首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low-affinity penicillin binding proteins (PBPs) are a particular class of proteins involved in β-lactam antibiotic resistance of enterococci. The activity of these PBPs is just sufficient to allow the cells to survive in the presence of high concentrations of β-lactams that cause saturation (and inhibition) of the other PBPs. For this reason, the low-affinity PBPs are thought to be multifunctional enzymes capable of catalyzing the entire peptidoglycan synthesis. To test the validity of this claim, we analyzed the muropeptide composition by reversed-phase high-performance liquid chromatography of the peptidoglycan synthesized by PBP5 (the low-affinity PBP) of Enterococcus faecalis, in comparison with the peptidoglycan produced normally by the concerted action of the usual PBPs (namely PBPs 1, 2, and 3). Cross-linked peptidoglycan was produced. The main difference consisted in the lack of oligomers higher than trimers, thus suggesting that this oligomer cannot be used as an acceptor/donor by the transpeptidase component of PBP5. The lack of higher oligomers had little impact on total cross-linking because of the increase observed in the dimer family. This increase was distributed among the various members of the dimer family with the result that minor dimer components figured among the prevalent ones in cells in which peptidoglycan was synthesized by PBP5. This also suggests that E. faecalis PBP5 is capable of catalyzing the synthesis of a peptidoglycan that is less precise and refined than usual, and for this reason PBP5 can be considered an enzyme endowed with poor specificity for substrates, as may be expected on the basis of its survival function. Received: 18 March 1998 / Accepted: 26 May 1998  相似文献   

2.
Acm2, the major autolysin of Lactobacillus plantarum, is a tripartite protein. Its catalytic domain is surrounded by an O-glycosylated N-terminal region rich in Ala, Ser, and Thr (AST domain), which is of low complexity and unknown function, and a C-terminal region composed of five SH3b peptidoglycan (PG) binding domains. Here, we investigate the contribution of these two accessory domains and of O-glycosylation to Acm2 functionality. We demonstrate that Acm2 is an N-acetylglucosaminidase and identify the pattern of O-glycosylation (21 mono-N-acetylglucosamines) of its AST domain. The O-glycosylation process is species-specific as Acm2 purified from Lactococcus lactis is not glycosylated. We therefore explored the functional role of O-glycosylation by purifying different truncated versions of Acm2 that were either glycosylated or non-glycosylated. We show that SH3b domains are able to bind PG and are responsible for Acm2 targeting to the septum of dividing cells, whereas the AST domain and its O-glycosylation are not involved in this process. Notably, our data reveal that the lack of O-glycosylation of the AST domain significantly increases Acm2 enzymatic activity, whereas removal of SH3b PG binding domains dramatically reduces this activity. Based on this antagonistic role, we propose a model in which access of the Acm2 catalytic domain to its substrate may be hindered by the AST domain where O-glycosylation changes its conformation and/or mediates interdomain interactions. To the best of our knowledge, this is the first time that O-glycosylation is shown to control the activity of a bacterial enzyme.  相似文献   

3.
Bacteriocin 41 (Bac41) is produced from clinical isolates of Enterococcus faecalis and consists of two extracellular proteins, BacL1 and BacA. We previously reported that BacL1 protein (595 amino acids, 64.5 kDa) is a bacteriolytic peptidoglycan d-isoglutamyl-l-lysine endopeptidase that induces cell lysis of E. faecalis when an accessory factor, BacA, is copresent. However, the target of BacL1 remains unknown. In this study, we investigated the targeting specificity of BacL1. Fluorescence microscopy analysis using fluorescent dye-conjugated recombinant protein demonstrated that BacL1 specifically localized at the cell division-associated site, including the equatorial ring, division septum, and nascent cell wall, on the cell surface of target E. faecalis cells. This specific targeting was dependent on the triple repeat of the SH3 domain located in the region from amino acid 329 to 590 of BacL1. Repression of cell growth due to the stationary state of the growth phase or to treatment with bacteriostatic antibiotics rescued bacteria from the bacteriolytic activity of BacL1 and BacA. The static growth state also abolished the binding and targeting of BacL1 to the cell division-associated site. Furthermore, the targeting of BacL1 was detectable among Gram-positive bacteria with an l-Ala-l-Ala-cross-bridging peptidoglycan, including E. faecalis, Streptococcus pyogenes, or Streptococcus pneumoniae, but not among bacteria with alternate peptidoglycan structures, such as Enterococcus faecium, Enterococcus hirae, Staphylococcus aureus, or Listeria monocytogenes. These data suggest that BacL1 specifically targets the l-Ala-l-Ala-cross-bridged peptidoglycan and potentially lyses the E. faecalis cells during cell division.  相似文献   

4.
Enterococcus faecalis 226 NWC, isolated from natural whey cultures utilized as starter in water-buffalo Mozzarella cheese manufacture, produces a bacteriocin, designated Enterocin 226 NWC, which is inhibitory to Listeria monocytogenes. Plasmid analysis of E. faecalis 226 NWC showed a single 5.2-kb plasmid, pEF226. In conjugation experiments, pEF226 was transferred into a plasmid-free strain of E. faecalis JH2-2. The transfer required direct cell-to-cell contact and was not inhibited by DNase. The identity of conjugation was confirmed by digestion with SmaI restriction endonuclease and subsequent pulsed-field gel electrophoresis (PFGE) of the genomic DNA of E. faecalis 226, E. faecalis JH2-2 and of the isolates after the mating. The data indicate that the ability of E. faecalis 226 NWC to produce the bacteriocin is linked to the 5.2-kb conjugative plasmid pEF226.  相似文献   

5.
The complement system is part of our first line of defense against invading pathogens. The strategies used by Enterococcus faecalis to evade recognition by human complement are incompletely understood. In this study, we identified an insertional mutant of the wall teichoic acid (WTA) synthesis gene tagB in E. faecalis V583 that exhibited an increased susceptibility to complement-mediated killing by neutrophils. Further analysis revealed that increased killing of the mutant was due to a higher rate of phagocytosis by neutrophils, which correlated with higher C3b deposition on the bacterial surface. Our studies indicated that complement activation via the lectin pathway was much stronger on the tagB mutant compared with wild type. In concordance, we found an increased binding of the key lectin pathway components mannose-binding lectin and mannose-binding lectin-associated serine protease-2 (MASP-2) on the mutant. To understand the mechanism of lectin pathway inhibition by E. faecalis, we purified and characterized cell wall carbohydrates of E. faecalis wild type and V583ΔtagB. NMR analysis revealed that the mutant strain lacked two WTAs with a repeating unit of →6)[α-l-Rhap-(1→3)]β-d-GalpNAc-(1→5)-Rbo-1-P and →6) β-d-Glcp-(1→3) [α-d-Glcp-(1→4)]-β-d-GalpNAc-(1→5)-Rbo-1-P→, respectively (Rbo, ribitol). In addition, compositional changes in the enterococcal rhamnopolysaccharide were noticed. Our study indicates that in E. faecalis, modification of peptidoglycan by secondary cell wall polymers is critical to evade recognition by the complement system.  相似文献   

6.
Peptidoglycan hydrolases are key enzymes in bacterial cell wall homeostasis. Understanding the substrate specificity and biochemical activity of peptidoglycan hydrolases in Mycobacterium tuberculosis is of special interest as it can aid in the development of new cell wall targeting therapeutics. In this study, we report biochemical and structural characterization of the mycobacterial N-acetylmuramyl-l-alanine amidase, Rv3717. The crystal structure of Rv3717 in complex with a dipeptide product shows that, compared with previously characterized peptidoglycan amidases, the enzyme contains an extra disulfide-bonded β-hairpin adjacent to the active site. The structure of two intermediates in assembly reveal that Zn2+ binding rearranges active site residues, and disulfide formation promotes folding of the β-hairpin. Although Zn2+ is required for hydrolysis of muramyl dipeptide, disulfide oxidation is not required for activity on this substrate. The orientation of the product in the active site suggests a role for a conserved glutamate (Glu-200) in catalysis; mutation of this residue abolishes activity. The product binds at the head of a closed tunnel, and the enzyme showed no activity on polymerized peptidoglycan. These results point to a potential role for Rv3717 in peptidoglycan fragment recycling.  相似文献   

7.
Streptococcus pneumoniae causes a series of devastating infections in humans. Previous studies have shown that the endo-β-N-acetylglucosaminidase LytB is critical for pneumococcal cell division and nasal colonization, but the biochemical mechanism of LytB action remains unknown. Here we report the 1.65 Å crystal structure of the catalytic domain (residues Lys-375–Asp-658) of LytB (termed LytBCAT), excluding the choline binding domain. LytBCAT consists of three structurally independent modules: SH3b, WW, and GH73. These modules form a “T-shaped” pocket that accommodates a putative tetrasaccharide-pentapeptide substrate of peptidoglycan. Structural comparison and simulation revealed that the GH73 module of LytB harbors the active site, including the catalytic residue Glu-564. In vitro assays of hydrolytic activity indicated that LytB prefers the peptidoglycan from the lytB-deficient pneumococci, suggesting the existence of a specific substrate of LytB in the immature peptidoglycan. Combined with in vitro cell-dispersing and in vivo cell separation assays, we demonstrated that all three modules are necessary for the optimal activity of LytB. Further functional analysis showed that the full catalytic activity of LytB is required for pneumococcal adhesion to and invasion into human lung epithelial cells. Structure-based alignment indicated that the unique modular organization of LytB is highly conserved in its orthologs from Streptococcus mitis group and Gemella species. These findings provided structural insights into the pneumococcal cell wall remodeling and novel hints for the rational design of therapeutic agents against pneumococcal growth and thereby the related diseases.  相似文献   

8.
9.
【摘 要】 目的 了解2011年中国重庆市主要7所教学医院临床分离粪肠球菌和屎肠球菌对各类抗菌药物的耐药性。方法 重庆市主要7所教学医院(6所综合性医院,1所儿童医院)按统一方案、采用统一的材料、方法和判断标准(CLSI 2011年版)进行粪肠球菌和屎肠球菌的耐药性监测。数据用WHONET 5.5软件按照CLSI 2011年版折点进行分析。结果 共分离到非重复粪肠球菌589株、屎肠球菌675株,对利奈唑胺、万古霉素、替考拉宁仍极敏感,耐药率<2%,万古霉素耐药粪肠球菌和屎肠球菌检出率分别为0.3%、0.7%。粪肠球菌对青霉素、氨苄西林、呋喃妥因的耐药率较低,分别为14.8%、8.6%和5.1%,对高浓度庆大霉素的耐药率分别为46.9%;屎肠球菌耐药性明显高于粪肠球菌,对青霉素和氨苄西林耐药率接都在90%左右。儿童和成人耐药率存在一定差别。结论 本市医院肠球菌感染以屎肠球菌为主, 粪肠球菌次之,两者耐药性明显不同, 监测其耐药情况对指导临床用药具有重要意义。  相似文献   

10.
分析深圳市南山区人民医院粪肠球菌感染患者的临床资料,探讨引起感染的危险因素,为防治耐利奈唑胺粪肠球菌感染提供临床参考。选取2010年1月-2015年9月在深圳市南山区人民医院住院的165例粪肠球菌感染患者,根据药敏结果分为利奈唑胺敏感组(103例)和利奈唑胺中介/耐药组(62例)。165例粪肠球菌主要来源于中段尿培养,占53.94%,其次为伤口分泌物培养(21.82%)、血培养(6.06%);科室分布以泌尿外科和肝胆外科为主,分别占35.76%和9.70%。单因素分析显示,碳青霉烯类抗生素暴露、留置尿管与感染相关。Logistic回归分析进一步明确碳青霉烯类抗生素暴露、留置尿管为耐利奈唑胺粪肠球菌感染的危险因素,提示应严格掌握碳青霉烯类抗生素的适应证,加强医院内感染的控制管理。  相似文献   

11.
The O-acetylation of the essential cell wall polymer peptidoglycan is a major virulence factor identified in many bacteria, both Gram-positive and Gram-negative, including Staphylococcus aureus, Bacillus anthracis, Neisseria gonorrhoeae, and Neisseria meningitidis. With Gram-negative bacteria, the translocation of acetyl groups from the cytoplasm is performed by an integral membrane protein, PatA, for its transfer to peptidoglycan by O-acetyltransferase PatB, whereas a single bimodal membrane protein, OatA, appears to catalyze both reactions of the process in Gram-positive bacteria. Only phenotypic evidence existed in support of these pathways because no in vitro biochemical assay was available for their analysis, which reflected the complexities of investigating integral membrane proteins that act on a totally insoluble and heterogeneous substrate, such as peptidoglycan. In this study, we present the first biochemical and kinetic analysis of a peptidoglycan O-acetyltransferase using PatB from N. gonorrhoeae as the model system. The enzyme has specificity for muropeptides that possess tri- and tetrapeptide stems on muramyl residues. With chitooligosaccharides as substrates, rates of reaction increase with increasing degrees of polymerization to 5/6. This information will be valuable for the identification and development of peptidoglycan O-acetyltransferase inhibitors that could represent potential leads to novel classes of antibiotics.  相似文献   

12.
试验为获得1株与牦牛肠道共生的粪肠球菌,通过对健康牦牛粪样中的肠球菌进行分离培养、革兰染色、生化试验、16S rRNA基因测序比对等生物学鉴定,初步证实该分离菌株为粪肠球菌。此试验为进一步分析牦牛肠道菌群结构,探索牦牛耐饥、耐渴、耐粗饲、对高山草原极强适应性与其肠道菌群的关系,进一步研究与牦牛共生的粪肠球菌的生物学特性、生理特性、对宿主危害性等提供一些实验依据。  相似文献   

13.
VanX is a d-alanyl-d-alanine (d-Ala–d-Ala) dipeptidase encoded in the vancomycin-resistance vanA gene cluster. Here we report that strong bacteriolysis occurred when isolated VanX was expressed in Escherichia coli at temperatures lower than 30 °C, which was unexpected because the vanA operon confers vancomycin resistance by protecting the cell wall. Therefore, we monitored cell lysis by measuring sample turbidity with absorbance at 590 nm and VanX expression using SDS-PAGE. No cell lysis was observed when VanX was expressed, even in large quantities, in the cell inclusion bodies at 37 °C, suggesting that a natively folded VanX is required for lysis. In addition, VanX mutants with suppressed dipeptidase activity did not lyse E. coli cells, confirming that bacteriolysis originated from the dipeptidase activity of VanX. We also observed shape changes in E. coli cells undergoing VanX-mediated lysis with optical microscopy and classified these changes into three classes: bursting, deformation, and leaking fluid. Optical microscopic image analysis fully corroborated our interpretation of the turbidity changes in the samples. From a practical perspective, the finding that VanX expressed in isolation induces cell lysis suggests that inhibitors of VanA and VanH that act downstream from VanX could provide a new class of therapeutic chemicals against bacteria expressing the vancomycin-resistance gene cluster.  相似文献   

14.
对产自乳酸菌Enterococcuze fecalis TN-9的蛋白酶,进行了硫酸铵沉淀,DEAE—Sephadex A-25以及DEAE Cellulofine A-500离子交换层析的3步纯化和特性研究。纯化酶Native PAGE显示1条蛋白带。SDSPAGE和凝胶层析分子量分别为30ku及69ku。纯化酶最适作用温度为30℃,最适作用PH为7.5~8.0,在pH6.0~9.5和45℃以下条件下稳定,在0℃下显示了6.1%的相对活性,60℃以上热处理完全失去酶活。该酶被EDTA-2Na,Hg^2+、Cu^2+、Ni^2+、Ag^2+、Co^2+及Pepstatin A不完全抑制。Zn^2+对蛋白酶具有明显的激活作用。纯化酶作用于偶氮酪蛋白的Km和Vmax分别为0.098%和72mg/(h·mg)。该酶为N末端VGSEVTLKNS的明胶酶(Gelatinase)的一种,性质属于低温蛋白酶。  相似文献   

15.
The bacteriocinogenic strain of Enterococcus faecalis EJ97 has been isolated from municipal waste water. It produces a cationic bacteriocin (enterocin EJ97) of low molecular mass (5,340 Da) that is very stable under mild heat conditions and is sensitive to proteolytic enzymes. The amino acid sequence of the first 18 N-terminal residues of enterocin EJ97 indicates that it is different from other known protein sequences. Enterocin EJ97 is active on several gram-positive bacteria including enterococci, several species of Bacillus, Listeria, and Staphylococcus aureus. The producer strain is immune to bacteriocin. Enterocin EJ97 has a concentration-dependent bactericidal and bacteriolytic effect on E. faecalis S-47. Received: 15 July 1998 / Accepted 28 October 1998  相似文献   

16.
Despite the importance of Campylobacter jejuni as a pathogen, little is known about the fundamental aspects of its peptidoglycan (PG) structure and factors modulating its helical morphology. A PG dl-carboxypeptidase Pgp1 essential for maintenance of C. jejuni helical shape was recently identified. Bioinformatic analysis revealed the CJJ81176_0915 gene product as co-occurring with Pgp1 in several organisms. Deletion of cjj81176_0915 (renamed pgp2) resulted in straight morphology, representing the second C. jejuni gene affecting cell shape. The PG structure of a Δpgp2 mutant showed an increase in tetrapeptide-containing muropeptides and a complete absence of tripeptides, consistent with ld-carboxypeptidase activity, which was confirmed biochemically. PG analysis of a Δpgp1Δpgp2 double mutant demonstrated that Pgp2 activity is required to generate the tripeptide substrate for Pgp1. Loss of pgp2 affected several pathogenic properties; the deletion strain was defective for motility in semisolid agar, biofilm formation, and fluorescence on calcofluor white. Δpgp2 PG also caused decreased stimulation of the human nucleotide-binding oligomerization domain 1 (Nod1) proinflammatory mediator in comparison with wild type, as expected from the reduction in muropeptide tripeptides (the primary Nod1 agonist) in the mutant; however, these changes did not alter the ability of the Δpgp2 mutant strain to survive within human epithelial cells or to elicit secretion of IL-8 from epithelial cells after infection. The pgp2 mutant also showed significantly reduced fitness in a chick colonization model. Collectively, these analyses enhance our understanding of C. jejuni PG maturation and help to clarify how PG structure and cell shape impact pathogenic attributes.  相似文献   

17.
回顾性分析上海市某三甲医院血培养阳性标本中粪肠球菌和屎肠球菌的临床分布及对抗菌药物的耐药特征,为临床治疗其所致感染奠定基础。收集上海市某三甲医院2012年2月—2016年9月血流感染患者血液标本中的粪肠球菌和屎肠球菌,采用法国生物梅里埃公司的VITEK 2Compact全自动细菌鉴定和药敏分析系统进行细菌鉴定及药敏测定,研究细菌临床分布特点及对常用抗菌药物的耐药特征。共分离获得30株粪肠球菌和17株屎肠球菌。粪肠球菌样本主要来自泌尿科、消化科和血液科,所占比例分别为13.33%、16.67%和10.00%。粪肠球菌对青霉素、氨苄西林、环丙沙星、左氧氟沙星、四环素和红霉素的耐药率分别为13.33%、10.00%、36.67%、33.33%、66.67%和60.00%。屎肠球菌样本主要来自消化科(29.41%),其对以上抗菌药物的耐药率分别为88.24%、82.35%、88.24%、76.47%、23.53%和70.59%。屎肠球菌对青霉素、氨苄西林、环丙沙星和左氧氟沙星的耐药率显著高于粪肠球菌,而对四环素的耐药率显著低于粪肠球菌。两者均对替加环素、利奈唑胺和万古霉素敏感,但万古霉素对屎肠球菌的最低抑菌浓度显著低于粪肠球菌。结果提示,屎肠球菌对青霉素、氨苄西林、环丙沙星、左氧氟沙星的耐药率高于屎肠球菌,对万古霉素敏感,且其万古霉素最低抑菌浓度低于粪肠球菌。本研究为治疗这两种细菌所致感染的经验性用药提供了数据支持。  相似文献   

18.
Vancomycin-resistant Enterococcus faecalis (VRE) has become a significant threat in nosocomial settings. Bacteriophage (phage) therapy is frequently proposed as a potential alternative therapy for infections caused by this bacterium. To search for candidate therapeutic phages against Enterococcus faecalis infections, 30 Enterococcus faecalis phages were isolated from the environment. One of these, virulent phage φEF24C, which has a broad host range, was selected for analysis. The plaque-forming ability of φEF24C was virtually unaffected by differences in the clinical host strains. Furthermore, the phage had a shorter latent period and a larger burst size than ordinary tailed phages, indicating that φEF24C has effective lytic activity against many Enterococcus faecalis strains, including VRE. Morphological and genomic analyses revealed that φEF24C is a large myovirus (classified as family Myoviridae morphotype A1) with a linear double-stranded DNA genome of c . 143 kbp. Analyses of the N-terminal amino acid sequences of the virion proteins, together with the morphology and the genome size, speculated that φEF24C is closely related to other myoviruses of Gram-positive bacteria that have been used experimentally or practically for therapy or prophylaxis. Considering these results, φEF24C may be a potential candidate therapeutic phage against Enterococcus faecalis infections.  相似文献   

19.
精氨酸脱亚胺酶有较好的体内体外肿瘤生长抑制作用。通过对粪肠球菌(Enterococcus faecalis)NJ402菌株产精氨酸脱亚胺酶的发酵特性的研究,建立起代谢物的过程变化与精氨酸脱亚胺酶产生机理的内在联系。NJ402菌株生长过程中碳源物质代谢产生乳酸导致发酵体系pH的下降,而培养基中L-精氨酸的脱亚胺作用有利于发酵体系pH的稳定和菌体生长。进一步的研究表明,低pH生长环境有利于NJ402菌株产精氨酸脱亚胺酶,且精氨酸脱亚胺酶的产生与能量代谢无关。NJ402菌株产精氨酸脱亚胺酶受底物L-精氨酸的诱导,但该诱导作用受菌体生长体系pH的调控,即精氨酸脱亚胺酶的产生是低pH生长环境与L-精氨酸共同作用的结果。  相似文献   

20.
【背景】粪肠球菌作为一种重要的乳酸菌在食品和医药领域应用广泛。由于很多粪肠球菌为条件致病菌,因此充分了解粪肠球菌基因组中毒力基因(Virulence genes)的携带情况对合理利用该菌种有重要的意义,但目前还没有研究专门报道不同分离源粪肠球菌基因组中毒力基因的携带情况。【目的】了解不同分离源粪肠球菌毒力基因的携带情况,评估分离自自然发酵乳制品中的粪肠球菌的安全性。【方法】利用比较基因组学方法确定107株分离自乳源、血液、尿液、粪便和水源中的粪肠球菌携带毒力基因情况,使用主成分分析比较不同分离源菌株毒力基因的差异,通过卡方检验筛查出环境特异性毒力基因。【结果】在107株粪肠球菌基因组共找到88种编码不同功能蛋白的毒力基因,其中与粘附相关的毒力基因最多。同时发现乳源分离株与其他环境分离株所携带的毒力基因没有显著差异。【结论】乳源分离株中携带的毒力基因与其他环境分离株无显著差异,表明分离自自然发酵乳制品中的粪肠球菌可能同样存在致病风险,因此在食品工业中使用粪肠球菌时一定要对菌株的安全性做全面的评估。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号