首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HM1.24 antigen (CD317) was originally identified as a cell surface protein that is preferentially overexpressed on multiple myeloma cells. Immunotherapy using anti-HM1.24 antibody has been performed in patients with multiple myeloma as a phase I study. We examined the expression of HM1.24 antigen in lung cancer cells and the possibility of immunotherapy with anti-HM1.24 antibody which can induce antibody-dependent cellular cytotoxicity (ADCC). The expression of HM1.24 antigen in lung cancer cells was examined by flow cytometry as well as immunohistochemistry using anti-HM1.24 antibody. ADCC was evaluated using a 6-h 51Cr release assay. Effects of various cytokines on the expression of HM1.24 and the ADCC were examined. The antitumor activity of anti-HM1.24 antibody in vivo was examined in SCID mice. HM1.24 antigen was detected in 11 of 26 non-small cell lung cancer cell lines (42%) and four of seven (57%) of small cell lung cancer cells, and also expressed in the tissues of lung cancer. Anti-HM1.24 antibody effectively induced ADCC in HM1.24-positive lung cancer cells. Interferon-β and -γ increased the levels of HM1.24 antigen and the susceptibility of lung cancer cells to ADCC. Treatment with anti-HM1.24 antibody inhibited the growth of lung cancer cells expressing HM1.24 antigen in SCID mice. The combined therapy with IFN-β and anti-HM1.24 antibody showed the enhanced antitumor effects even in the delayed treatment schedule. HM1.24 antigen is a novel immunological target for the treatment of lung cancer with anti-HM1.24 antibody.  相似文献   

2.
The characteristics of antibody-dependent cellular cytotoxicity (ADCC) directed by a panel of human and chimpanzee antienvelope (anti-Env) monoclonal antibodies (MAbs) of different epitope specificities were studied; this was accomplished by using target cells expressing human immunodeficiency virus type 1 (HIV-1) Envs of either primary or laboratory-adapted strains. Human MAbs of similar apparent affinities (1 × 109 to 2 × 109 liters/mol) against either a “cluster II”-overlapping epitope of gp41 or against the CD4 binding site, V3 loop, or C5 domain of gp120 directed substantial and comparable levels of specific lysis against targets infected with laboratory-adapted strains of HIV-1. As expected, those MAbs specific for relatively conserved regions of Env generally exhibited ADCC activity against a broader range of HIV-1 strains than those directed against variable epitopes. Significant ADCC activities of selected MAbs against primary isolate Env-expressing cells were demonstrated. In addition, a new ADCC epitope in the V2 domain of gp120 was defined. CD56+ cells were demonstrated to be the effector cells in these studies by fluorescence-activated cell sorting followed by ADCC assays. Notably, all anti-Env MAbs tested in this study, including MAbs directed against each of the known neutralization epitope clusters in gp120, directed significant levels of ADCC against targets expressing Env of one or more HIV-1 strains. These results imply that many, if not most, HIV-1-neutralizing human Abs of high affinity (≥3 × 108 liters/mol in these studies) and of the immunoglobulin G1 (IgG1) subclass (i.e., the predominate IgG subclass) are capable of directing ADCC. Since neutralizing Abs have been associated with long-term survival following HIV-1 infection, this suggests that ADCC activity may be beneficial in vivo.The in vivo role(s) of antibodies (Abs) that can direct antibody-dependent cellular cytotoxicity (ADCC) against human immunodeficiency virus type 1 (HIV-1) Env-expressing cells in vitro remains unclear. In ADCC, anti-Env Abs direct effector cells to kill target cells bearing HIV-1 envelope on their surfaces; this is accomplished via specific binding of the Abs’ antigen-binding sites to Envs and their Fc regions to Fc receptors on the effector cells. Broadly strain reactive, ADCC-directing Abs arise early in the immune response to HIV-1 infection in vivo (14) and may be partially responsible for the initial clearance of viremia.Earlier in the HIV-1 epidemic, concerns were raised that shed soluble gp120 in HIV-1-infected individuals might bind to CD4+ cells, including uninfected ones, and could target these cells for “innocent bystander” killing by ADCC (6). However, effector cells armed with serum Abs able to direct ADCC in vitro against either innocent bystanders or HIV-1-infected cells were found at highest frequency in asymptomatic, seropositive individuals; patients with AIDS-related complex and AIDS showed progressively diminished reactivities (20). Furthermore, in a recent study (1), the ability of monoclonal Abs (MAbs) against three distinct gp120 epitopes to direct ADCC against uninfected CD4+ cells to which rgp120SF2 had been adsorbed (i.e., innocent bystanders) was demonstrated to be less efficient by at least an order of magnitude than their ability to direct ADCC against HIV-1-infected cells.The existing data from in vivo studies (reviewed in reference 1) supports the efficacy, rather than the pathogenicity, of ADCC-directing Abs against HIV-1. Consistent with this data is our recent characterization of two MAbs, 42F and 43F, isolated from a long-term survivor of HIV-1 infection (1); these MAbs directed significant levels of ADCC and defined a new, conserved ADCC epitope in the C5 domain of HIV-1 gp120. Preliminary evidence indicated that concentrations of 42F- and 43F-like Abs in the serum of the donor were in the range required to direct high levels of ADCC, and these MAbs were shown to bind both oligomeric primary-isolate and laboratory-adapted Env efficiently (1).Because of the potential importance of ADCC-directing Abs against HIV-1, in this study we have evaluated ADCC directed against cells expressing HIV-1 Envs of primary or laboratory-adapted strains by a panel of human and chimpanzee anti-Env MAbs of different epitope specificities. Significant ADCC activities of selected MAbs against primary-isolate Env-expressing cells were demonstrated, and a new ADCC epitope in the V2 domain of gp120 was defined. Finally, a MAb’s ability to direct ADCC against a specific target cell type was shown to be dependent on additional factors beyond its ability to efficiently bind antigen on the target cell and its possession of an Fc region of the appropriate isotype to engage FcγR on effector cells.  相似文献   

3.
The presence or absence of core fucose in the Fc region N-linked glycans of antibodies affects their binding affinity toward FcγRIIIa as well as their antibody-dependent cell-mediated cytotoxicity (ADCC) activity. However, the quantitative nature of this structure-function relationship remains unclear. In this study, the in vitro biological activity of an afucosylated anti-CD20 antibody was fully characterized. Further, the effect of fucose reduction on Fc effector functions was quantitatively evaluated using the afucosylated antibody, its “regular” fucosylated counterpart and a series of mixtures containing varying proportions of “regular” and afucosylated materials. Compared with the “regular” fucosylated antibody, the afucosylated antibody demonstrated similar binding interactions with the target antigen (CD20), C1q and FcγRIa, moderate increases in binding to FcγRIIa and IIb, and substantially increased binding to FcγRIIIa. The afucosylated antibodies also showed comparable complement-dependent cytotoxicity activity but markedly increased ADCC activity. Based on EC50 values derived from dose-response curves, our results indicate that the amount of afucosylated glycan in antibody samples correlate with both FcγRIIIa binding activity and ADCC activity in a linear fashion. Furthermore, the extent of ADCC enhancement due to fucose depletion was not affected by the FcγRIIIa genotype of the effector cells.  相似文献   

4.
To take advantage of the large number of well-characterized mouse immunoglobulins (IgGs) for the study of antibody-dependent cell-mediated cytotoxicity (ADCC) in human cells, we armed human cytotoxic lymphocytes with a mouse receptor for the Fc portion of IgG antibodies. The human ΝΚ−92 natural killer cell line was transduced with a mouse receptor gene (mCD16), which was stably expressed on the cell surface (referred to as NK-92mCD16). When tested against a B-lymphoblastoid cell line (BLCL) coated with mouse anti-CD20 IgG1, IgG2a or IgG2b monoclonal antibodies (mAbs), the newly expressed mouse Fc receptor enabled the NK-92mCD16 cells to kill the BLCL by ADCC. Next, using the NK-92mCD16 we compared mouse mAbs directed at B lineage specific CD antigens for their ability to induce ADCC against human Epstein-Barr virus- infected B lymphoblastoid (for anti-CD19, -CD20 and -CD21) or against myeloma (for anti-CD38 and –CD138) target cells. Our results demonstrated that the “NK-92mCD16 assay” allows convenient and sensitive discrimination of mouse mAbs for their ability to mediate ADCC in a human cellular system. In addition, our results provide examples of dissociation between opsonization and target cell killing through ADCC. These “murinized” human effector cells thus represent a convenient cellular tool for the study of ADCC.  相似文献   

5.
6.
Despite recent pharmaceutical advancements in therapeutic drugs, multiple myeloma (MM) remains an incurable disease. Recently, ploy(ADP-ribose) polymerase 1 (PARP1) has been shown as a potentially promising target for MM therapy. A previous report suggested bufalin, a component of traditional Chinese medicine (“Chan Su”), might target PARP1. However, this hypothesis has not been verified. We here showed that bufalin could inhibit PARP1 activity in vitro and reduce DNA–damage-induced poly(ADP-ribosyl)ation in MM cells. Molecular docking analysis revealed that the active site of bufalin interaction is within the catalytic domain of PAPR1. Thus, PARP1 is a putative target of bufalin. Furthermore, we showed, for the first time that the proliferation of MM cell lines (NCI-H929, U266, RPMI8226 and MM.1S) and primary CD138+ MM cells could be inhibited by bufalin, mainly via apoptosis and G2-M phase cell cycle arrest. MM cell apoptosis was confirmed by apoptotic cell morphology, Annexin-V positive cells, and the caspase3 activation. We further evaluated the role of PARP1 in bufalin-induced apoptosis, discovering that PARP1 overexpression partially suppressed bufalin-induced cell death. Moreover, bufalin can act as chemosensitizer to enhance the cell growth-inhibitory effects of topotecan, camptothecin, etoposide and vorinostat in MM cells. Collectively, our data suggest that bufalin is a novel PARP1 inhibitor and a potentially promising therapeutic agent against MM alone or in combination with other drugs.  相似文献   

7.
Summary Antibody-dependent cell-mediated cytotoxicity (ADCC) mediated by a murine monoclonal antibody against human colerectal carcinoma, antibody 19–9, with human effector cells was tested in 33 patients with various carcinomas, 16 patients with benign lesions, and 13 normal controls, using a 12-h 51Cr release assay using human colorectal cancer cells as targets. Peripheral blood mononuclear cells (PBM) from these groups of patients and normal controls achieved moderate levels of target cell lysis in the presence of the monoclonal antibody at the high effector to target cell ratio of 200:1. The ADCC activity of PBM in cancer patients was significantly higher than that in either normal persons or patients with benign lesions. Since the ADCC was shown to be mainly mediated by adherent monocytes in the PBM, ADCC activity of monocytes from cancer patients was compared to those from control groups at an effector to target cell ratio of 30:1. The results also showed that the lytic capacity of monocytes was significantly higher in cancer patients than that in the control populations.  相似文献   

8.
The nature of the cell types capable of mediating mitogen-induced cellular cytotoxicity (MICC) and antibody-dependent cellular cytotoxicity (ADCC) was investigated utilizing effector cells from athymic nude and euthymic heterozygous control littermate mice as well as Sephadex anti-Fab immunoabsorbent column purified spleen cell populations from normal (CS7BL/6) mice. Chicken erythrocytes (CRBC) and the mouse lymphoma, EL-4, were used as target cells in both cytotoxicity assays. MICC utilizing CRBC targets was mediated by several effector cell types whereas MICC utilizing EL-4 lymphoma targets was T-cell dependent. ADCC against both CRBC and EL-4 lymphoma targets occurred independently of the presence of T-cells. In addition, effector cell populations incapable of mediating MICC against EL-4 lymphoma targets were capable of mediating ADCC against the same EL-4 targets. Thus, utilizing the appropriate target cells, EL-4 but not CRBC, a sharp distinction can be made between the effectors for ADCC and MICC: ADCC is T-cell independent while MICC is dependent on the presence of mature thymus-derived cells. Furthermore these studies demonstrate that the nature of the target cell employed in MICC and ADCC reactions plays a critical role in defining the types of effector cells capable of mediating these cytotoxicity reactions.  相似文献   

9.
Human peripheral blood mononuclear cells which mediate antibody-dependent cellular cytotoxicity (ADCC) against herpes simplex virus- (HSV) infected target cells consist of both adherent (MA) and nonadherent (MNA) effector cell populations. These two cell populations can be distinguished by their different phagocytic properties and morphologic appearance, their requirement for antibody in the ADCC reaction, and the rapidity with which they lyse target cells in the presence of immune serum. The MA cells are predominantly phagocytic and have the morphologic characteristics of monocyte-macrophages, whereas the MNA cells are nonphagocytic and appear to be small to medium-sized lymphocytes. Optimal expression of ADCC by MA cells requires higher concentrations of immune serum than does MNA cell-mediated ADCC. MA-mediated cell killing is first detectable by 8 hr and reaches completion after 24 hr of incubation. In contrast, MNA-mediated ADCC produces target cell damage by 2 hr and reaches completion at 8 hr of incubation. Unlike MNA effector cells, the MA effector cells are profoundly inhibited after preincubation with either latex or silica particles. The HSV immune status of the donor had no effect on the ability of either cell population to mediate ADCC. These data demonstrate the participation of both nonadherent mononuclear cells, presumably K cells, and monocyte-macrophages, in ADCC directed against HSV-infected target cells.  相似文献   

10.
CD38 is highly expressed on multiple myeloma (MM) cells and plays a role in regulating tumor generation and development. CD38 monoclonal antibodies (mAbs) have been used as an effective therapy for MM treatment by various mechanisms, including complement-dependent cytotoxic effects, antibody-dependent cell-mediated cytotoxicity, antibody-dependent cellular phagocytosis, programmed cell death, enzymatic modulation, and immunomodulation. Although CD38 mAbs inhibit the proliferation and survival of MM cells, there are substantial side effects on antitumoral NK cells. The NK-mediated immune response needs to be further evaluated to minimize the adverse effects of NK cell loss. The killing effect of CD38 mAbs on CD38high NK cells should be minimized and the potential combination of CD38low/- NK cells and CD38 mAbs should be maximized to better benefit from their therapeutic efficacy against MM. CD38 mAb effects against MM can be maximized by combination therapies with immunomodulatory imide drugs (IMiDs), proteasome inhibitors (PIs), anti-programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) antibodies, or cellular therapies for the treatment of MM, especially in patients with relapsed or refractory MM (R/R MM) and drug-resistant MM.  相似文献   

11.
 Monoclonal antibodies (mAb) are promising substances for the treatment of colorectal carcinoma, but the efficiency of this therapy still needs further improvement. We used a flow-cytometric cytotoxicity test to determine the efficacy of the cytokines interferon α (IFNα) and γ (IFNγ), interleukin-2 (IL-2), macrophage-colony-stimulating factor (M-CSF), granulocyte/macrophage-CSF (GM-CSF) and tumor necrosis factor α (TNFα) in enhancing the antibody-dependent cellular cytoxicity (ADCC) of the mAb 17-1A and the mAb BR55-2 against the colorectal carcinoma cell line HT29. In experiments performed at an effector to target ratio of 9:1, with peripheral blood mononuclear cells from five healthy volunteers as effector cells, we found that IFNα, IFNγ and IL-2 significantly augmented the ADCC of both mAb at concentrations between 3 ng/ml and 30 ng/ml. The other three cytokines were not effective. In further experiments we examined combinations of the three effective cytokines in different concentrations. The combination of IFNα and IL-2 proved to be optimal in enhancing ADCC of both mAb. Thus, the examination of ADCC by flow cytometry may reveal potentially useful combinations of cytokines and mAb for the treatment of colorectal carcinoma. Received: 11 September 1997 / Accepted: 19 February 1998  相似文献   

12.
The present study strongly suggests that, in humans, natural killer (NK) activity and antibody-dependent cell-mediated cytotoxicity (ADCC) are mediated by the same effector cell population. This is supported by two different experimental approaches. First, competition for NK effector cells was accompanied by simultaneous inhibition of ADCC activity. Target cells sensitive to NK activity were capable of inhibiting specifically an ADCC assay in cold target competition experiments. Second, specific removal of NK cells on monolayers formed by target cells sensitive to NK activity caused simultaneous depletion of ADCC effector cells. In association with the removal on the monolayers of effector cells for ADCC as well as NK activity, we also found a significant depletion of cells bearing Fc gamma receptors.  相似文献   

13.
Elotuzumab is a monoclonal antibody in development for multiple myeloma (MM) that targets CS1, a cell surface glycoprotein expressed on MM cells. In preclinical models, elotuzumab exerts anti-MM efficacy via natural killer (NK)-cell-mediated antibody-dependent cellular cytotoxicity (ADCC). CS1 is also expressed at lower levels on NK cells where it acts as an activating receptor. We hypothesized that elotuzumab may have additional mechanisms of action via ligation of CS1 on NK cells that complement ADCC activity. Herein, we show that elotuzumab appears to induce activation of NK cells by binding to NK cell CS1 which promotes cytotoxicity against CS1(+) MM cells but not against autologous CS1(+) NK cells. Elotuzumab may also promote CS1–CS1 interactions between NK cells and CS1(+) target cells to enhance cytotoxicity in a manner independent of ADCC. NK cell activation appears dependent on differential expression of the signaling intermediary EAT-2 which is present in NK cells but absent in primary, human MM cells. Taken together, these data suggest elotuzumab may enhance NK cell function directly and confer anti-MM efficacy by means beyond ADCC alone.  相似文献   

14.
Activation of macrophages (M phi) for host defense against tumor cells follows a sequence of priming events followed by an initiating stimulus that results in production and release of cytotoxic molecules that mediate target cell killing. We have developed a model to study specific macrophage cytotoxicity in vitro utilizing a cultured murine M phi cell line, J774. Specific cytotoxicity of cultured human gastrointestinal tumor cells is achieved in the presence of murine IgG2a monoclonal antibody (mAb) 17-1-A. The ability of these cells to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) is greatly enhanced following gamma-irradiation. ADCC can be demonstrated at mAb 17-1-A concentrations greater than or equal to 1 microgram/ml and effector/target cell ratios greater than or equal to 2. Exposure to doses greater than or equal to 10 Gy of gamma-irradiation increases ADCC threefold. Varying the duration from J774 M phi exposure to gamma-irradiation until addition of antibody-coated target cells showed that the primed state for ADCC is stable for at least 8 days but approximately 24 hr is required for complete development of the primed state. mAb-dependent target cell death begins 8 hr after addition of mAb and labeled target cells to primed effector cells and is complete by 24 hr. Incubation of unirradiated J774 M phi effector cells with recombinant murine interferon-gamma (rmIFN-gamma) also results in enhanced ADCC, but the extent of target cell killing achieved is less than that following priming by gamma-irradiation. Concomitant priming of gamma-irradiated J774 M phi with rmIFN-gamma increases the extent of ADCC. Further study of irradiated J774 cells may elucidate the molecular pathways utilized by M phi for achieving and maintaining the primed state for ADCC. Irradiated J774 cells will also provide a homogenous, stably primed cell type in which to examine the mechanism(s) of cytotoxicity employed by tumoricidal M phi.  相似文献   

15.
Integrin engagement on lymphocytes initiates “outside-in” signaling that is required for cytoskeleton remodeling and the formation of the synaptic interface. However, the mechanism by which the “outside-in” signal contributes to receptor-mediated intracellular signaling that regulates the kinetics of granule delivery and efficiency of cytolytic activity is not well understood. We have found that variations in ICAM-1 expression on tumor cells influence killing kinetics of these cells by CD16.NK-92 cytolytic effectors suggesting that changes in integrin ligation on the effector cells regulate the kinetics of cytolytic activity by the effector cells. To understand how variations of the integrin receptor ligation may alter cytolytic activity of CD16.NK-92 cells, we analyzed molecular events at the contact area of these cells exposed to planar lipid bilayers that display integrin ligands at different densities and activating CD16-specific antibodies. Changes in the extent of integrin ligation on CD16.NK-92 cells at the cell/bilayer interface revealed that the integrin signal influences the size and the dynamics of activating receptor microclusters in a Pyk2-dependent manner. Integrin-mediated changes of the intracellular signaling significantly affected the kinetics of degranulation of CD16.NK-92 cells providing evidence that integrins regulate the rate of target cell destruction in antibody-dependent cell cytotoxicity (ADCC).  相似文献   

16.
Human monocytes exposed in vitro to recombinant macrophage-colony-stimulating factor (rhMCSF) differentiate into monocyte-derived macrophages (MDM), which mediate efficient antibodydependent cytotoxicity (ADCC) against tumor cells. We and others have shown that this form of ADCC is unusual in that phagocytosis, rather than extracellular lysis, appears to play the major role in target cell killing. In this study, we asked whether the phagocytic form of cytotoxicity seen with ADCC could occur in the absence of an opsonizing antibody. We now report that, whereas cell lines derived from solid tumors are often resistant to antibody-independent cytotoxicity, malignant cells of lymphoid origin appear particularly susceptible to such antibody-independent killing. We found that all of nine lymphocytic leukemia and lymphoma cell lines tested in a total of 35 experiments, plus all four samples of fresh leukemic blasts, were consistently susceptible to antibody-independent MDM cytotoxicity. Antibody-independent cytotoxicity against these cells was efficient (40%–63% killing) at effector: target (E:T) ratios as low as 2:1. Like ADCC, antibody-independent cytotoxicity involved phagocytosis of target cells, as demonstrated by ingestion of fluorescently labeled targets and analysis by flow cytometry. At the time of phagocytosis, the majority of target cells retained membrane integrity, as indicated by the direct transfer of intracellular [51Cr]chromate from radiolabeled targets to phagocytosing MDM, without release of the label into the medium. However, in contrast to ADCC, we found that the degree of antibody-independent cytotoxicity was not a function of the E:T ratio. Instead, a constant proportion of the available target cells were killed regardless of the E:T ratio, suggesting that target cell recognition, rather than effector cell potency, might be the limiting factor in determining cytotoxicity. In additional experiments, we have also identified a second tumor cell type, nueroblastoma, as being susceptible to antibody-independent phagocytosis (all of five cell lines tested, cytotoxicity 40%–93%, E:T=3:1). Our data thus indicate that the cytotoxicity induced by rhMCSF is not confined to antibody-mediated killing, and that phagocytosis can play a significant role in target cell destruction even in the absence of opsonizing antibody.Supported in part by grants CA-33049 and CA-53624 from the National Institutes of Health, grant IRG-174b from the American Cancer Society, the Friends of Children Toys-R-Us Foundation. Inc., and the Robert Steel Foundation  相似文献   

17.
Understanding alterations in HIV-specific immune responses during antiretroviral therapy (ART), such as antibody-dependent cellular cytotoxicity (ADCC), is important in the development of novel strategies to control HIV-1 infection. This study included 53 HIV-1 positive individuals. We evaluated the ability of effector cells and antibodies to mediate ADCC separately and in combination using the ADCC-PanToxiLux assay. The ability of the peripheral blood mononuclear cells (PBMCs) to mediate ADCC was significantly higher in individuals who had been treated with ART before seroconversion, compared to the individuals initiating ART at a low CD4+ T cell count (<350 cells/μl blood) and the ART-naïve individuals. The frequency of CD16 expressing natural killer (NK) cells correlated with both the duration of ART and Granzyme B (GzB) activity. In contrast, the plasma titer of antibodies mediating ADCC declined during ART. These findings suggest improved cytotoxic function of the NK cells if initiating ART early during infection, while the levels of ADCC mediating antibodies declined during ART.  相似文献   

18.
Freshly collected peritoneal cells (PC) and cultured spleen cells (SC) (but not fresh SC) from nonimmune mice could mediate antibody-dependent cellular cytotoxicity (ADCC) against herpes simplex virus (HSV)-infected cells in the presence of mouse or human sera containing antibody to HSV. PC also demonstrated variable natural killer cell cytotoxicity to infected cells. Both PC and cultured SC required high concentrations of antibody and high effector to target cell ratios for optimal ADCC. The time kinetics of the reaction appeared to depend on the state of activation of the effector cells. In both PC and SC populations, ADCC activity was limited to adherent cells, and was profoundly inhibited by particulate latex or silica. The murine effector cell found in PC and SC able to mediate ADCC to HSV-infected cells appears to be a macrophage.  相似文献   

19.
Normal human peripheral blood lymphocytes (PBL) express several in vitro cytotoxic functions, among which are natural killer (NK), antibody-dependent cellular cytotoxicity (ADCC), and lectin-dependent cellular cytotoxicity (LDCC). The relationship of these various cytotoxic functions and the identity of cells involved has been a subject of controversy. Recently it was reported that NK and K for ADCC can be mediated by the same cell, suggesting that they constitute in large part a single subpopulation with multiple cytotoxic functions. The ability of this NK/K effector cell to mediate LDCC was examined here using the two target conjugate assay. The effector cells were Ficoll-Hypaque PBL or LGL-enriched fractions. The targets used were K562 or MOLT for NK, RAJI coated with antibody for ADCC, and RAJI coated with PHA or Con A or modified by NaIO4 for LDCC. In the two-target conjugate assay, one of the targets is fluorescein labeled for identification. The results show that (a) LDCC copurifies with NK/K and is enriched in the LGL fraction, as measured in both the 51Cr-release assay and the single-cell assay for cytotoxicity; (b) single effector cells simultaneously bind to NK or ADCC and LDCC targets, revealing that single cells bear binding receptors for all targets; and (c) single lymphocytes were not able to kill both bound NK/K and LDCC targets. However, significant two-target killing was obtained when both targets were NK targets, ADCC targets, LDCC targets, or one NK and one ADCC target. These results demonstrate that the NK and LDCC effector cells are distinct subpopulations copurified in the LGL fraction. In addition, the results show that lectin is unable to trigger globally an NK effector cell to mediate cytotoxicity against a bound NK insensitive target. Thus, although both NK and LDCC effector cells are present in the LGL fraction and can bind to both types of targets, the trigger of the lethal hit event is the function of specialized effector cells.  相似文献   

20.
J Xiao  Z Brahmi 《Cellular immunology》1989,122(2):295-306
In a previous study, we demonstrated that human natural killer cells (NK) lost their lytic activity after interaction with a sensitive target. The loss of NK activity also led to the loss of antibody-dependent cellular cytotoxicity (ADCC), prompting us to postulate that NK and ADCC activities may result from a common lytic mechanism. In this study, we examined whether nonadherent lymphocytes cultured 7 days in the presence of IL-2 (lymphokine-activated killer (LAK) cells) could also be inactivated and, subsequently, be reactivated in the presence of IL-2. We tested three populations of effector cells (EC): cells isolated from freshly drawn blood and tested immediately, cells cultured with IL-2 for 18 hr, and LAK cells. Once they have interacted with K562, all three cell populations lost greater than 90% of their NK-like lytic activity (NK-CMC) but only 80% of ADCC. However, when we treated the three cell types with antibody-coated K562, they lost 90-99% of NK-CMC and 90-97% of ADCC. In these inactivated effector cells we also observed: (i) a reduction in membrane expression of C-reactive protein; and (ii) a decrease in the expression of Leu-11a when EC were inactivated with antibody-coated K562. The loss of lytic activity against K562 was accompanied by a concomitant loss of activity against other LAK-sensitive targets as well as against antibody-coated targets (ADCC). In competitive inhibition experiments the inactivated effector cells failed to inhibit normal NK-CMC and ADCC activities mediated by fresh NK cells. As we have shown previously, this target-directed inactivation was not due to cell death or to lack of conjugate formation. Inactivated LAK cells regained their lytic potential when cultured with IL-2 and this effect was time dependent. By 72 hr, LAK cells inactivated with K562 regained 99% NK-CMC and 82% ADCC, whereas LAK cells inactivated with antibody-coated K562 regained only 80% NK-CMC and 70% ADCC. When we treated the effector cells with emetine, a potent inhibitor of protein synthesis, we could still inactivate the effector cells with K562 and with antibody-coated K562 but could not reactivate them with IL-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号