首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objectives

To investigate the development of post-extraction bacteraemia (PEB) after the prophylactic use of chlorhexidine (CHX).

Patients and Methods

A total of 201 patients who underwent a tooth extraction were randomly distributed into four groups: 52 received no prophylaxis (CONTROL), 50 did a mouthwash with 0.2% CHX before the tooth extraction (CHX-MW), 51 did a mouthwash with 0.2% CHX and a subgingival irrigation with 1% CHX (CHX-MW/SUB_IR) and 48 did a mouthwash with 0.2% CHX and a continuous supragingival irrigation with 1% CHX (CHX-MW/SUPRA_IR). Peripheral venous blood samples were collected at baseline, 30 seconds after performing the mouthwash and the subgingival or supragingival irrigation, and at 30 seconds and 15 minutes after completion of the tooth extraction. Blood samples were analysed applying conventional microbiological cultures under aerobic and anaerobic conditions performing bacterial identification of the isolates.

Results

The prevalences of PEB in the CONTROL, CHX-MW, CHX-MW/SUB_IR and CHX-MWSUPRA_IR groups were 52%, 50%, 55% and 50%, respectively, at 30 seconds and 23%, 4%, 10% and 27%, respectively, at 15 minutes. The prevalence of PEB at 15 minutes was significantly higher in the CONTROL group than in the CHX-MW group (23% versus 4%; p = 0.005). At the same time, no differences were found between CONTROL group and CHX-MW/SUB_IR or CHX-MW/SUPRA_IR groups. Streptococci (mostly viridans group streptococci) were the most frequently identified bacteria (69–79%).

Conclusions

Performing a 0.2% CHX mouthwash significantly reduces the duration of PEB. Subgingival irrigation with 1% CHX didn’t increase the efficacy of the mouthwash while supragingival irrigation even decreased this efficacy, probably due to the influence of these maneuvers on the onset of bacteraemia.

Clinical Relevance

These results confirm the suitability of performing a mouthwash with 0.2% CHX before tooth extractions in order to reduce the duration of PEB. This practice should perhaps be extended to all dental manipulations.

Trial Registration

Clinicaltrials.gov NCT02150031  相似文献   

2.

Background

Mosquito salivary proteins (MSPs) modulate the host immune response, leading to enhancement of arboviral infections. Identification of proteins in saliva responsible for immunomodulation and counteracting their effects on host immune response is a potential strategy to protect against arboviral disease. We selected a member of the D7 protein family, which are among the most abundant and immunogenic in mosquito saliva, as a vaccine candidate with the aim of neutralizing effects on the mammalian immune response normally elicited by mosquito saliva components during arbovirus transmission.

Methodology/Principal Findings

We identified D7 salivary proteins of Culex tarsalis, a West Nile virus (WNV) vector in North America, and expressed 36 kDa recombinant D7 (rD7) protein for use as a vaccine. Vaccinated mice exhibited enhanced interferon-γ and decreased interleukin-10 expression after uninfected mosquito bite; however, we found unexpectedly that rD7 vaccination resulted in enhanced pathogenesis from mosquito-transmitted WNV infection. Passive transfer of vaccinated mice sera to naïve mice also resulted in increased mortality rates from subsequent mosquito-transmitted WNV infection, implicating the humoral immune response to the vaccine in enhancement of viral pathogenesis. Vaccinated mice showed decreases in interferon-γ and increases in splenocytes producing the regulatory cytokine IL-10 after WNV infection by mosquito bite.

Conclusions/Significance

Vector saliva vaccines have successfully protected against other blood-feeding arthropod-transmitted diseases. Nevertheless, the rD7 salivary protein vaccine was not a good candidate for protection against WNV disease since immunized mice infected via an infected mosquito bite exhibited enhanced mortality. Selection of salivary protein vaccines on the bases of abundance and immunogenicity does not predict efficacy.  相似文献   

3.

Background

Glycoproteins comprise a large portion of the salivary proteome and have great potential for biomarker discovery and disease diagnosis. However, the rate of production and the concentration of whole saliva change with age, gender and physiological states of the human body. Therefore, a thorough understanding of the salivary glycoproteome of healthy individuals of different ages and genders is a prerequisite for saliva to have clinical utility.

Methods

Formerly N-linked glycopeptides were isolated from the pooled whole saliva of six age and gender groups by hydrazide chemistry and hydrophilic affinity methods followed by mass spectrometry identification. Selected physiochemical characteristics of salivary glycoproteins were analyzed, and the salivary glycoproteomes of different age and gender groups were compared based on their glycoprotein components and gene ontology.

Results and discussion

Among 85 N-glycoproteins identified in healthy human saliva, the majority were acidic proteins with low molecular weight. The numbers of salivary N-glycoproteins increased with age. Fifteen salivary glycoproteins were identified as potential age- or gender-associated glycoproteins, and many of them have functions related to innate immunity against microorganisms and oral cavity protection. Moreover, many salivary glycoproteins have been previously reported as disease related glycoproteins. This study reveals the important role of salivary glycoproteins in the maintenance of oral health and homeostasis and the great potential of saliva for biomarker discovery and disease diagnosis.  相似文献   

4.

Background

Anopheles gambiae is a major vector of malaria and lymphatic filariasis. The arthropod-host interactions occurring at the skin interface are complex and dynamic. We used a global approach to describe the interaction between the mosquito (infected or uninfected) and the skin of mammals during blood feeding.

Methods

Intravital video microscopy was used to characterize several features during blood feeding. The deposition and movement of Plasmodium berghei sporozoites in the dermis were also observed. We also used histological techniques to analyze the impact of infected and uninfected feedings on the skin cell response in naive mice.

Results

The mouthparts were highly mobile within the skin during the probing phase. Probing time increased with mosquito age, with possible effects on pathogen transmission. Repletion was achieved by capillary feeding. The presence of sporozoites in the salivary glands modified the behavior of the mosquitoes, with infected females tending to probe more than uninfected females (86% versus 44%). A white area around the tip of the proboscis was observed when the mosquitoes fed on blood from the vessels of mice immunized with saliva. Mosquito feedings elicited an acute inflammatory response in naive mice that peaked three hours after the bite. Polynuclear and mast cells were associated with saliva deposits. We describe the first visualization of saliva in the skin by immunohistochemistry (IHC) with antibodies directed against saliva. Both saliva deposits and sporozoites were detected in the skin for up to 18 h after the bite.

Conclusion

This study, in which we visualized the probing and engorgement phases of Anopheles gambiae blood meals, provides precise information about the behavior of the insect as a function of its infection status and the presence or absence of anti-saliva antibodies. It also provides insight into the possible consequences of the inflammatory reaction for blood feeding and pathogen transmission.  相似文献   

5.

Background

The CRM197-conjugated 7-valent pneumococcal vaccine (PCV7) is protective against vaccine serotype disease and nasopharyngeal carriage. Data on PCV7-induced mucosal antibodies in relation to systemic or natural anticapsular antibodies are scarce.

Methods

In a randomized controlled setting, children received PCV7 at age 2 and 4 months (2-dose group), at age 2, 4 and 11 months (2+1-dose group) or no PCV7 (control group). From 188 children paired saliva samples were collected at 12 and 24 months of age. From a subgroup of 15 immunized children also serum samples were collected. IgG and IgA antibody-levels were measured by multiplex immunoassay.

Results

At 12 months, both vaccine groups showed higher serum and saliva IgG-levels against vaccine serotypes compared with controls which sustained until 24 months for most serotypes. Salivary IgG-levels were 10–20-fold lower compared to serum IgG, however, serum and saliva IgG-levels were highly correlated. Serum and salivary IgA-levels were higher in both vaccine groups at 12 months compared with controls, except for serotype 19F. Higher salivary IgA levels remained present for most serotypes in the 2+1-dose group until 24 months, but not in the 2-dose group. Salivary IgA more than IgG, increased after documented carriage of serotypes 6B, 19F and 23F In contrast to IgG, salivary IgA-levels were comparable with serum, suggesting local IgA-production.

Conclusions

PCV7 vaccination results in significant increases in salivary IgG and IgA-levels, which are more pronounced for IgG when compared to controls. In contrast, salivary anticapsular IgA-levels seemed to respond more to natural boosting. Salivary IgG and IgA-levels correlate well with systemic antibodies, suggesting saliva might be useful as potential future surveillance tool.  相似文献   

6.
S Liu  DJ Kelvin  AJ Leon  L Jin  A Farooqui 《PloS one》2012,7(7):e41145

Background

It is widely recognized that the introduction of saliva of bloodsucking arthropods at the site of pathogen transmission might play a central role in vector-borne infections. However, how the interaction between salivary components and the host immune system takes place and which physiological processes this leads to has yet to be investigated. Armigeres subalbatus is one of the prominent types of mosquitoes involved in the transmission of parasitic and viral diseases in humans and animals.

Methodology/Principal Findings

Using murine peritoneal macrophages and lymphocytes, and human peripheral mononuclear cells (PBMCs), this study shows that saliva of the female Ar. subalbatus induces apoptosis via interaction with the Fas receptor within a few hours but without activating caspase-8. The process further activates downstream p38 MAPK signaling, a cascade that leads to the induction of apoptosis in capase-3 dependent manner. We further illustrate that Ar. subalbatus saliva suppresses proinflammatory cytokines without changing IL-10 levels, which might happen as a result of apoptosis.

Conclusions

Our study shows for the first time that saliva-induced apoptosis is the leading phenomenon exerted by Ar. subalbatus that impede immune cells leading to the suppression of their effecter mechanism.  相似文献   

7.

Background

Sand fly saliva has an array of pharmacological and immunomodulatory components, and immunity to saliva protects against Leishmania infection. In the present study, we have studied the immune response against Lutzomyia intermedia saliva, the main vector of Leishmania braziliensis in Brazil, and the effects of saliva pre-exposure on L. braziliensis infection employing an intradermal experimental model.

Methodology/principal findings

BALB/c mice immunized with L. intermedia salivary gland sonicate (SGS) developed a saliva-specific antibody response and a cellular immune response with presence of both IFN-γ and IL-4. The inflammatory infiltrate observed in SGS-immunized mice was comprised of numerous polymorphonuclear and few mononuclear cells. Mice challenged with live L. braziliensis in the presence of saliva were not protected although lesion development was delayed. The inoculation site and draining lymph node showed continuous parasite replication and low IFN-γ to IL-4 ratio, indicating that pre-exposure to L. intermedia saliva leads to modulation of the immune response. Furthermore, in an endemic area of cutaneous leishmaniasis, patients with active lesions displayed higher levels of anti-L. intermedia saliva antibodies when compared to individuals with a positive skin test result for Leishmania.

Conclusion

These results show that pre-exposure to sand fly saliva plays an important role in the outcome of cutaneous leishmaniasis, in both mice and humans. They emphasize possible hurdles in the development of vaccines based on sand fly saliva and the need to identify and select the individual salivary candidates instead of using whole salivary mixture that may favor a non-protective response.  相似文献   

8.

Background

Rift Valley fever (RVF) is a severe mosquito-borne disease affecting humans and domestic ruminants. Mosquito saliva contains compounds that counteract the hemostatic, inflammatory, and immune responses of the host. Modulation of these defensive responses may facilitate virus infection. Indeed, Aedes mosquito saliva played a crucial role in the vector''s capacity to effectively transfer arboviruses such as the Cache Valley and West Nile viruses. The role of mosquito saliva in the transmission of Rift Valley fever virus (RVFV) has not been investigated.

Objective

Using a murine model, we explored the potential for mosquitoes to impact the course of RVF disease by determining whether differences in pathogenesis occurred in the presence or absence of mosquito saliva and salivary gland extract.

Methods

C57BL/6NRJ male mice were infected with the ZH548 strain of RVFV via intraperitoneal or intradermal route, or via bites from RVFV-exposed mosquitoes. The virus titers in mosquitoes and mouse organs were determined by plaque assays.

Findings

After intraperitoneal injection, RVFV infection primarily resulted in liver damage. In contrast, RVFV infection via intradermal injection caused both liver and neurological symptoms and this route best mimicked the natural infection by mosquitoes. Co-injections of RVFV with salivary gland extract or saliva via intradermal route increased the mortality rates of mice, as well as the virus titers measured in several organs and in the blood. Furthermore, the blood cell counts of infected mice were altered compared to those of uninfected mice.

Interpretation

Different routes of infection determine the pattern in which the virus spreads and the organs it targets. Aedes saliva significantly increases the pathogenicity of RVFV.  相似文献   

9.

Background

Two types of mucins, MUC7 and MUC5B constitute the major salivary glycoproteins, however their metabolic turnover has not been elucidated in detail to date. This study was conducted to examine turnover of MUC7 and MUC5B in saliva, by focusing on the relationship between their deglycosylation and proteolysis.

Methodology/Principal Findings

Whole saliva samples were collected from healthy individuals and incubated at 37°C in the presence of various protease inhibitors, sialidase, or a sialidase inhibitor. General degradation patterns of salivary proteins and glycoproteins were examined by SDS-polyacrylamide-gel-electrophoresis. Furthermore, changes of molecular sizes of MUC7 and MUC5B were examined by Western blot analysis. A protein band was identified as MUC7 by Western blot analysis using an antibody recognizing an N-terminal epitope. The MUC7 signal disappeared rapidly after 20-minutes of incubation. In contrast, the band of MUC7 stained for its carbohydrate components remained visible near its original position for a longer time indicating that the rapid loss of Western blot signal was due to the specific removal of the N-termimal epitope. Pretreatment of saliva with sialidase facilitated MUC7 protein degradation when compared with samples without treatment. Furthermore, addition of sialidase inhibitor to saliva prevented proteolysis of N-terminus of MUC7, suggesting that the desialylation is a prerequisite for the degradation of the N-terminal region of MUC7. The protein band corresponding to MUC5B detected in both Western blotting and glycoprotein staining showed little sign of significant degradation upon incubation in saliva up to 9 hours.

Conclusions/Significance

MUC7 was highly susceptible to specific proteolysis in saliva, though major part of MUC5B was more resistant to degradation. The N-terminal region of MUC7, particularly sensitive to proteolytic degradation, has also been proposed to have distinct biological function such as antibacterial activities. Quick removal of this region may have biologically important implication.  相似文献   

10.

Background

The discovery of the endocannabinoid system and of its role in the regulation of energy balance has significantly advanced our understanding of the physiopathological mechanisms leading to obesity and type 2 diabetes. New knowledge on the role of this system in humans has been acquired by measuring blood endocannabinoids. Here we explored endocannabinoids and related N-acylethanolamines in saliva and verified their changes in relation to body weight status and in response to a meal or to body weight loss.

Methodology/Principal Findings

Fasting plasma and salivary endocannabinoids and N-acylethanolamines were measured through liquid mass spectrometry in 12 normal weight and 12 obese, insulin-resistant subjects. Salivary endocannabinoids and N-acylethanolamines were evaluated in the same cohort before and after the consumption of a meal. Changes in salivary endocannabinoids and N-acylethanolamines after body weight loss were investigated in a second group of 12 obese subjects following a 12-weeks lifestyle intervention program. The levels of mRNAs coding for enzymes regulating the metabolism of endocannabinoids, N-acylethanolamines and of cannabinoid type 1 (CB1) receptor, alongside endocannabinoids and N-acylethanolamines content, were assessed in human salivary glands.The endocannabinoids 2-arachidonoylglycerol (2-AG), N-arachidonoylethanolamide (anandamide, AEA), and the N-acylethanolamines (oleoylethanolamide, OEA and palmitoylethanolamide, PEA) were quantifiable in saliva and their levels were significantly higher in obese than in normal weight subjects. Fasting salivary AEA and OEA directly correlated with BMI, waist circumference and fasting insulin. Salivary endocannabinoids and N-acylethanolamines did not change in response to a meal. CB1 receptors, ligands and enzymes were expressed in the salivary glands. Finally, a body weight loss of 5.3% obtained after a 12-weeks lifestyle program significantly decreased salivary AEA levels.

Conclusions/Significance

Endocannabinoids and N-acylethanolamines are quantifiable in saliva and their levels correlate with obesity but not with feeding status. Body weight loss significantly decreases salivary AEA, which might represent a useful biomarker in obesity.  相似文献   

11.

Background

Canine Visceral Leishmaniasis (CVL) is a zoonotic disease caused by Leishmania infantum, transmitted by the bite of Lutzomyia longipalpis sand flies. Dogs are the main domestic reservoir of the parasite. The establishment of an experimental model that partially reproduces natural infection in dogs is very important to test vaccine candidates, mainly regarding those that use salivary proteins from the vector and new therapeutical approaches.

Methodology/Principal Findings

In this report, we describe an experimental infection in dogs, using intradermal injection of Leishmania infantum plus salivary gland homogenate (SGH) of Lutzomyia longipalpis. Thirty-five dogs were infected with 1×107 parasites combined with five pairs of Lutzomyia longipalpis salivary glands and followed for 450 days after infection and clinical, immunological and parasitological parameters were evaluated. Two hundred and ten days after infection we observed that 31,4% of dogs did not display detectable levels of anti-Leishmania antibodies but all presented different numbers of parasites in the lymph nodes. Animals with a positive xenodiagnosis had at least 3,35×105 parasites in their lymph nodes. An increase of IFN-γ and IL-10 levels was detected during infection. Twenty two percent of dogs developed symptoms of CVL during infection.

Conclusion

The infection model described here shows some degree of similarity when compared with naturally infected dogs opening new perspectives for the study of CVL using an experimental model that employs the combination of parasites and sand fly saliva both present during natural transmission.  相似文献   

12.

Background

With the global distribution, morbidity, and mortality associated with tick and louse-borne relapsing fever spirochetes, it is important to understand the dynamics of vector colonization by the bacteria and transmission to the host. Tick-borne relapsing fever spirochetes are blood-borne pathogens transmitted through the saliva of soft ticks, yet little is known about the transmission capability of these pathogens during the relatively short bloodmeal. This study was therefore initiated to understand the transmission dynamics of the relapsing fever spirochete Borrelia turicatae from the vector Ornithodoros turicata, and the subsequent dissemination of the bacteria upon entry into murine blood.

Methodology/Principal Findings

To determine the minimum number of ticks required to transmit spirochetes, one to three infected O. turicata were allowed to feed to repletion on individual mice. Murine infection and dissemination of the spirochetes was evaluated by dark field microscopy of blood, quantitative PCR, and immunoblotting against B. turicatae protein lysates and a recombinant antigen, the Borrelia immunogenic protein A. Transmission frequencies were also determined by interrupting the bloodmeal 15 seconds after tick attachment. Scanning electron microscopy (SEM) was performed on infected salivary glands to detect spirochetes within acini lumen and excretory ducts. Furthermore, spirochete colonization and dissemination from the bite site was investigated by feeding infected O. turicata on the ears of mice, removing the attachment site after engorment, and evaluating murine infection.

Conclusion/Significance

Our findings demonstrated that three ticks provided a sufficient infectious dose to infect nearly all animals, and B. turicatae was transmitted within seconds of tick attachment. Spirochetes were also detected in acini lumen of salivary glands by SEM. Upon host entry, B. turicatae did not require colonization of the bite site to establish murine infection. These results suggest that once B. turicatae colonizes the salivary glands the spirochetes are preadapted for rapid entry into the mammal.  相似文献   

13.

Background and Purpose

Tissue microRNAs (miRNAs) can detect cancers and predict prognosis. Several recent studies reported that tissue, plasma, and saliva miRNAs share similar expression profiles. In this study, we investigated the discriminatory power of salivary miRNAs (including whole saliva and saliva supernatant) for detection of esophageal cancer.

Materials and Methods

By Agilent microarray, six deregulated miRNAs from whole saliva samples from seven patients with esophageal cancer and three healthy controls were selected. The six selected miRNAs were subjected to validation of their expression levels by RT-qPCR using both whole saliva and saliva supernatant samples from an independent set of 39 patients with esophageal cancer and 19 healthy controls.

Results

Six miRNAs (miR-10b*, miR-144, miR-21, miR-451, miR-486-5p, and miR-634) were identified as targets by Agilent microarray. After validation by RT-qPCR, miR-10b*, miR-144, and miR-451 in whole saliva and miR-10b*, miR-144, miR-21, and miR-451 in saliva supernatant were significantly upregulated in patients, with sensitivities of 89.7, 92.3, 84.6, 79.5, 43.6, 89.7, and 51.3% and specificities of 57.9, 47.4, 57.9%, 57.9, 89.5, 47.4, and 84.2%, respectively.

Conclusions

We found distinctive miRNAs for esophageal cancer in both whole saliva and saliva supernatant. These miRNAs possess discriminatory power for detection of esophageal cancer. Because saliva collection is noninvasive and convenient, salivary miRNAs show great promise as biomarkers for detection of esophageal cancer in areas at high risk.  相似文献   

14.

Background

The digestion of dietary starch in humans is initiated by salivary α-amylase, an endo-enzyme that hydrolyzes starch into maltose, maltotriose and larger oligosaccharides. Salivary amylase accounts for 40 to 50% of protein in human saliva and rapidly alters the physical properties of starch. Importantly, the quantity and enzymatic activity of salivary amylase show significant individual variation. However, linking variation in salivary amylase levels with the oral perception of starch has proven difficult. Furthermore, the relationship between copy number variations (CNVs) in the AMY1 gene, which influence salivary amylase levels, and starch viscosity perception has not been explored.

Principal Findings

Here we demonstrate that saliva containing high levels of amylase has sufficient activity to rapidly hydrolyze a viscous starch solution in vitro. Furthermore, we show with time-intensity ratings, which track the digestion of starch during oral manipulation, that individuals with high amylase levels report faster and more significant decreases in perceived starch viscosity than people with low salivary amylase levels. Finally, we demonstrate that AMY1 CNVs predict an individual''s amount and activity of salivary amylase and thereby, ultimately determine their perceived rate of oral starch viscosity thinning.

Conclusions

By linking genetic variation and its consequent salivary enzymatic differences to the perceptual sequellae of these variations, we show that AMY1 copy number relates to salivary amylase concentration and enzymatic activity level, which, in turn, account for individual variation in the oral perception of starch viscosity. The profound individual differences in salivary amylase levels and salivary activity may contribute significantly to individual differences in dietary starch intake and, consequently, to overall nutritional status.  相似文献   

15.

Background

Leishmania transmission occurs in the presence of insect saliva. Immunity to Phlebotomus papatasi or Lutzomyia longipalpis saliva or salivary components confers protection against an infection by Leishmania in the presence of the homologous saliva. However, immunization with Lutzomyia intermedia saliva did not protect mice against Leishmania braziliensis plus Lu. intermedia saliva. In the present study, we have studied whether the immunization with Lu. longipalpis saliva or a DNA plasmid coding for LJM19 salivary protein would be protective against L. braziliensis infection in the presence of Lu. intermedia saliva, the natural vector for L. braziliensis.

Methodology/Principal Findings

Immunization with Lu. longipalpis saliva or with LJM19 DNA plasmid induced a Delayed-Type Hypersensitivity (DTH) response against Lu. longipalpis as well as against a Lu. intermedia saliva challenge. Immunized and unimmunized control hamsters were then intradermally infected in the ears with L. braziliensis in the presence of Lu. longipalpis or Lu. intermedia saliva. Animals immunized with Lu. longipalpis saliva exhibited smaller lesion sizes as well as reduced disease burdens both at lesion site and in the draining lymph nodes. These alterations were associated with a significant decrease in the expression levels of IL-10 and TGF-β. Animals immunized with LJM19 DNA plasmid presented similar findings in protection and immune response and additionally increased IFN-γ expression.

Conclusions/Significance

Immunization with Lu. longipalpis saliva or with a DNA plasmid coding LJM19 salivary protein induced protection in hamsters challenged with L. braziliensis plus Lu. intermedia saliva. These findings point out an important role of immune response against saliva components, suggesting the possibility to develop a vaccine using a single component of Lu. longipalpis saliva to generate protection against different species of Leishmania, even those transmitted by a different vector.  相似文献   

16.

Background

There are reports that bone marrow cell (BM) transplants repaired irradiated salivary glands (SGs) and re-established saliva secretion. However, the mechanisms of action behind these reports have not been elucidated.

Methods

To test if a paracrine mechanism was the main effect behind this reported improvement in salivary organ function, whole BM cells were lysed and its soluble intracellular contents (termed as “BM Soup”) injected into mice with irradiation-injured SGs. The hypothesis was that BM Soup would protect salivary cells, increase tissue neovascularization, function, and regeneration. Two minor aims were also tested a) comparing two routes of delivering BM Soup, intravenous (I.V.) versus intra-glandular injections, and b) comparing the age of the BM Soup’s donors. The treatment-comparison group consisted of irradiated mice receiving injections of living whole BM cells. Control mice received irradiation and injections of saline or sham-irradiation. All mice were followed for 8 weeks post-irradiation.

Results

BM Soup restored salivary flow rates to normal levels, protected salivary acinar, ductal, myoepithelial, and progenitor cells, increased cell proliferation and blood vessels, and up-regulated expression of tissue remodeling/repair/regenerative genes (MMP2, CyclinD1, BMP7, EGF, NGF). BM Soup was as an efficient therapeutic agent as injections of live BM cells. Both intra-glandular or I.V. injections of BM Soup, and from both young and older mouse donors were as effective in repairing irradiated SGs. The intra-glandular route reduced injection frequency/dosage by four-fold.

Conclusion

BM Soup, which contains only the cell by-products, can be advantageously used to repair irradiation-damaged SGs rather than transplanting whole live BM cells which carry the risk of differentiating into unwanted/tumorigenic cell types in SGs.  相似文献   

17.

Background

The saliva of sand flies strongly enhances the infectivity of Leishmania in mice. Additionally, pre-exposure to saliva can protect mice from disease progression probably through the induction of a cellular immune response.

Methodology/Principal Findings

We analysed the cellular immune response against the saliva of Phlebotomus papatasi in humans and defined the phenotypic characteristics and cytokine production pattern of specific lymphocytes by flow cytometry. Additionally, proliferation and IFN-γ production of activated cells were analysed in magnetically separated CD4+ and CD8+ T cells. A proliferative response of peripheral blood mononuclear cells against the saliva of Phlebotomus papatasi was demonstrated in nearly 30% of naturally exposed individuals. Salivary extracts did not induce any secretion of IFN-γ but triggered the production of IL-10 primarily by CD8+ lymphocytes. In magnetically separated lymphocytes, the saliva induced the proliferation of both CD4+ and CD8+ T cells which was further enhanced after IL-10 blockage. Interestingly, when activated CD4+ lymphocytes were separated from CD8+ cells, they produced high amounts of IFN-γ.

Conclusion

Herein, we demonstrated that the overall effect of Phlebotomus papatasi saliva was dominated by the activation of IL-10-producing CD8+ cells suggesting a possible detrimental effect of pre-exposure to saliva on human leishmaniasis outcome. However, the activation of Th1 lymphocytes by the saliva provides the rationale to better define the nature of the salivary antigens that could be used for vaccine development.  相似文献   

18.

Background

Salivary proteins of Triatoma infestans elicit humoral immune responses in their vertebrate hosts. These immune responses indicate exposure to triatomines and thus can be a useful epidemiological tool to estimate triatomine infestation. In the present study, we analyzed antibody responses of guinea pigs to salivary antigens of different developmental stages of four T. infestans strains originating from domestic and/or peridomestic habitats in Argentina, Bolivia, Chile and Peru. We aimed to identify developmental stage- and strain-specific salivary antigens as potential markers of T. infestans exposure.

Methodology and Principal Findings

In SDS-PAGE analysis of salivary proteins of T. infestans the banding pattern differed between developmental stages and strains of triatomines. Phenograms constructed from the salivary profiles separated nymphal instars, especially the 5th instar, from adults. To analyze the influence of stage- and strain-specific differences in T. infestans saliva on the antibody response of guinea pigs, twenty-one guinea pigs were exposed to 5th instar nymphs and/or adults of different T. infestans strains. Western blot analyses using sera of exposed guinea pigs revealed stage- and strain-specific variations in the humoral response of animals. In total, 27 and 17 different salivary proteins reacted with guinea pig sera using IgG and IgM antibodies, respectively. Despite all variations of recognized salivary antigens, an antigen of 35 kDa reacted with sera of almost all challenged guinea pigs.

Conclusion

Salivary antigens are increasingly considered as an epidemiological tool to measure exposure to hematophagous arthropods, but developmental stage- and strain-specific variations in the saliva composition and the respective differences of immunogenicity are often neglected. Thus, the development of a triatomine exposure marker for surveillance studies after triatomine control campaigns requires detailed investigations. Our study resulted in the identification of a potential antigen as useful marker of T. infestans exposure.  相似文献   

19.

Background

Previously we verified the radioprotective effect of lidocaine on the function and ultrastructure of salivary glands in rabbits. However, the underlying mechanism of lidocaine''s radioprotective effect is unknown. We hypothesized that lidocaine, as a membrane stabilization agent, has a protective effect on intracellular neuroreceptor-mediated signaling and hence can help preserve the secretory function of salivary glands during radiotherapy.

Methods and Materials

Rabbits were irradiated with or without pretreatment with lidocaine before receiving fractionated radiation to a total dose of 35 Gy. Sialoscintigraphy and saliva total protein assay were performed before radiation and 1 week after the last radiation fraction. Isolated salivary gland acini were stimulated with either carbachol or adrenaline. Ca2+ influx in response to the stimulation with these agonists was measured using laser scanning confocal microscopy.

Results

The uptake of activity and the excretion fraction of the parotid glands were significantly reduced after radiation, but lidocaine had a protective effect. Saliva total protein concentration was not altered after radiation. For isolated acini, Ca2+ influx in response to stimulation with carbachol, but not adrenaline, was impaired after irradiation; lidocaine pretreatment attenuated this effect.

Conclusions

Lidocaine has a radioprotective effect on the capacity of muscarinic agonist-induced water secretion in irradiated salivary glands.  相似文献   

20.

Background

Current blood based diagnostic assays to detect heart failure (HF) have large intra-individual and inter-individual variations which have made it difficult to determine whether the changes in the analyte levels reflect an actual change in disease activity. Human saliva mirrors the body’s health and well being and ∼20% of proteins that are present in blood are also found in saliva. Saliva has numerous advantages over blood as a diagnostic fluid which allows for a non-invasive, simple, and safe sample collection. The aim of our study was to develop an immunoassay to detect NT-proBNP in saliva and to determine if there is a correlation with blood levels.

Methods

Saliva samples were collected from healthy volunteers (n = 40) who had no underlying heart conditions and HF patients (n = 45) at rest. Samples were stored at −80°C until analysis. A customised homogeneous sandwich AlphaLISA(R) immunoassay was used to quantify NT-proBNP levels in saliva.

Results

Our NT-proBNP immunoassay was validated against a commercial Roche assay on plasma samples collected from HF patients (n = 37) and the correlation was r2 = 0.78 (p<0.01, y = 1.705× +1910.8). The median salivary NT-proBNP levels in the healthy and HF participants were <16 pg/mL and 76.8 pg/mL, respectively. The salivary NT-proBNP immunoassay showed a clinical sensitivity of 82.2% and specificity of 100%, positive predictive value of 100% and negative predictive value of 83.3%, with an overall diagnostic accuracy of 90.6%.

Conclusion

We have firstly demonstrated that NT-proBNP can be detected in saliva and that the levels were higher in heart failure patients compared with healthy control subjects. Further studies will be needed to demonstrate the clinical relevance of salivary NT-proBNP in unselected, previously undiagnosed populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号