首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Human serum albumin acts as a reservoir and transport protein for endogenous (e.g. fatty acids or bilirubin) and exogenous compounds (e.g. drugs or nutrients) in the blood. The binding of a drug to albumin is a major determinant of its pharmacokinetic and pharmacodynamic profile.

Scope of review

The present review discusses recent findings regarding the nature of drug binding sites, drug-albumin binding in certain diseased states or in the presence of coadministered drugs, and the potential of utilizing albumin–drug interactions in clinical applications.

Major conclusions

Drug–albumin interactions appear to predominantly occur at one or two specific binding sites. The nature of these drug binding sites has been fundamentally investigated as to location, size, charge, hydrophobicity or changes that can occur under conditions such as the content of the endogenous substances in question. Such findings can be useful tools for the analysis of drug–drug interactions or protein binding in diseased states. A change in protein binding is not always a problem in terms of drug therapy, but it can be used to enhance the efficacy of therapeutic agents or to enhance the accumulation of radiopharmaceuticals to targets for diagnostic purposes. Furthermore, several extracorporeal dialysis procedures using albumin-containing dialysates have proven to be an effective tool for removing endogenous toxins or overdosed drugs from patients.

General significance

Recent findings related to albumin–drug interactions as described in this review are useful for providing safer and efficient therapies and diagnoses in clinical settings. This article is part of a Special Issue entitled Serum Albumin.  相似文献   

3.
Human serum albumin binds ligands such as fatty acids and metals in circulation. Oxidative stress can modify albumin and affect ligand binding. This study examines the role of oxidative stress and fatty acids in modulating cobalt binding to albumin in patients with fatty liver. Elevated levels of malondialdehyde and protein carbonyls, indicative of oxidative stress were evident in serum of patients with fatty liver. A significant decrease in albumin-cobalt binding was also observed. Albumin isolated from patient serum also showed an increase in bound fatty acids. In vitro experiments indicated that while oxidant exposure or removal of fatty acids independently decreased cobalt binding to albumin, removal of fatty acids from the protein prior to oxidant exposure did not influence the oxidant effect on albumin-cobalt binding. These results suggest that oxidative stress and fatty acids on albumin can influence albumin-cobalt binding in patients with fatty liver by independent mechanisms.  相似文献   

4.
Alpha-1 acid glycoprotein (AGP, orosomucoid), a major acute phase protein in plasma, displays potent cytoprotective and anti-inflammatory activities whose molecular mechanisms are largely unknown. Because AGP binds various exogenous drugs, we have searched for endogenous ligands for AGP. We found that AGP binds lysophospholipids in a manner discernible from albumin in several ways. First, mass spectrometric analyses showed that AGP isolated from plasma and serum contained lysophosphatidylcholine (LPC) enriched in mono and polysaturated acyl chains, whereas albumin contained mostly saturated LPC. Second, AGP bound LPC in a 1:1 molar ratio and with a higher affinity than free fatty acids, whereas albumin bound LPC in a 3:1 ratio but with a lower affinity than that of free fatty acids. Consequently, free fatty acids displaced LPC more avidly from albumin than from AGP. Competitive ligand displacement indicated the highest affinity for AGP to LPC20:4, 18:3, 18:1, and 16:0 (150-180 nM), lysophosphatidylserine (Kd 190 nM), and platelet activating factor (PAF) (Kd 235 nM). The high affinity of AGP to LPC in equilibrium was verified by stopped-flow kinetics, which implicated slow dissociation after fast initial binding, being consistent with an induced-fit mechanism. AGP also bound pyrene-labeled phospholipids directly from vesicles and more efficiently than albumin. AGP prevented LPC-induced priming and PAF-induced activation of human granulocytes, thus indicating scavenging of the cellular effects of the lipid ligands. The results suggest that AGP complements albumin as a lysophospholipid scavenging protein, particularly in inflammatory conditions when the capacity of albumin to sequester LPC becomes impaired.  相似文献   

5.

Background

Human serum albumin is the principal protein in human serum. It participates in regulation of plasma oncotic pressure and transports endogenous and exogenous ligands such as thyroxine, free fatty acids, bilirubin, and various drugs. Therefore, studying its ligand binding mechanism is important in understanding many functions of the protein.

Scope of review

This review discusses the pleiotropic biochemical effects and their relevance to physiologic functions of albumin.

Major conclusions

Although HSA is traditionally recognized for its ligand transport and oncotic effects in human circulation, our studies have revealed its participation in several other important physiological functions. In some instances, it may function as a catalyst. Pleiotropic properties of HSA have been exploited by development of recombinant HSA and its mutants, and the use of these recombinant proteins in studies with various biochemical and biophysical techniques. These studies allowed us to obtain new insights on the diverse roles of HSA in human physiology. The following aspects of HSA were discussed in this review: 1) HSA and its mutants' role in thyroxine transport, 2) structural details of the ligand binding functions of HSA to ligands such as warfarin, digoxin, halothane anesthetics, nitric oxide, bilirubin, free fatty acids, etc, and 3) the formation of modified albumin during myocardial ischemia, its diagnostic significance, and HSA's role in cardiovascular disease.

General significance

The appreciation and understanding of structural details and new physiological roles has provided a renewed interest in HSA research. Specific structural information gained on various mechanisms of HSA–ligand interaction can be used to develop a model to better understand protein–drug interactions, aid in the development of new drugs with improved pharmacokinetic effects, and ultimately be used to improve the quality of healthcare. This article is part of a Special Issue entitled Serum Albumin.  相似文献   

6.
Human serum albumin (HSA) is the most abundant protein in plasma. It is known to transport drugs as well as endogenous ligands, like free fatty acids (FFA). A mass spectrometry based method was applied to analyze the albumin bound lipid ligands. HSA was isolated from a human plasma pool by cold ethanol fractionation and ion exchange chromatography. HSA was defatted using a solvent extraction method to release the copurified lipids bound to the protein. The extracts were then analyzed by matrix-assisted laser desorption ionisation (MALDI) mass spectrometry (MS). Using this method, phospholipids and acylglycerols were detected. The phospholipids were identified to be lyso-phosphatidylcholine (lyso-PC) with distribution of different fatty acids (palmitic, stearic, oleic, and linoleic acids). An abundant species in the HSA lipid extract was found to be a diacylglycerol, composed of two linoleic and/or oleic acid chains. The identified motifs reflect structures that are known to be present in plasma. The binding of lysophospholipids has already been described but it is the first ever-reported evidence of native diacylglycerol ligands bound to HSA. Besides the native ligands from plasma a triacylglycerol was detected that has been added during the albumin preparation steps.  相似文献   

7.
8.
Ehrlich ascites tumor cells release free fatty acids (FFA) during in vitro incubation in media that contain albumin. The released FFA are derived by lipolysis from endogenous lipid esters. Addition of glucose to the incubation medium greatly decreases the quantity of fatty acid released by the cells. Cyanide, which inhibits endogenous lipid oxidation but not lipolysis, increases the quantity of fatty acid released to media containing albumin and causes free fatty acid to accumulate in the cells in the absence of exogenous albumin. The release of fatty acid, either preformed or derived by lipolysis during prolonged incubations, occurs under conditions of net fatty acid uptake from the incubation medium. Net release of fatty acid from the cell occurs only when fatty acid-extracted albumin is present in the extracellular medium; extrapolation of the data suggests that net release will not occur under physiological conditions. It is postulated that free fatty acid uptake and release are independent processes, the direction of net fatty acid movement being determined by the relationship between cellular free fatty acid concentration (regulating efflux) and the molar ratio of free fatty acid to albumin in the extracellular medium (regulating uptake).  相似文献   

9.
Fatty acid analysis of purified bovine alpha-foetoprotein showed it to contain 2.7 mol of fatty acid/mol of alpha-foetoprotein. Purified alpha-foetoprotein focused at isoelectric point 4.8. Removal of bound ligands from alpha-foetoprotein by charcoal treatment changed its isoelectric point to 5.2. This change could be reversed by addition of exogenous fatty acids to the defatted alpha-foetoprotein. Albumin isolated from the same foetal calf serum source as alpha-foetoprotein contained 1.4 mol of fatty acid/mol of protein. alpha-Foetoprotein and albumin contained comparable amounts of fatty acids with 14 to 18 carbon atoms, but alpha-foetoprotein contained 16 times as much of the long-chain polyunsaturated fatty acids as albumin. alpha-Foetoprotein was found to have slightly higher affinity for palmitate and linoleate and severalfold higher affinity for arachidonate than albumin. These findings suggest that alpha-foetoprotein may play a role in the foetal metabolism of the long-chain polyunsaturated fatty acids.  相似文献   

10.
Production of platelet-activating factor (PAF) during opsonized zymosan stimulation of human polymorphonuclear leukocytes is dependent on the concentration of extracellular albumin and on the presence of exogenous fatty acids. Fatty acid-free albumin caused a concentration-dependent increase in PAF synthesis up to 5% albumin concentrations (w/v) where the amount of PAF produced was three- to four-fold higher than in controls containing no albumin. The addition of free fatty acids, particularly arachidonic acid and palmitic acid, to 5% fatty acid-free albumin media caused a concentration-dependent decrease in PAF synthesis. A 50% inhibition of PAF synthesis was observed at an arachidonic acid concentration of 120 microM and at a palmitic acid concentration of 100 microM. The inhibition of PAF production by palmitic acid was also dependent on the concentration of extracellular albumin. In 0.5% fatty acid-free albumin media, a palmitic acid concentration of 40 microM produced a 50% inhibition in PAF synthesis. The addition of palmitic acid did not affect the release of endogenous arachidonic acid during stimulation. In contrast, the addition of stearic acid up to 120 microM in 5% fatty acid-free albumin media had no effect on PAF production. The different inhibitory effects of palmitic acid and stearic acid on PAF production may be related to differences in intracellular utilization of these two fatty acids during cell stimulation.  相似文献   

11.
Chuang VT  Otagiri M 《Chirality》2006,18(3):159-166
Stereoselectivity in binding can have a significant effect on the drug disposition such as first-pass metabolism, metabolic clearance, renal clearance, and protein and tissue binding. Human serum albumin (HSA) is able to stereoselectively bind a great number of various endogenous and exogenous compounds. Various experimental data suggested that the two major drug-binding cavities, namely, site I and site II, do not seem to be the stereoselective binding sites of HSA. Stereoselective binding of HSA under disease conditions such as renal and hepatic diseases was found to be enhanced. In addition, site-to-site displacement of a site II-specific drug by another site II-specific drug was found to be stereoselective, too. Endogenous compounds such as long-chain fatty acids and uremic toxins are likely to cause combined direct and cascade effects that contribute to the preferential binding of a particular drug enantiomer. Taking together the findings of other studies, it is highly possible that the stereoselective binding site exists at the interface of the subdomains.  相似文献   

12.
核受体是一类高度保守的配体依赖性转录因子家族,在哺乳动物发育、繁殖、免疫应答、心血管功能、组织生长、肿瘤形成、外源物清除及糖类和脂质代谢等生理过程中发挥重要作用。机体对外源物质的清除主要是由孕烷X受体等核受雄介导的。孕烷X受体最早是作为外源物感受器而被研究的,可以被大多数亲脂性药物等外源性化合物及一些内源性化合物如胆汁酸等结构差异很大的配体激活,进而与视黄醇类X受体等形成异源二聚体,结合在ER6、XREM等DNA元件上,调控下游靶基因(包括一相代谢酶、二相结合酶及药物转运体等基因)的表达。此外,孕烷X受体在能量代谢和免疫反应中也有重要作用,参与某些代谢疾病的发生发展,且已在动物模型中被证明是Ⅱ型糖尿病、血脂异常、肥胖症和动脉粥样硬化等代谢疾病治疗的有效靶标。我们主要就其发现、结构、组织分布、作用方式、自身表达的调节等方面的最新研究进行综述。  相似文献   

13.
The pancreatic B-cell may represent a fuel-sensor organ, the release of insulin evoked by nutrient secretagogues being attributable to an increased oxidation of exogenous and/or endogenous substrates. The participation of endogenous fatty acids in the secretory response of isolated rat pancreatic islets was investigated. Methyl palmoxirate (McN-3716, 0.1 mM), an inhibitor of long-chain-fatty-acid oxidation, suppressed the oxidation of exogenous [U-14C]palmitate and inhibited 14CO2 output from islets prelabelled with [U-14C]palmitate. Methyl palmoxirate failed to affect the oxidation of exogenous D-[U-14C]glucose or L-[U-14C]glutamine, the production of NH4+ and the output of 14CO2 from islets prelabelled with L-[U-14C]glutamine. In the absence of exogenous nutrient and after a lag period of about 60 min, methyl palmoxirate decreased O2 uptake to 69% of the control value. Methyl palmoxirate inhibited insulin release evoked by D-glucose, D-glyceraldehyde, 2-oxoisohexanoate, L-leucine, 2-aminobicyclo[2.2.1]heptane-2-carboxylate or 3-phenylpyruvate. However, methyl palmoxirate failed to affect insulin release when the oxidation of endogenous fatty acids was already suppressed, e.g. in the presence of pyruvate or L-glutamine. These findings support the view that insulin release evoked by nutrient secretagogues tightly depends on the overall rate of nutrient oxidation, including that of endogenous fatty acids.  相似文献   

14.
Many proteins have been identified as targets for S-nitrosylation, including structural and signaling proteins, and ion channels. S-nitrosylation plays an important role in regulating their activity and function. We used human serum albumin (HSA), a major endogenous NO traffic protein, and studied the effect of mediators on S-nitrosylation processes which control NO bioactivity. By using NOC-7, S-nitrosoglutathione, and activated RAW264.7 cells as NO-donors we found that high-affinity binding of endogenous ligands (Cu2+, bilirubin and fatty acid) can affect these processes. It is likely that the same effects take place in many clinical situations characterized by increased fatty acid concentrations in plasma such as type II diabetes and the metabolic syndrome. Thus, endogenous ligands, changing their plasma concentrations, could be a novel type of mediator of S-nitrosylation not only in the case of HSA but also for other target proteins.  相似文献   

15.
Isolated mouse liver mitochondria were loaded with endogenous free fatty acids by aging in vitro. The oxidation and compartmentation of these fatty acids was studied. ATP-supported carnitine-dependent and carnitine-independent oxidation pathways of about equal activity were identified. The carnitine-dependent activity was abolished by nagarse and tetrathionate. It was also absent in mitoplasts. Hence the endogenous pool of free fatty acids which served as substrate for this pathway was located in the outer membrane. The carnitine-independent pathway was strongly inhibited by low concentrations of atractyloside suggesting that a pool of fatty acids located in the inner membrane was utilized. The occurrence of free fatty acids in the outer and inner membranes was confirmed by direct assay. The endogenous respiratory activity was also stimulated by oligomycin which was insensitive to nagarse, atractyloside, carnitine, and ATP suggesting that the stimulation was due to utilization of endogenous ATP and fatty acids localized within the inner membrane. Bovine serum albumin preferentially reduced the carnitine-independent activity presumably by binding the endogenous fatty acids suggesting that albumin has a higher affinity for free fatty acids of the inner than of the outer membrane.  相似文献   

16.
Bioluminescent bacteria require myristic acid (C14:0) to produce the myristaldehyde substrate of the light-emitting luciferase reaction. Since both endogenous and exogenous C14:0 can be used for this purpose, the metabolism of exogenous fatty acids by luminescent bacteria has been investigated. Both Vibrio harveyi and Vibrio fischeri incorporated label from [1-14C]myristic acid (C14:0) into phospholipid acyl chains as well as into CO2. In contrast, Photobacterium phosphoreum did not exhibit phospholipid acylation or beta-oxidation using exogenous fatty acids. Unlike Escherichia coli, the two Vibrio species can directly elongate fatty acids such as octanoic (C8:0), lauric (C12:0), and myristic acid, as demonstrated by radio-gas liquid chromatography. The induction of bioluminescence in late exponential growth had little effect on the ability of V. harveyi to elongate fatty acids, but it did increase the amount of C14:0 relative to C16:0 labeled from [14C]C8:0. This was not observed in a dark mutant of V. harveyi that is incapable of supplying endogenous C14:0 for luminescence. Cerulenin preferentially decreased the labeling of C16:0 and of unsaturated fatty acids from all 14C-labeled fatty acid precursors as well as from [14C]acetate, suggesting that common mechanisms may be involved in elongation of fatty acids from endogenous and exogenous sources. Fatty acylation of the luminescence-related synthetase and reductase enzymes responsible for aldehyde synthesis exhibited a chain-length preference for C14:0, which also was indicated by reverse-phase thin-layer chromatography of the acyl groups attached to these enzymes. The ability of V. harveyi to activate and elongate exogenous fatty acids may be related to an adaptive requirement to metabolize intracellular C14:0 generated by the luciferase reaction during luminescence development.  相似文献   

17.
This paper deals with the effect of the fatty acid chain length of dietary triglyceride on the intestinal uptake and lymphatic transport of exogenous and endogenous cholesterol in the rat. This question seemed of interest as the chain length of the monoglyceride and fatty acids formed in the intestinal lumen from the triglyceride fed could be expected to affect the concentration of cholesterol in the micellar or isotropic phase of intestinal content. Feeding rats medium- or short-chain triglycerides (C(12) to C(2)) did not affect the lymphatic transport of endogenous cholesterol from the intestine compared to the fasting state. The extent of lymphatic transport of cholesterol added to these fats increased proportionally with chain length (C(6)-C(18)) of the component fatty acids. The uptake of exogenous cholesterol into the intestinal wall was similarly related to the chain length of the carrier triglyceride, with the exception of triacetin, which gave a much higher intestinal uptake than lymphatic transport. When cholesterol was fed in octadecane, negligible amounts only were transported to the thoracic duct lymph. This again indicates the importance of the polar split products of dietary fat for cholesterol absorption.  相似文献   

18.
Concentrations of oleate (0.2-1 mM) within the physiological range of plasma free fatty acids induced a dose dependent statistically significant inhibition of protein labelling in isolated liver cells. The inhibitory effect was as high as 50% and it was not impeded when long chain fatty acid oxidation was prevented. Experiments carried out with hepatocytes from 48 h fasted rats, incubated in the absence of any exogenous energy source, show that the inhibition of endogenous long chain fatty acid oxidation induced a decreased rate of protein synthesis apparently related to changes in the cellular energy state. It is concluded that fatty acids play a dual role in the regulation of protein synthesis in liver cells: 1. endogenous fatty acids appear to be the main energy fuel for protein synthesis when no other exogenous substrate is present and the carbohydrate stores are low; 2. exogenous fatty acids seem to control protein synthesis by interacting with some key regulatory step.  相似文献   

19.
ABCC4、ABCC5 是ABCC(ATP-binding cassette transporter family class C, ABCC)蛋白转运体家族的成员,介导众多内源性 代谢产物和外源性药物从细胞内向外转运。ABCC4和ABCC5 在体内分布广泛,参与机体对药物和内、外源物质的吸收、分布和 排泄等。ABCC4、ABCC5 的一些突变会引起转运体表达、功能的改变和机体对药物反应的改变。近年研究发现ABCC4、ABCC5 与某些肿瘤的多药耐药相关,转运体的过表达可以引起肿瘤细胞对多种肿瘤化疗药物的耐药性,导致临床化疗效果不佳。本文就 转运体ABCC4和ABCC5 介导的肿瘤多药耐药研究进展进行综述。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号