首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in mitochondrial DNA (mtDNA) cause maternally inherited diseases, while somatic mutations are linked to common diseases of aging. Although mtDNA mutations impact health, the processes that give rise to them are under considerable debate. To investigate the mechanism by which de novo mutations arise, we analyzed the distribution of naturally occurring somatic mutations across the mouse and human mtDNA obtained by Duplex Sequencing. We observe distinct mutational gradients in G→A and T→C transitions delimited by the light-strand origin and the mitochondrial Control Region (mCR). The gradient increases unequally across the mtDNA with age and is lost in the absence of DNA polymerase γ proofreading activity. In addition, high-resolution analysis of the mCR shows that important regulatory elements exhibit considerable variability in mutation frequency, consistent with them being mutational ‘hot-spots’ or ‘cold-spots’. Collectively, these patterns support genome replication via a deamination prone asymmetric strand-displacement mechanism as the fundamental driver of mutagenesis in mammalian DNA. Moreover, the distribution of mtDNA single nucleotide polymorphisms in humans and the distribution of bases in the mtDNA across vertebrate species mirror this gradient, indicating that replication-linked mutations are likely the primary source of inherited polymorphisms that, over evolutionary timescales, influences genome composition during speciation.  相似文献   

2.
PTEN is one of the most frequently altered tumor suppressor genes in malignant tumors. The dominant-negative effect of PTEN alteration suggests that the aberrant function of PTEN mutation might be more disastrous than deletion, the most frequent genomic event in glioblastoma (GBM). This study aimed to understand the functional properties of various PTEN missense mutations and to investigate their clinical relevance. The genomic landscape of PTEN alteration was analyzed using the Samsung Medical Center GBM cohort and validated via The Cancer Genome Atlas dataset. Several hotspot mutations were identified, and their subcellular distributions and phenotypes were evaluated. We established a library of cancer cell lines that overexpress these mutant proteins using the U87MG and patient-derived cell models lacking functional PTEN. PTEN mutations were categorized into two major subsets: missense mutations in the phosphatase domain and truncal mutations in the C2 domain. We determined the subcellular compartmentalization of four mutant proteins (H93Y, C124S, R130Q, and R173C) from the former group and found that they had distinct localizations; those associated with invasive phenotypes (‘edge mutations’) localized to the cell periphery, while the R173C mutant localized to the nucleus. Invasive phenotypes derived from edge substitutions were unaffected by an anti-PI3K/Akt agent but were disrupted by microtubule inhibitors. PTEN mutations exhibit distinct functional properties regarding their subcellular localization. Further, some missense mutations (‘edge mutations’) in the phosphatase domain caused enhanced invasiveness associated with dysfunctional cytoskeletal assembly, thus suggesting it to be a potent therapeutic target.Subject terms: Cancer, Oncogenes  相似文献   

3.
Lung cancer and chronic obstructive pulmonary disease (COPD) are two major lung diseases. Epidermal growth factor receptor (EGFR) mutations, v‐Ki‐ras2 Kirsten rat sarcoma (KRAS) mutations and anaplastic lymphoma kinase (ALK) gene rearrangements represent driver mutations that are frequently assessed on initial evaluation of non-small-cell lung cancer (NSCLC). The present study focused on the expression of driver mutations in NSCLC patients presenting with COPD and further evaluated the association between NSCLC and COPD. Data from 501 consecutive patients with histologically proven recurrent or metastatic NSCLC were analyzed retrospectively. The patients underwent spirometry and genotyping of EGFR, ALK, and KRAS in tissue samples. Patient characteristics and expression of driver mutations were compared between the COPD and non-COPD groups.Among 350 patients with spirometric results, 106 (30.3%) were diagnosed with COPD, 108 (30.9%) had EGFR mutations, 31 (8.9%) had KRAS mutations, and 34 (9.7%) showed ALK rearrangements. COPD was independently associated with lower prevalences of EGFR mutations (95% confidence interval [CI], 0.254–0.931, p = 0.029) and ALK rearrangements (95% CI, 0.065–0.600, p = 0.004). The proportions of EGFR mutations and ALK rearrangements decreased as the severity of airflow obstruction increased (p = 0.001). In never smokers, the prevalence of EGFR mutations was significantly lower in the COPD group than in the non-COPD group (12.7% vs. 49.0%, p = 0.002). COPD-related NSCLC patients exhibited low prevalences of EGFR mutations and ALK rearrangements compared with the non-COPD group. Further studies are required regarding the molecular mechanisms underlying lung cancer associated with COPD.  相似文献   

4.
The change of a normal, healthy cell to a transformed cell is the first step in the evolutionary arc of a cancer. While the role of oncogenes in this ‘passage’ is well known, the role of ion transporters in this critical step is less known and is fundamental to our understanding the early physiological processes of carcinogenesis. Cancer cells and tissues have an aberrant regulation of hydrogen ion dynamics leading to a reversal of the normal tissue intracellular to extracellular pH gradient (ΔpHi to ΔpHe). When this perturbation in pH dynamics occurs during carcinogenesis is less clear. Very early studies using the introduction of different oncogene proteins into cells observed a concordance between neoplastic transformation and a cytoplasmic alkalinization occurring concomitantly with a shift towards glycolysis in the presence of oxygen, i.e. ‘Warburg metabolism’. These processes may instigate a vicious cycle that drives later progression towards fully developed cancer where the reversed pH gradient becomes ever more pronounced. This review presents our understanding of the role of pH and the NHE1 in driving transformation, in determining the first appearance of the cancer ‘hallmark’ characteristics and how the use of pharmacological approaches targeting pH/NHE1 may open up new avenues for efficient treatments even during the first steps of cancer development.  相似文献   

5.
To develop public-health policies that extend the lifespan of affordable anti-malarial drugs as effective treatment options, it is necessary to understand the evolutionary processes leading to the origin and spread of mutations conferring drug resistance in malarial parasites. We built a population-genetic model for the emergence of resistance under combination drug therapy. Reproductive cycles of parasites are specified by their absolute fitness determined by clinical parameters, thus coupling the evolutionary-genetic with population-dynamic processes. Initial mutations confer only partial drug-resistance. Therefore, mutant parasites rarely survive combination therapy and within-host competition is very weak among parasites. The model focuses on the early phase of such unsuccessful recurrent mutations. This ends in the rare event of mutants enriching in an infected individual from which the successful spread of resistance over the entire population is initiated. By computer simulations, the waiting time until the establishment of resistant parasites is analysed. Resistance spreads quickly following the first appearance of a host infected predominantly by mutant parasites. This occurs either through a rare transmission of a resistant parasite to an uninfected host or through a rare failure of drugs in removing “transient” mutant alleles. The emergence of resistance is delayed with lower mutation rate, earlier treatment, higher metabolic cost of resistance, longer duration of high drug dose, and higher drug efficacy causing a stronger reduction in the sensitive and resistant parasites’ fitnesses. Overall, contrary to other studies’ proposition, the current model based on absolute fitness suggests that aggressive drug treatment delays the emergence of drug resistance.  相似文献   

6.
Cell competition where ‘loser’ cells are eliminated by neighbors with higher fitness is a widespread phenomenon in development. However, a growing body of evidence argues cells with somatic mutations compete with their wild type counterparts in the earliest stages of cancer development. Recent studies have begun to shed light on the molecular and cellular mechanisms that alter the competitiveness of cells carrying somatic mutations in adult tissues. Cells with a ‘winner’ phenotype create clones which may expand into extensive fields of mutant cells within normal appearing epithelium, favoring the accumulation of further genetic alterations and the evolution of cancer. Here we focus on how mutations which disrupt the Notch signaling pathway confer a ‘super competitor’ status on cells in squamous epithelia and consider the broader implications for cancer evolution.  相似文献   

7.
Diseases with readily available therapies may eventually prevail against the specific treatment by the acquisition of resistance. The constitutively active Abl1 tyrosine kinase known to cause chronic myeloid leukemia is an example, where patients may experience relapse after small inhibitor drug treatment. Mutations in the Abl1 tyrosine kinase domain (Abl1‐KD) are a critical source of resistance and their emergence depends on the conformational states that have been observed experimentally: the inactive state, the active state, and the intermediate inactive state that resembles Src kinase. Understanding how resistant positions and amino acid identities are determined by selection pressure during drug treatment is necessary to improve future drug development or treatment decisions. We carry out in silico site‐saturation mutagenesis over the Abl1‐KD structure in a conformational context to evaluate the in situ and conformational stability energy upon mutation. Out of the 11 studied resistant positions, we determined that 7 of the resistant mutations favored the active conformation of Abl1‐KD with respect to the inactive state. When, instead, the sequence optimization was modeled simultaneously at resistant positions, we recovered five known resistant mutations in the active conformation. These results suggested that the Abl1 resistance mechanism targeted substitutions that favored the active conformation. Further sequence variability, explored by ancestral reconstruction in Abl1‐KD, showed that neutral genetic drift, with respect to amino acid variability, was specifically diminished in the resistant positions. Since resistant mutations are susceptible to chance with a certain probability of fixation, combining methodologies outlined here may narrow and limit the available sequence space for resistance to emerge, resulting in more robust therapeutic treatments over time.  相似文献   

8.
9.
Recent clinical data indicates that the emergence of mutant drug-resistant kinase alleles may be particularly relevant for targeted kinase inhibitors. In order to explore how different classes of targeted therapies impact upon resistance mutations, we performed EGFR (epidermal-growth-factor receptor) resistance mutation screens with erlotinib, lapatinib and CI-1033. Distinct mutation spectra were generated with each inhibitor and were reflective of their respective mechanisms of action. Lapatinib yielded the widest variety of mutations, whereas mutational variability was lower in the erlotinib and CI-1033 screens. Lapatinib was uniquely sensitive to mutations of residues located deep within the selectivity pocket, whereas mutation of either Gly(796) or Cys(797) resulted in a dramatic loss of CI-1033 potency. The clinically observed T790M mutation was common to all inhibitors, but occurred with varying frequencies. Importantly, the presence of C797S with T790M in the same EGFR allele conferred complete resistance to erlotinib, lapatinib and CI-1033. The combination of erlotinib and CI-1033 effectively reduced the number of drug-resistant clones, suggesting a possible clinical strategy to overcome drug resistance. Interestingly, our results also indicate that co-expression of ErbB2 (v-erb-b2 erythroblastic leukaemia viral oncogene homologue 2) has an impact upon the EGFR resistance mutations obtained, suggesting that ErbB2 may play an active role in the acquisition of drug-resistant mutations.  相似文献   

10.
11.
Anaplastic lymphoma kinase (ALK) plays a crucial role in multiple malignant cancers. It is known as a well-established target for the treatment of ALK-dependent cancers. Even though substantial efforts have been made to develop ALK inhibitors, only crizotinib, ceritinib, and alectinib had been approved by the U.S. Food and Drug Administration for patients with ALK-positive non-small cell lung cancer (NSCLC). The secondary mutations with drug-resistance bring up difficulties to develop effective drugs for ALK-positive cancers. To give a comprehensive understanding of molecular mechanism underlying inhibitor response to ALK tyrosine kinase mutations, we established an accurate assessment for the extensive profile of drug against ALK mutations by means of computational approaches. The molecular mechanics-generalized Born surface area (MM-GBSA) method based on molecular dynamics (MD) simulation was carried out to calculate relative binding free energies for receptor-drug systems. In addition, the structure-based virtual screening was utilized to screen effective inhibitors targeting wild-type ALK and the gatekeeper mutation L1196M from 3180 approved drugs. Finally, the mechanism of drug resistance was discussed, several novel potential wild-type and L1196M mutant ALK inhibitors were successfully identified.  相似文献   

12.
Cancer is a genetic disease that develops through a series of somatic mutations, a subset of which drive cancer progression. Although cancer genome sequencing studies are beginning to reveal the mutational patterns of genes in various cancers, identifying the small subset of “causative” mutations from the large subset of “non-causative” mutations, which accumulate as a consequence of the disease, is a challenge. In this article, we present an effective machine learning approach for identifying cancer-associated mutations in human protein kinases, a class of signaling proteins known to be frequently mutated in human cancers. We evaluate the performance of 11 well known supervised learners and show that a multiple-classifier approach, which combines the performances of individual learners, significantly improves the classification of known cancer-associated mutations. We introduce several novel features related specifically to structural and functional characteristics of protein kinases and find that the level of conservation of the mutated residue at specific evolutionary depths is an important predictor of oncogenic effect. We consolidate the novel features and the multiple-classifier approach to prioritize and experimentally test a set of rare unconfirmed mutations in the epidermal growth factor receptor tyrosine kinase (EGFR). Our studies identify T725M and L861R as rare cancer-associated mutations inasmuch as these mutations increase EGFR activity in the absence of the activating EGF ligand in cell-based assays.  相似文献   

13.
The role of preexisting minority drug-resistance mutations in treatment failure has not been fully understood in chronic hepatitis B patients. To understand mechanisms of drug resistance, we analyzed drug-resistance mutations in 46 treatment-failure patients and in 29 treatment-naïve patients and determined linkage patterns of the drug-resistance mutations in individual viral genomes using a highly sensitive parallel allele-specific sequencing (PASS) method. Lamivudine resistance (LAMr) mutations were predominant in treatment-failure patients, irrespective of the inclusion of LAM in the regimen. The primary LAMr mutations M204V and M204I were detected in 100% and 30% of the treatment-failure patients, respectively. Two secondary LAMr mutations (L180M and V173L) were also found in most treatment-failure patients (87% and 78%, respectively). The linkages containing these three mutations dominated the resistant viruses. Importantly, minority LAMr mutations present in <2% of the viral population were detected in 83% of the treatment-naïve patients. Moreover, the low-frequency same linked LAMr mutations (<0.15%) were detected in 24% of the treatment-naïve patients. Our results demonstrate that the selection of preexisting minority linked LAMr mutations may be an important mechanism for the rapid development of LAM resistance, caution the continuous use of LAM to treat drug-experienced and -naïve hepatitis B patients, and underline the importance of the detection of minority single and linked drug-resistance mutations before initiating antiviral therapy.  相似文献   

14.
We present a novel analysis of compositional order (CO) based on the occurrence of Frequent amino-acid Triplets (FTs) that appear much more than random in protein sequences. The method captures all types of proteomic compositional order including single amino-acid runs, tandem repeats, periodic structure of motifs and otherwise low complexity amino-acid regions. We introduce new order measures, distinguishing between ‘regularity’, ‘periodicity’ and ‘vocabulary’, to quantify these phenomena and to facilitate the identification of evolutionary effects. Detailed analysis of representative species across the tree-of-life demonstrates that CO proteins exhibit numerous functional enrichments, including a wide repertoire of particular patterns of dependencies on regularity and periodicity. Comparison between human and mouse proteomes further reveals the interplay of CO with evolutionary trends, such as faster substitution rate in mouse leading to decrease of periodicity, while innovation along the human lineage leads to larger regularity. Large-scale analysis of 94 proteomes leads to systematic ordering of all major taxonomic groups according to FT-vocabulary size. This is measured by the count of Different Frequent Triplets (DFT) in proteomes. The latter provides a clear hierarchical delineation of vertebrates, invertebrates, plants, fungi and prokaryotes, with thermophiles showing the lowest level of FT-vocabulary. Among eukaryotes, this ordering correlates with phylogenetic proximity. Interestingly, in all kingdoms CO accumulation in the proteome has universal characteristics. We suggest that CO is a genomic-information correlate of both macroevolution and various protein functions. The results indicate a mechanism of genomic ‘innovation’ at the peptide level, involved in protein elongation, shaped in a universal manner by mutational and selective forces.  相似文献   

15.
Direct sequencing remains the most widely used method for the detection of epidermal growth factor receptor (EGFR) mutations in lung cancer; however, its relatively low sensitivity limits its clinical use. The objective of this study was to investigate the sensitivity of detecting an epidermal growth factor receptor (EGFR) mutation from peptide nucleic acid-locked nucleic acid polymerase chain reaction (PNA-LNA PCR) clamp and Ion Torrent Personal Genome Machine (PGM) techniques compared to that by direct sequencing. Furthermore, the predictive efficacy of EGFR mutations detected by PNA-LNA PCR clamp was evaluated. EGFR mutational status was assessed by direct sequencing, PNA-LNA PCR clamp, and Ion Torrent PGM in 57 patients with non-small cell lung cancer (NSCLC). We evaluated the predictive efficacy of PNA-LNA PCR clamp on the EGFR-TKI treatment in 36 patients with advanced NSCLC retrospectively. Compared to direct sequencing (16/57, 28.1%), PNA-LNA PCR clamp (27/57, 47.4%) and Ion Torrent PGM (26/57, 45.6%) detected more EGFR mutations. EGFR mutant patients had significantly longer progressive free survival (14.31 vs. 21.61 months, P = 0.003) than that of EGFR wild patients when tested with PNA-LNA PCR clamp. However, no difference in response rate to EGFR TKIs (75.0% vs. 82.4%, P = 0.195) or overall survival (34.39 vs. 44.10 months, P = 0.422) was observed between the EGFR mutations by direct sequencing or PNA-LNA PCR clamp. Our results demonstrate firstly that patients with EGFR mutations were detected more frequently by PNA-LNA PCR clamp and Ion Torrent PGM than those by direct sequencing. EGFR mutations detected by PNA-LNA PCR clamp may be as a predicative factor for EGFR TKI response in patients with NSCLC.  相似文献   

16.
Coevolution between two antagonistic species follows the so-called ‘Red Queen dynamics’ when reciprocal selection results in an endless series of adaptation by one species and counteradaptation by the other. Red Queen dynamics are ‘genetically driven’ when selective sweeps involving new beneficial mutations result in perpetual oscillations of the coevolving traits on the slow evolutionary time scale. Mathematical models have shown that a prey and a predator can coevolve along a genetically driven Red Queen cycle. We found that embedding the prey–predator interaction into a three-species food chain that includes a coevolving superpredator often turns the genetically driven Red Queen cycle into chaos. A key condition is that the prey evolves fast enough. Red Queen chaos implies that the direction and strength of selection are intrinsically unpredictable beyond a short evolutionary time, with greatest evolutionary unpredictability in the superpredator. We hypothesize that genetically driven Red Queen chaos could explain why many natural populations are poised at the edge of ecological chaos. Over space, genetically driven chaos is expected to cause the evolutionary divergence of local populations, even under homogenizing environmental fluctuations, and thus to promote genetic diversity among ecological communities over long evolutionary time.  相似文献   

17.
The targeting of oncogenic ‘driver’ kinases with small molecule inhibitors has proven to be a highly effective therapeutic strategy in selected non-small cell lung cancer (NSCLC) patients. However, acquired resistance to targeted therapies invariably arises and is a major limitation to patient care. ROS1 fusion proteins are a recently described class of oncogenic driver, and NSCLC patients that express these fusions generally respond well to ROS1-targeted therapy. In this study, we sought to determine mechanisms of acquired resistance to ROS1 inhibition. To accomplish this, we analyzed tumor samples from a patient who initially responded to the ROS1 inhibitor crizotinib but eventually developed acquired resistance. In addition, we generated a ROS1 inhibition-resistant derivative of the initially sensitive NSCLC cell line HCC78. Previously described mechanisms of acquired resistance to tyrosine kinase inhibitors including target kinase-domain mutation, target copy number gain, epithelial-mesenchymal transition, and conversion to small cell lung cancer histology were found to not underlie resistance in the patient sample or resistant cell line. However, we did observe a switch in the control of growth and survival signaling pathways from ROS1 to EGFR in the resistant cell line. As a result of this switch, ROS1 inhibition-resistant HCC78 cells became sensitive to EGFR inhibition, an effect that was enhanced by co-treatment with a ROS1 inhibitor. Our results suggest that co-inhibition of ROS1 and EGFR may be an effective strategy to combat resistance to targeted therapy in some ROS1 fusion-positive NSCLC patients.  相似文献   

18.
Human preferences for certain morphological attributes among domestic animals may be entirely individual or, more generally, may reflect evolutionary pressures that favor certain conformation. Artificial selection for attributes, such as short heads and crested necks of horses, may have functional and welfare implications because there is evidence from other species that skull shape co-varies with behaviour. Crested necks can be accentuated by flexion of the neck, a quality that is often manipulated in photographs vendors use when selling horses. Equine head-and-neck positions acquired through rein tension can compromise welfare. Our investigation was designed to identify conformations and postures that people are attracted to when choosing their ‘ideal’ horse. Participants of an internet survey were asked to rate their preference for horse silhouettes that illustrated three gradations of five variables: facial shape, crest height, ear length, ear position and head-and-neck carriage. There were 1,234 usable responses. The results show that overall preferences are for the intermediate, rather than extreme, morphological choices (p=<0.001). They also indicate that males are 2.5 times less likely to prefer thicker necks rather than the intermediate shape, and 4 times more likely to prefer the thinner neck shape. When compared to the novice participants, experienced participants were 1.9 times more likely to prefer a thicker neck shape than the intermediate neck shape and 2.8 times less likely to prefer a thinner neck shape than the intermediate neck shape. There was overall preference of 93% (n=939) for the category of head carriage ‘In front of the vertical’. However, novice participants were 1.8 times more likely to choose ‘behind the vertical’ than ‘in front of the vertical’. Our results suggest that people prefer a natural head carriage, concave facial profile (dished face), larger ears and thicker necks. From these survey data, it seems that some innate preferences may run counter to horse health and welfare.  相似文献   

19.
BackgroundAbl1 is a protein tyrosine kinase whose aberrant activation due to mutations is the culprit of several cancers, most notably chronic myeloid leukaemia. Several Abl1 inhibitors are used as anti-cancer drugs. Unfortunately, drug resistance limits their effectiveness. The main cause for drug resistance is mutations in the kinase domain (KD) of Abl1 that evolve in patients. The T315I mutation confers resistance against all clinically-available inhibitors except ponatinib. Resistance to ponatinib can develop by compound (double) mutations.MethodsKinetic measurements of the KD of Abl1 and its mutants were carried out to examine their catalytic activity. Specifically, mutants that lead to drug resistance against ponatinib were considered. Molecular dynamics simulations and multiple sequence analysis were used for explanation of the experimental findings.ResultsThe catalytic efficiency of the T315I pan-resistance mutant is more than two times lower than that of the native KD. All ponatinib resistant mutations restore the catalytic efficiency of the enzyme. Two of them (G250E/T315I and Y253H/E255V) have a catalytic efficiency that is more than five times that of the native KD.ConclusionsThe measurements and analysis suggest that resistance is at least partially due to the development of a highly efficient kinase through subsequent mutations. The simulations highlight modifications in two structurally important regions of Abl1, the activation and phosphate binding loops, upon mutations.General significanceExperimental and computational methods were used together to explain how mutations in the kinase domain of Abl1 lead to resistance against the most advanced drug currently in use to treat chronic myeloid leukaemia.  相似文献   

20.
Our current treatment paradigm of advanced anaplastic lymphoma kinase fusion (ALK+) non-small cell lung cancer (NSCLC) classifies the six currently approved ALK tyrosine kinase inhibitors (TKIs) into three generations. The 2nd-generation (2G) and 3rd-generation (3G) ALK TKIs are all “single mutant active” with varying potencies across a wide spectrum of acquired single ALK resistance mutations. There is a vigorous debate among clinicians which is the best upfront ALK TKI is for the first-line (1L) treatment of ALK+ NSCLC and the subsequent sequencing strategies whether it should be based on the presence of specific on-target ALK resistance mutations or not. Regardless, sequential use of “single mutant active” ALK TKIs will eventually lead to double ALK resistance mutations in cis. This has led to the creation of fourth generation (4G) “double mutant active” ALK TKIs such as TPX-0131 and NVL-655. We discuss the critical properties 4G ALK TKIs must possess to be clinically successful. We proposed conceptual first-line, second-line, and molecularly-based third-line registrational randomized clinical trials designed for these 4G ALK TKIs. How these 4G ALK TKIs would be used in the future will depend on which line of treatment the clinical trial design(s) is adopted provided the trial is positive. If approved, 4G ALK TKIs may usher in a new treatment paradigm for advanced ALK+ NSCLC that is based on classifying ALK TKIs based on the intrinsic functional capabilities (“singe mutant active” versus “double mutant active”) rather than the loosely-defined “generational” (first-, second-,third-,fourth-) classification and avoid the current clinical approaches of seemingly random sequential use of 2G and 3G ALK TKIs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号