首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This electron microscopical study was performed in order to follow the endocytic pathway of horseradish peroxidase and colloidal gold tracers and to determine the involvement of endocytosis in postnatal differentiation in superficial cells of the mouse urinary bladder epithelium. Morphometric analyses of late endosomes/multivesicular bodies from day of birth to day 25 were performed. The internalisation and intracellular transport of luminal plasmalemma to multivesicular bodies via endocytic vesicles, early endosomes and pleomorphic compartments was established. Dynamic changes in endocytic activity took place within the first few days of postnatal differentiation. During this period the number of multivesicular bodies changed in an inverse ratio to their size. After the third day endocytic activity gradually approached the low rate of adult urothelium.  相似文献   

2.
AIM: To describe the way stations of high-density lipoprotein(HDL) uptake and its lipid exchange in endothelial cells in vitro and in vivo. METHODS: A combination of fluorescence microscopy using novel fluorescent cholesterol surrogates and electron microscopy was used to analyze HDL endocytosis in great detail in primary human endothelial cells. Further, HDL uptake was quantified using radio-labeled HDL particles. To validate the in vitro findings mice were injected with fluorescently labeled HDL and particle uptake in the liver was analyzed using fluorescencemicroscopy. RESULTS: HDL uptake occurred via clathrin-coated pits, tubular endosomes and multivesicular bodies in human umbilical vein endothelial cells. During uptake and resecretion, HDL-derived cholesterol was exchanged at a faster rate than cholesteryl oleate, resembling the HDL particle pathway seen in hepatic cells. In addition, lysosomes were not involved in this process and thus HDL degradation was not detectable. In vivo, we found HDL mainly localized in mouse hepatic endothelial cells. HDL was not detected in parenchymal liver cells, indicating that lipid transfer from HDL to hepatocytes occurs primarily via scavenger receptor, class B, type Ⅰ mediated selective uptake without concomitant HDL endocytosis. CONCLUSION: HDL endocytosis occurs via clathrincoated pits, tubular endosomes and multivesicular bodies in human endothelial cells. Mouse endothelial cells showed a similar HDL uptake pattern in vivo indicating that the endothelium is one major site of HDL endocytosis and transcytosis.  相似文献   

3.
1. The endocytic pathway of horseradish peroxidase (HRP) was investigated in the perikarya of cultured neurons by electron microscopy and enzyme cytochemistry. The tracer was observed in endocytic pits and vesicles, endosomes, multivesicular bodies, and lysosomes. It took approximate 15 min for the transfer of HRP from the exterior of the cell to the lysosomes. 2. Monensin induced distension of the Golgi apparatus and formation of intracellular vacuoles. When neurons were incubated with both monensin and HRP for 30 to 120 min, the number of HRP-labeled endosomes was greater than that in the monensin-free group, whereas the reverse was seen for HRP-positive lysosomes. The formation of HRP-positive lysosomes in monensin-treated cells was blocked by 47 to 79%. 3. These results indicate that the intracellular transport of the endocytosed macromolecule is pH dependent. It is also possible that the export of lysosomal enzymes is inhibited by monensin, resulting in an accumulation of the endosomes and a reduction of the lysosomes.  相似文献   

4.
High density lipoprotein (HDL) and its main protein component apolipoprotein A-I (ApoA-I) have multiple anti-atherogenic functions. Some of them are exerted within the vessel wall, so that HDL needs to pass the endothelial barrier. To elucidate their itinerary through endothelial cells (ECs), we labelled ApoA-I and HDL either fluorescently or with 1.4 nm nanogold and investigated their cellular localization by using immunofluorescent microscopy (IFM) and electron microscopy (EM). HDL as well as ApoA-I is taken up by ECs into the same route of intracellular trafficking. Time kinetics and pulse chase experiments revealed that HDL is trafficked through different vesicles. HDL partially co-localized with LDL, albumin, and transferrin. HDL did not co-localize with clathrin and caveolin-1. Fluorescent HDL was recovered at small proportions in early endosomes and endosome to trans-golgi network vesicles but not at all in recycling endosomes, in late endosomes or lysosomes. EM identified HDL mainly in large filled vesicles which however upon IFM did not colocalize with markers of multivesicular bodies or autophagosomes. The uptake or cellular distribution of HDL was altered upon pharmacological interference with cytochalasine D, colchicine and dynasore. Blockage of fluid phase uptake with Amiloride or EIPA did not reduce the uptake of HDL. Neither did we observe any co-localization of HDL with dextran as the marker of fluid phase uptake. In conclusion, HDL and ApoA-I are internalized and trafficked by endothelial cells through a non-classical endocytic route.  相似文献   

5.
Immunoelectron microscopy was used to localize the brush border hydrolases sucrase-isomaltase (SI) and dipeptidylpeptidase IV (DPPIV) in the human colon carcinoma cell line Caco-2. Both enzymes were detected at the microvillar membrane, in small vesicles and multivesicular bodies (MVBs), and in lysosomal bodies. In addition, DPPIV was found in the Golgi apparatus, a variety of apical vesicles and tubules, and at the basolateral membrane. To investigate whether the hydrolases present in the lysosomal bodies were endocytosed from the apical membrane, endocytic compartments were marked with the endocytic tracer cationized ferritin (CF). After internalization from the apical membrane through coated pits, CF was first recovered in apical vesicles and tubules, and larger electronlucent vesicles (early endosomes), and later accumulated in MVBs (late endosomes) and lysosomal bodies. DPPIV was localized in a subpopulation of both early and late endocytic vesicles, which contained CF after 3 and 15 min of uptake, respectively. Also, internalization of the specific antibody against DPPIV and gold labeling on cryosections showed endocytosed DPPIV in both early and late endosomes. However, unlike CF, no accumulation of DPPIV was seen in MVBs or lysosomal bodies after longer chase times. The results indicate that in Caco-2 cells the majority of brush border hydrolases present in lysosomal bodies are not endocytosed from the brush border membrane. Furthermore, the labeling patterns obtained, suggest that late endosomes may be involved in the recycling of endocytosed DPPIV to the microvilli.  相似文献   

6.
Shiga toxin and other toxins of this family can escape the endocytic pathway and reach the Golgi apparatus. To synchronize endosome to Golgi transport, Shiga toxin B-fragment was internalized into HeLa cells at low temperatures. Under these conditions, the protein partitioned away from markers destined for the late endocytic pathway and colocalized extensively with cointernalized transferrin. Upon subsequent incubation at 37°C, ultrastructural studies on cryosections failed to detect B-fragment–specific label in multivesicular or multilamellar late endosomes, suggesting that the protein bypassed the late endocytic pathway on its way to the Golgi apparatus. This hypothesis was further supported by the rapid kinetics of B-fragment transport, as determined by quantitative confocal microscopy on living cells and by B-fragment sulfation analysis, and by the observation that actin- depolymerizing and pH-neutralizing drugs that modulate vesicular transport in the late endocytic pathway had no effect on B-fragment accumulation in the Golgi apparatus. B-fragment sorting at the level of early/recycling endosomes seemed to involve vesicular coats, since brefeldin A treatment led to B-fragment accumulation in transferrin receptor–containing membrane tubules, and since B-fragment colocalized with adaptor protein type 1 clathrin coat components on early/recycling endosomes. Thus, we hypothesize that Shiga toxin B-fragment is transported directly from early/recycling endosomes to the Golgi apparatus. This pathway may also be used by cellular proteins, as deduced from our finding that TGN38 colocalized with the B-fragment on its transport from the plasma membrane to the TGN.  相似文献   

7.
Holo-high density lipoprotein (HDL) particle uptake, besides selective lipid uptake, constitutes an alternative pathway to regulate cellular cholesterol homeostasis. In the current study, the cellular path of holo-HDL particles was investigated in human liver carcinoma cells (HepG2) using combined light and electron microscopical methods. The apolipoprotein moiety of HDL was visualized with different markers: horseradish peroxidase, colloidal gold and the fluorochrome Alexa568, used in fluorescence microscopy and after photooxidation correlatively at the ultrastructural level. Time course experiments showed a rapid uptake of holo-HDL particles, an accumulation in endosomal compartments, with a plateau after 1–2 h of continuous uptake, and a clearance 1–2 h upon replacement by unlabeled HDL. Correlative microscopy, using HDL-Alexa568-driven diaminobenzidine (DAB) photooxidation, identified the fluorescent organelles as DAB-positive multivesicular bodies (MVBs) in the electron microscope; their luminal contents but not the internal vesicles were stained. Labeled MVBs increased in numbers and changed shapes along with the duration of uptake, from polymorphic organelles with multiple surface domains and differently shaped protrusions dominating at early times of uptake to compact bodies with mainly tubular appendices and densely packed vesicles after later times. Differently shaped and labeled surface domains and appendices, as revealed by three dimensional reconstructions, as well as images of homotypic fusions indicate the dynamics of the HDL-positive MVBs. Double staining visualized by confocal microscopy, along with the electron microscopic data, shows that holo-HDL particles after temporal storage in MVBs are only to a minor degree transported to lysosomes, which suggests that different mechanisms are involved in cellular HDL clearance, including resecretion.  相似文献   

8.
多泡体形成过程的细胞化学研究   总被引:1,自引:0,他引:1  
Multivesicular bodies were observed frequently in electron microscope photographs of Leydig cells from normal adult rat testes. Their formation, evolution and fate were analyzed morphologically in preparations treated to show cytidine monophosphatase (CMPase) activity and in animals sacrificed at various time intervals ranging from 5 min to 2 hrs after a single intratesticular injection of cationic ferritin (CF). Analysis of morphological and cytochemical data led to the following interpretation for the origin and fate of the multivesicular bodies in Leydig cells. The formation of multivesicular bodies in Leydig cells can be divided into three steps. Step 1, some endocytic vacuoles in Golgi region fuse with small vesicles to form pre-multivesicular bodies. Step 2, the pre-multivesicular bodies fuse together to form pale multivesicular bodies which are characterized by their large size, pale matrix and paucity of internal vesicles. Step 3, the pale multivesicular bodies remove their surplus enveloping membrane to become dense multivesicular bodies which are characterized by their smaller size, dense matrix and filling with internal vesicles. The pre-multivesicular bodies and pale multivesicular bodies do not contain hydrolytic enzymes, the dense multivesicular bodies acquire their hydrolytic enzymes by fusion with lysosomes and show CMPase activity. The dense multivesicular bodies often show a very close association with autophagosomes, and they might be involved in the autophagic activity of Leydig cells.  相似文献   

9.
本实验用酶细胞化学和示踪细胞化学方法观察了睾丸间质细胞中多泡体的形成过程及其与溶酶体的关系。实验结果表明,睾丸间质细胞中多泡体的形成可分三个阶段:首先,一些含内吞物质的泡状结构进入高尔基体区域,与那里的小泡融合,形成内含少量小泡的前多泡体;然后,前多泡体互相融合,形成体积较大、基质电子密度低、内含小泡排列稀疏的低电子密度多泡体;最后,低电子密度多泡体通过表面长出微绒毛样结构并不断断裂的方式去除多余的界膜,形成体积较小、基质电子密度高、内含小泡排列紧密的高电子密度多泡体。因此,多泡体的形成既与内吞活动有关,又与高尔基体区域小泡有关。前多泡体和低电子密度多泡体不含溶酶体酶。在多泡体形成过程中,只有到高电子密度多泡体阶段,才与溶酶体发生关系,从溶酶体中获取溶酶体酶。多泡体形成后,常与自体吞噬泡靠近,可能参与睾丸间质细胞的自体吞噬活动。  相似文献   

10.
CYTOCHEMICAL STAINING OF MULTIVESICULAR BODY AND GOLGI VESICLES   总被引:19,自引:10,他引:9       下载免费PDF全文
To investigate the origin and nature of vesicles found within multivesicular bodies (mvb), the cytochemical staining properties of mvb vesicles were compared with those of other cytoplasmic vesicles, i.e. those associated with the Golgi complex and endocytic vesicles found near the apical cell surface. Rat epididymal tissue was stained in unbuffered OsO4 for 40–48 hr, and the distribution of stain was compared to that of reaction products for acid phosphatase (AcPase) to mark lysosomal vesicles, or thiamine pyrophosphatase (TPPase) to mark certain Golgi vesicles, or infused with peroxidase (HRPase) to demonstrate endocytic vesicles. Mvb vesicles were stained only by OsO4; AcPase, TPPase, and HRPase reaction products stained the mvb matrix. OsO4 also stained certain vesicles along the convex surface of the Golgi complex. The findings suggest that mvb vesicles in epididymal epithelium are not lysosomes and are not involved in protein uptake. The majority of these vesicles have cytochemical reactions in common with vesicles located along the convex surface of the Golgi complex and may be derived therefrom. A minority are derived from the mvb-limiting membrane.  相似文献   

11.
The role of coated vesicles during the absorption of horseradish peroxidase was investigated in the epithelium of the rat vas deferens by electron microscopy and cytochemistry. Peroxidase was introduced into the vas lumen in vivo. Tissue was excised at selected intervals, fixed in formaldehyde-glutaraldehyde, sectioned without freezing, incubated in Karnovsky's medium, postfixed in OsO4, and processed for electron microscopy. Some controls and peroxidase-perfused specimens were incubated with TPP,1 GP, and CMP. Attention was focused on the Golgi complex, apical multivesicular bodies, and two populations of coated vesicles; large (> 1000 A) ones concentrated in the apical cytoplasm and small (<750 A) ones found primarily in the Golgi region. 10 min after peroxidase injection, the tracer is found adhering to the surface plasmalemma, concentrated in bristle-coated invaginations, and within large coated vesicles. After 20–45 min, it is present in large smooth vesicles, apical multivesicular bodies, and dense bodies. Peroxidase is not seen in small coated vesicles at any interval. Counts of small coated vesicles reveal that during peroxidase absorption they first increase in number in the Golgi region and later, in the apical cytoplasm. In both control and peroxidase-perfused specimens incubated with TPP, reaction product is seen in several Golgi cisternae and in small coated vesicles in the Golgi region. With GP, reaction product is seen in one to two Golgi cisternae, multivesicular bodies, dense bodies, and small coated vesicles present in the Golgi region or near multivesicular bodies. The results demonstrate that (a) this epithelium functions in the absorption of protein from the duct lumen, (b) large coated vesicles serve as heterophagosomes to transport absorbed protein to lysosomes, and (c) some small coated vesicles serve as primary lysosomes to transport hydrolytic enzymes from the Golgi complex to multivesicular bodies.  相似文献   

12.
ABSTRACT: BACKGROUND: In yeast and mammals, many plasma membrane (PM) proteins destined for degradation are tagged with ubiquitin. These ubiquitinated proteins are internalized into clathrin-coated vesicles and are transported to early endosomal compartments. There, ubiquitinated proteins are sorted by the endosomal sorting complex required for transport (ESCRT) machinery into the intraluminal vesicles of multivesicular endosomes. Degradation of these proteins occurs after endosomes fuse with lysosomes/lytic vacuoles to release their content into the lumen. In plants, some PM proteins, which cycle between the PM and endosomal compartments, have been found to be ubiquitinated, but it is unclear whether ubiquitin is sufficient to mediate internalization and thus acts as a primary sorting signal for the endocytic pathway. To test whether plants use ubiquitin as a signal for the degradation of membrane proteins, we have translationally fused ubiquitin to different fluorescent reporters for the plasma membrane and analyzed their transport. RESULTS: Ubiquitin-tagged PM reporters localized to endosomes and to the lumen of the lytic vacuole in tobacco mesophyll protoplasts and in tobacco epidermal cells. The internalization of these reporters was significantly reduced if clathrin-mediated endocytosis was inhibited by the coexpression of a mutant of the clathrin heavy chain, the clathrin hub. Surprisingly, a ubiquitin-tagged reporter for the Golgi was also transported into the lumen of the vacuole. Vacuolar delivery of the reporters was abolished upon inhibition of the ESCRT machinery, indicating that the vacuolar delivery of these reporters occurs via the endocytic transport route. CONCLUSIONS: Ubiquitin acts as a sorting signal at different compartments in the endomembrane system to target membrane proteins into the vacuolar degradation pathway: If displayed at the PM, ubiquitin triggers internalization of PM reporters into the endocytic transport route, but it also mediates vacuolar delivery if displayed at the Golgi. In both cases, ubiquitin-tagged proteins travel via early endosomes and multivesicular bodies to the lytic vacuole. This suggests that vacuolar degradation of ubiquitinated proteins is not restricted to PM proteins but might also facilitate the turnover of membrane proteins in the early secretory pathway.  相似文献   

13.
In yeast, membrane proteins from the biosynthetic and endocytic pathways must be ubiquitylated for sorting to inward-budding vesicles in late endosomes, which give rise to multivesicular bodies. A conserved protein complex containing the yeast Vps23p or its mammalian counterpart Tsg101 may act as the ubiquitin receptor.  相似文献   

14.
Multivesicular bodies are endocytic compartments containing multiple small vesicles that originate from the invagination and ‘pinching off’ of the limiting membrane into the luminal space [1], [2], [3]. The molecular mechanisms responsible for the formation of these compartments are unknown. In the human melanoma cell line Mel JuSo, newly synthesised major histocompatibility complex (MHC) class II molecules accumulate in multivesicular early lysosomes [4]. The phosphatidylinositol (PI) 3-kinase inhibitor wortmannin induced the transient vacuolation of early MHC class II compartments, but also of early and late endosomes. We demonstrate that endocytic membrane influx is required for the wortmannin-induced swelling of vesicles. The wortmannin-induced vacuoles contained a reduced number of intraluminal vesicles that were linked to the limiting membrane by membraneous connections. These data suggest that wortmannin inhibits the invagination and/or pinching off of intraluminal vesicles and provide evidence of a role for PI 3-kinase in multivesicular body morphogenesis. We propose that the wortmannin-induced vacuolation occurs as a result of the inability of multivesicular bodies to store endocytosed membranes as intraluminal vesicles thereby causing the formation of large ‘empty’ vacuoles.  相似文献   

15.
After internalization, ubiquitinated signaling receptors are delivered to early endosomes. There, they are sorted and incorporated into the intralumenal invaginations of nascent multivesicular bodies, which function as transport intermediates to late endosomes. Receptor sorting is achieved by Hrs—an adaptor-like protein that binds membrane PtdIns3P via a FYVE motif—and then by ESCRT complexes, which presumably also mediate the invagination process. Eventually, intralumenal vesicles are delivered to lysosomes, leading to the notion that EGF receptor sorting into multivesicular bodies mediates lysosomal targeting. Here, we report that Hrs is essential for lysosomal targeting but dispensable for multivesicular body biogenesis and transport to late endosomes. By contrast, we find that the PtdIns3P-binding protein SNX3 is required for multivesicular body formation, but not for EGF receptor degradation. PtdIns3P thus controls the complementary functions of Hrs and SNX3 in sorting and multivesicular body biogenesis.  相似文献   

16.
Arabinogalactan-protein was localised ultrastructurally in the transmitting tissue of the Nicotinana alata Link & Otto style from the bud stage to anthesis using monoclonal antibody directed to terminal α-L-arabinosyl residues followed by goat anti-mouse IgG linked to 20 nm gold particles. Gold particles were localised on the Golgi apparatus, multivesicular bodies, cell wall and intercellular matrix with the highest concentration over multivesicular bodies. During flower development there was an increase in the total number of gold particles with a relative decrease on the multivesicular bodies and an increase on the intercellular matrix. There was also an increase during development in the proportion of intercellular matrix relative to all other components of the transmitting tissue. Vesiculation of the endoplasmic reticulum and the production of cup-shaped vesicles by the Golgi bodies were observed during development. It is concluded that secretion of arabinogalactan-protein from the intracellular to the extracellular location occurs via multivesicular bodies produced by the Golgi apparatus and possibly the endoplasmic reticulum.  相似文献   

17.
Endocytosis and intracellular sorting of transforming growth factor-β (TGF-β) receptors play an important regulatory role in TGF-β signaling. Two major endocytic pathways, clathrin- and caveolae-mediated endocytosis, have been reported to independently mediate the internalization of TGF-β receptors. In this study, we demonstrate that the clathrin- and caveolae-mediated endocytic pathways can converge during TGF-β receptor endocytic trafficking. By tracking the intracellular dynamics of fluorescently-labeled TGF-β type I receptor (TβRI), we found that after mediating TβRI internalization, certain clathrin-coated vesicles and caveolar vesicles are fused underneath the plasma membrane, forming a novel type of caveolin-1 and clathrin double-positive vesicles. Under the regulation of Rab5, the fused vesicles are targeted to early endosomes and thus deliver the internalized TβRI to the caveolin-1 and EEA1 double-positive early endosomes (caveolin-1-positive early endosomes). We further showed that the caveolin-1-positive early endosomes are positive for Smad3/SARA, Rab11 and Smad7/Smurf2, and may act as a multifunctional device for TGF-β signaling and TGF-β receptor recycling and degradation. Therefore, these findings uncover a novel scenario of endocytosis, the direct fusion of clathrin-coated and caveolae vesicles during TGF-β receptor endocytic trafficking, which leads to the formation of the multifunctional sorting device, caveolin-1-positive early endosomes, for TGF-β receptors.  相似文献   

18.
The neuronal perikarya of the grasshopper contain sudanophilic lipochondria which exhibit an affinity for vital dyes. These lipochondria are membrane-delimited and display acid phosphatase activity; hence they correspond to lysosomes. Unlike those of most vertebrates, these lysosomes also hydrolyze thiamine pyrophosphate and adenosine triphosphate. Like vertebrate lysosomal "dense bodies," they are electron-opaque and contain granular, vesicular, or lamellar material. Along with several types of smaller dense bodies, they are found in close spatial association with the Golgi apparatus. The Golgi complexes are frequently arranged in concentric configurations within which these dense bodies lie. Some of the smaller dense bodies often lie close to or in association with the periphery of dense multivesicular bodies. Further, bodies occur that display gradations in structure between these multivesicular bodies and the dense lysosomes. Acid phosphatase activity is present in the small as well as the larger dense bodies, in the multivesicular bodies, and in some of the Golgi saccules, associated vesicles, and fenestrated membranes; thiamine pyrophosphatase is found in both the dense bodies and parts of the Golgi complex. The close spatial association of these organelles, together with their enzymatic similarities, suggests the existence of a functional or developmental relationship between them.  相似文献   

19.
The human cytomegalovirus genome encodes four putative seven transmembrane domain chemokine receptor-like proteins. Although important in viral pathogenesis, little is known about the properties or functions of these proteins. We previously reported that US28 is located in endocytic vesicles and undergoes constitutive endocytosis and recycling. Here we studied the cellular distributions and trafficking of two other human cytomegalovirus chemokine receptor-like proteins, UL33 and US27, in transfected and human cytomegalovirus-infected cells. Immunofluorescence staining indicated that UL33 and US27 are located at the cell surface, although the majority of both proteins was seen in intracellular organelles located in the perinuclear region of the cell. The intracellular pools of UL33 and US27 showed overlap with markers for endocytic organelles. Antibody-feeding experiments indicated that cell surface US27 undergoes endocytosis. By immunogold labeling of cryosections and electron microscopy, UL33 was seen to localize to multivesicular bodies (MVBs or multivesicular endosomes). Electron microscopy analysis of human cytomegalovirus-infected cells showed that most virus particles wrapped individually into short membrane cisternae, although virus particles were also occasionally seen within and budding into MVBs. Electron microscopy immunolocalization of viral UL33 and US27 on ultrathin cryosections of human cytomegalovirus-infected cells showed gold particles over the membranes into which virions were wrapping, in small membrane tubules and vesicles and in MVBs. Labeling of the human cytomegalovirus glycoproteins gB and gH indicated that these proteins were also present in the same membrane structures. This first electron microscopy analysis of human cytomegalovirus assembly using immunolabeling suggests that the localization of UL33, US27 and US28 to endosomes may allow these proteins to be incorporated into the viral membrane during the final stages of human cytomegalovirus assembly.  相似文献   

20.
Endocytosed receptors are either recycled to the plasma membrane or trapped within intralumenal vesicles of multi-vesicular bodies for subsequent degradation in lysosomes. How the cell is able to sort receptors in endosomes has so far been largely unknown. The hepatocyte growth factor regulated tyrosine kinase substrate, Hrs, is an essential protein that has been implicated in cell signalling and intracellular membrane trafficking. Very recently, several reports have demonstrated a role for Hrs in endocytic sorting of ubiquitinated membrane proteins. Here, we review current knowledge about how Hrs recognises ubiquitinated cargo that is destined for lysosomal degradation, and how Hrs may act as a key regulator of the molecular machinery involved in receptor sorting and multivesicular body formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号