moreover, daily and seasonal thermal cycles were found to strongly influence activity periods of this species, suggesting the potential limits to wing melanisation plasticity.
  5. Overall, these results showed that the seasonal and elevational gradients in temperature influence the thermal phenotype as well as activity periods of this Himalayan butterfly. It will be critical to study the phenotypic evolution of such montane insects in response to the ongoing climate change, which is already showing significant signs in this iconic mountain range.
  相似文献   

13.

In temperate headwater streams, intra-annual variation in energy input is critical in influencing aquatic food webs. We used stable isotope analysis to explore how seasonal variation in energy sources likely influenced invertebrate composition together with isotopic niche patterns of a cyprinid minnow, the chubbyhead barb Enteromius anoplus within a southern temperate headwater stream. Basal food sources had lower carbon and nitrogen stable isotope values in winter and spring compared to summer and autumn. Seasonal variations in the aquatic invertebrate communities were depicted by differences in the composition of gatherer and predator groups together with occurrence of scrapers in summer. Temporal changes in the isotopic values of these invertebrate groups appeared to coincide with that of basal food resources. The chubbyhead barb exhibited seasonal variation that was characterised by larger isotopic niches in winter compared to summer. Tissue-specific comparisons revealed larger isotope niche size based on fin tissue than muscle tissue during the cold period but comparable isotope niche sizes in the warm period. Contrasting inter-tissue isotopic niche patterns, the cold period suggested the likelihood of tissue physiological differences. Comparable isotopic niche patterns in summer and autumn suggested the possibility of synchronised physiological processes for both tissues. This suggested the potential for fin tissue as non-lethal alternative when inferring food web dynamics for this species.

  相似文献   

14.
Seven ephemeral pools on the coastal plain of southern Brazil were found to be inhabited by three annual and 22 non‐annual fish species. Two common annual species (Austrolebias minuano and Cynopoecilus fulgens) exhibited clear seasonal dynamics, with the appearance of young fishes in the austral autumn (May to June) and a decline in abundance over the seasonal cycle. The third annual species, Austrolebias wolterstorffii, was rare. No seasonal dynamics were observed in non‐annual fishes. The relative abundance of non‐annual fishes compared with annual fishes increased over the seasonal cycle, but they coexisted widely. The size structure of annual fishes suggested the presence of a single age cohort in most pools though a second age cohort was registered in one pool in August, coinciding with a large flooding. Strong sexual dimorphism in body size was found in C. fulgens throughout the seasonal cycle, while no sexual dimorphism in body size was found in A. minuano. Female‐biased sex ratios were recorded in both common annual fish species in the last three sampling dates (in spring), but not during the first two sampling dates (in winter). The natural lifespan of annual fishes was <8 months. Annual fishes disappeared before habitat desiccation in half of the pools, while non‐annual fishes were still present.  相似文献   

15.
Rauno V. Alatalo 《Oecologia》1980,45(2):190-196
Summary The five most abundant species were included in a year-round study with respect to six foraging niche dimensions. Approximately full multidimensional utilization functions were used for niche metrics. During summer foraging overlaps were invariably high, but in other seasons periodically lower. Foraging site breadth was lower in winter, when fewer sites are profitable for foraging than in summer. Feeding posture versatility, by contrast, was highest in winter. Seasonal foraging shifts were very prominent, as great in fact as between-species differences. Often seasonal trends were parallel in different species. Niche axes of macrohabitat-type (e.g. tree) were more open for foraging variation and axes of microhabitat-type (tree part) more rigid. Among the resident species seasonal variation in foraging was greatest in Regulus regulus and Parus cristatus, whereas the foraging behaviour was more stable for P. montanus (an abundant species with broad niche), perhaps owing to greater intraspecific competition. In these northern forests foliage-gleaners must be versatile generalists to cope with the unpredictable resources, and thus they overlap broadly in their general resource niches which are determined by their genetically fixed cost and benefit relations to each resource type. Anyhow, presumably during periodical food shortage, the actual resource uses adjusted by resource availability and competition may overlap narrowly.  相似文献   

16.
Generalist predators are capable of selective foraging, but are predicted to feed in close proportion to prey availability to maximize energetic intake especially when overall prey availability is low. By extension, they are also expected to feed in a more frequency‐dependent manner during winter compared to the more favourable foraging conditions during spring, summer and fall seasons. For 18 months, we observed the foraging patterns of forest‐dwelling wolf spiders from the genus Schizocosa (Araneae: Lycosidae) using PCR‐based gut‐content analysis and simultaneously monitored the activity densities of two common prey: springtails (Collembola) and flies (Diptera). Rates of prey detection within spider guts relative to rates of prey collected in traps were estimated using Roualdes’ cst model and compared using various linear contrasts to make inferences pertaining to seasonal prey selectivity. Results indicated spiders foraged selectively over the course of the study, contrary to predictions derived from optimal foraging theory. Even during winter, with overall low prey densities, the relative rates of predation compared to available prey differed significantly over time and by prey group. Moreover, these spiders appeared to diversify their diets; the least abundant prey group was consistently overrepresented in the diet within a given season. We suggest that foraging in generalist predators is not necessarily restricted to frequency dependency during winter. In fact, foraging motives other than energy maximization, such as a more nutrient‐focused strategy, may also be optimal for generalist predators during prey‐scarce winters.  相似文献   

17.
Non-migratory resident species should be capable of modifying their foraging behavior to accommodate changes in prey abundance and availability associated with a changing environment. Populations that are better adapted to change will have higher foraging success and greater potential for survival in the face of climate change. We studied two species of resident central place foragers from temperate and equatorial regions with differing population trends and prey availability associated to season, the California sea lion (Zalophus californianus) (CSL) whose population is increasing and the endangered Galapagos sea lion (Zalophus wollebaeki) (GSL) whose population is declining. To determine their response to environmental change, we studied and compared their diving behavior using time-depth recorders and satellite location tags and their diet by measuring C and N isotope ratios during a warm and a cold season. Based on latitudinal differences in oceanographic productivity, we hypothesized that the seasonal variation in foraging behavior would differ for these two species. CSL exhibited greater seasonal variability in their foraging behavior as seen in changes to their diving behavior, foraging areas and diet between seasons. Conversely, GSL did not change their diving behavior between seasons, presenting three foraging strategies (shallow, deep and bottom divers) during both. GSL exhibited greater dive and foraging effort than CSL. We suggest that during the warm and less productive season a greater range of foraging behaviors in CSL was associated with greater competition for prey, which relaxed during the cold season when resource availability was greater. GSL foraging specialization suggests that resources are limited throughout the year due to lower primary production and lower seasonal variation in productivity compared to CSL. These latitudinal differences influence their foraging success, pup survival and population growth reflected in contrasting population trends in which CSL are more successful and potentially more resilient to climate change.  相似文献   

18.
Synopsis The foraging ecology of two temperate marine gobies (Pisces: Gobiidae) was studied in rocky subtidal habitats off Santa Catalina Island, California. The bluebanded goby, Lythrypnus dalli, foraged from exposed ledges and fed on planktonic and benthic prey, although planktonic prey were more important in diets by number and weight. The more cryptic zebra goby, Lythrypnus zebra, remained hidden under rocks and in crevices feeding on benthic prey almost exclusively. The active selection of particular prey taxa from the two prey sources (water column and substratum), mediated by species-specific differences in foraging behavior, resulted in interspecific differences in type, number, size and weight of prey consumed. Interspecific differences in foraging ecology reflect the selection of prey most readily available to these fishes that occupy specific and fixed microhabitats within rocky reefs.  相似文献   

19.
Summary The effect of giant kelp, Macrocystis pyrifera, on the population dynamics of two temperate reef fishes, striped surfperch (Embiotoca lateralis) and black surfperch (E. jacksoni), was examined. Based on an understanding of how particular reef resources influence abundances of the surfperch and of the effect of giant kelp on those resources, we anticipated that Macrocystis would adversely affect populations of striped surfperch but would enhance those of black surfperch. The natural establishment of giant kelp at sites at Santa Cruz Island, California, resulted in the predicted dynamical responses of surfperch. Abundances of striped surfperch declined rapidly when and where dense forests of giant kelp appeared, but showed little change where Macrocystis was continuously absent over the 8 y period of study. Abundances of adult black surperch, which increased following the appearance of giant kelp, were lagged by >1 y because the dynamical response involved enhanced local recruitment. No change in abundance of black surfperch populations was evident at areas without giant kelp.The mechanism by which giant kelp altered the dynamics of the surfperch involved modification of the assemblage of understory algae used by surfperch as foraging microhabitat. Foliose algae (including Gelidium robustum) were much reduced and turf was greatly enhanced following the appearance of Macrocystis; these two benthic substrata are the favored foraging microhabitat for striped surfperch and black surfperch respectively. Populations of both surfperch species tracked temporal changes in the local availability of their favored foraging microhabitat. Thus, while neither species used Macrocystis directly, temporal and spatial variation in giant kelp indirectly influenced the dynamics of these fishes by altering their foraging base. These results indicate that the dynamics of striped surfperch and black surfperch were governed to a large degree by density-dependent consumer-resource interactions. The present work underscores the predictive value that arises from a knowledge of the mechanisms by which processes operate.  相似文献   

20.

Samango monkeys (Cercopithecus albogularis schwarzi) in the Soutpansberg Mountains, South Africa, experience a highly seasonal climate, with relatively cold, dry winters. They must show behavioural flexibility to survive these difficult conditions near the southern limit of the species’ distribution and maintain the minimum nutritional intake they require. Through environmental monitoring and behavioural observations of a habituated group of samango monkeys, we explored how they adapted to the highly seasonal climate they experienced in the mountains. Our results indicated that the monkeys varied their foraging behaviours to account for changes in climate and daylight availability. The samangos increased their food intake in colder months, specifically leaves, likely due to an increased need for calories during winter to maintain body temperature. Samango monkeys have anatomical and physiological adaptations for digesting leaves, and these are likely important in explaining their ability to adapt to the broad range of climatic conditions they experience.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号