首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
中枢神经系统肿瘤是一类由于神经元、胶质细胞及神经系统中其它相关细胞异常增殖及恶性转化引发的、具有侵袭性的神经系统疾病。由于发病部位常危及控制机体重要功能的中枢,传统治疗方法对原发性神经系统肿瘤的治疗效果不佳,导致该类疾病患者的临床受益有限。因此,开发更为有效的治疗性药物是该领域亟待解决的重大科学问题。神经干细胞(NSCs)是一类具有自我更新和分化的神经系统来源的成体干细胞。已有大量研究报道,NSCs对神经系统来源的肿瘤具有特异的定向迁移及浸润能力,可以将具有肿瘤杀伤活性的药物定向传递到病灶部位。因此,这一特性使得NSCs成为一种具有良好临床转化潜力的生物治疗候选制剂,为中枢神经系统恶性肿瘤的新型药物研发提供了新思路。  相似文献   

2.
Adriamycin (ADR), a potent anti-tumor agent, produces reactive oxygen species (ROS) in cardiac tissue. Treatment with ADR is dose-limited by cardiotoxicity. However, the effect of ADR in the other tissues, including the brain, is unclear because ADR does not pass the blood-brain barrier. Some cancer patients receiving ADR treatment develop a transient memory loss, inability to handle complex tasks etc., often referred to by patients as chemobrain. We previously demonstrated that ADR causes CNS toxicity, in part, via systemic release of cytokines and subsequent generation of reactive oxygen and nitrogen species (RONS) in the brain. Here, we demonstrate that treatment with ADR led to an increased circulating level of tumor necrosis factor-alpha in wild-type mice and in mice deficient in the inducible form of nitric oxide (iNOSKO). However, the decline in mitochondrial respiration and mitochondrial protein nitration after ADR treatment was observed only in wild-type mice, not in the iNOSKO mice. Importantly, the activity of a major mitochondrial antioxidant enzyme, manganese superoxide dismutase (MnSOD), was reduced and the protein was nitrated. Together, these results suggest that NO is an important mediator, coupling the effect of ADR with cytokine production and subsequent activation of iNOS expression. We also identified the mitochondrion as an important target of ADR-induced NO-mediated CNS injury.  相似文献   

3.
Entry of pathogens into the central nervous system   总被引:11,自引:0,他引:11  
Abstract: The blood-brain barrier (BBB) is formed by the tight junctions of the cerebral capillary endothelium and the choroid plexus epithelium. The molecular anatomy of the tight junction resembles that of a polarized, transporting epithelium, suggesting some model cell culture systems can provide insight into traffic into the central nervous system. Pathogens target both the endothelium, causing encephalitis, and the choroid plexus, leading to meningitis. Routes of entry are diverse including paracellular and transcellular penetration. In addition, circulating microbial products can induce loss of BBB function. Understanding the heterogeneous molecular interactions between pathogens and the BBB may provide avenues to interrupt the devastating neurological sequelae that accompany central nervous system infections.  相似文献   

4.
《朊病毒》2013,7(3):142-149
The prion protein is a glycoprotein characterized by a folded ?-helical structure that, under pathological conditions, misfolds and aggregates into its infectious isoform as ?-sheet rich amyloidic deposits. The accumulation of the abnormal protein is responsible for a group of progressive and fatal disorders characterized by vacuolation, gliosis, and spongiform degeneration. Prion disorders are characterized by a triple aetiology: familial, sporadic or acquired, although most cases are sporadic. The mechanisms underlying prion neurotoxicity remain controversial, while novel findings lead to hypothesize intriguing pathways responsible for prion spreading. The present review aims to examine the involvement of the gastrointestinal tract and hypothesizes the potential mechanisms underlying cell-to-cell transmission of the prion protein. In particular, a special emphasis is posed on the mechanisms of prion transmission within the gut and towards the central nervous system. The glycation of prion protein to form advanced glycation end-products (AGE) interacting with specific receptors placed on neighboring cells (RAGE) represents the key hypothesis to be discussed.  相似文献   

5.
In February 2018, the Melanoma Research Foundation and the Moffitt Cancer Center hosted the Second Summit on Melanoma Central Nervous System (CNS) Metastases in Tampa, Florida. In this white paper, we outline the current status of basic science, translational, and clinical research into melanoma brain metastasis development and therapeutic management. We further outline the important challenges that remain for the field and the critical barriers that need to be overcome for continued progress to be made in this clinically difficult area.  相似文献   

6.
7.
8.
Microbes use numerous strategies to invade the central nervous system. Leukocyte-facilitated entry is one such mechanism whereby intracellular pathogens establish infection by taking advantage of leukocyte trafficking to the central nervous system. Key components of this process include peripheral infection and activation of leukocytes, activation of cerebral endothelial cells with or without concomitant infection, and trafficking of infected leukocytes to and through the blood-brain or blood-cerebrospinal fluid barrier.  相似文献   

9.
HVJ-envelope vector for gene transfer into central nervous system   总被引:2,自引:0,他引:2  
To overcome some problems of virus vectors, we developed a novel non-viral vector system, the HVJ-envelope vector (HVJ-E). In this study, we investigated the feasibility of gene transfer into the CNS using the HVJ-E both in vitro and in vivo. Using the Venus reporter gene, fluorescence could be detected in cultured rat cerebral cortex neurons and glial cells. In vivo, the reporter gene (Venus) was successfully transfected into the rat brain by direct injection into the thalamus, intraventricular injection, or intrathecal injection, without inducing immunological change. When the vector was injected after transient occlusion of the middle cerebral artery, fluorescence due to EGFP gene or luciferase activity could be detected only in the injured hemisphere. Finally, luciferase activity was markedly enhanced by the addition of 50 U/ml heparin (P<0.01). Development of efficient HVJ-E for gene transfer into the CNS will be useful for research and clinical gene therapy.  相似文献   

10.
Experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein (MOG) in C57BL/6 (H-2b) mice is characterized by early (day 12) acute paralysis, followed by a sustained chronic clinical course that gradually stabilizes. Extensive inflammation and demyelination coincide with clinical signs of disease. To identify the mechanisms of these processes, individual proinflammatory and anti-inflammatory cytokines and chemokines were studied. Sensitive single-cell assays were utilized to determine the cellular origin and kinetics of cytokine production in the CNS. Immunization with MOG35-55 peptide resulted in priming of both Th1 (lymphotoxin, IFN-gamma, and TNF-alpha) and Th2 (IL-4) cells in the spleen. However, only Th1 cells were apparent in the CNS. CD4 T cells that produced IFN-gamma or TNF-alpha were present in the CNS by day 7 after immunization with MOG35-55, peaked at day 20, and then waned. TNF-alpha was also produced in the CNS by Mac-1+ cells. On days 7 and 10 after immunization, the TNF-alpha-producing Mac1+ cells were predominantly microglia. By day 14, a switch occurred in that the Mac1+ TNF-alpha-producing cells had the phenotype of infiltrating macrophages. RANTES, IFN-inducible protein 10 (IP-10), and monocyte chemotactic protein 1 chemokine mRNA were detected in the CNS by day 8 after immunization. The early presence of monocyte chemotactic protein 1 (MCP-1) in the CNS provides a mechanism for the recruitment of macrophages. These data implicate TNF-alpha production by a continuum of T cells, microglia, and macrophages at various times during the course of disease. The importance of Th1 cytokines is highlighted, with little evidence for a role of Th2 cytokines.  相似文献   

11.
Dendritic cells (DCs) are professional antigen-presenting cells that control the generation of adaptive immunity. Consequently, DCs have a central role in the induction of protective immunity to pathogens and also in the pathogenic immune response responsible for the development and progression of autoimmune disorders. Thus the study of the molecular pathways that control DC development and function is likely to result in new strategies for the therapeutic manipulation of the immune response. In this review, we discuss the role and therapeutic value of DCs in autoimmune diseases, with a special focus on multiple sclerosis.  相似文献   

12.
Although transplantation of myelin-forming cells into the central nervous system (CNS) has recently attracted much attention as a potential therapy for repairing persistent demyelination found in the demyelinating diseases such as multiple sclerosis and the leukodystrophies, it is worth remembering that the technique was originally conceived of as an experimental technique for manipulating in vivo environments to study interactions between different cell types in either repair or development. It is in this capacity that the technique is still predominantly used. Nevertheless, information, both technical and biological, that the continued use of the technique yields also often provides material for assessing the feasibility of glial cell transplantation as a therapeutic procedure. In this article, we describe some of the guiding principles of transplantation of myelinogenic cells into the mammalian CNS, focusing initially on the recipient environment and then considering the donor material. The division of the discussion into recipient and donor is one of convenience since in reality the interactions between the two cannot be considered in isolation.  相似文献   

13.
Insulin and the central nervous system   总被引:1,自引:0,他引:1  
Data from literature concerning the neurobiological, electrical and metabolic effects of insulin are reviewed. Emphasis is laid on insulin distribution in the CNS, on distribution and localization of the insulin brain receptors, on insulin transport through the hemato-encephalic barrier. Data concerning insulin effect on the electrical activity of various CNS neurons, particularly, on those of the feeding and satiety centres. The effects of insulin on the brain metabolism are discussed. Insulin shares many properties with the nerve growth factor and may be considered as specific neurotransmitter and neuromodulator.  相似文献   

14.
Melanoma central nervous system metastases are increasing, and the challenges presented by this patient population remain complex. In December 2015, the Melanoma Research Foundation and the Wistar Institute hosted the First Summit on Melanoma Central Nervous System (CNS) Metastases in Philadelphia, Pennsylvania. Here, we provide a review of the current status of the field of melanoma brain metastasis research; identify key challenges and opportunities for improving the outcomes in patients with melanoma brain metastases; and set a framework to optimize future research in this critical area.  相似文献   

15.
16.
17.
These experiments have investigated selenium movement between blood and the CNS in anaesthetized rats. Each animal was anaesthetized and the left femoral blood vessels cannulated for blood withdrawal and solute infusion. Each rat received 75-Se as sodium selenite infused in normal saline and experiments lasted between 5 minutes and 5 hours during which blood samples were periodically taken. At termination, the CNS was removed, dissected and analysed with the plasma samples for 75-Se radioactivity by -counting. Data were analyzed by multiple-time uptake analysis. Results showed unidirectional uptake of 75-Se into the CNS and some regional differences were found. On average the CNS influx rate constant (Kin) was about 7±1×10–5 ml/min/g. This indicates that the 75-Se most likely entered the CNS in a protein-bound form.  相似文献   

18.
Histone deacetylase (HDAC) inhibitors are emerging as a novel class of potentially therapeutic agents for treating acute injuries of the central nervous system (CNS). In this review, we summarize data regarding the effects of HDAC inhibitor administration in models of acute CNS injury and discuss issues warranting clinical trials. We have previously shown that the pan-HDAC inhibitor ITF2357, a compound shown to be safe and effective in humans, improves functional recovery and attenuates tissue damage when administered as late as 24 h after injury. Using a well-characterized, clinically relevant mouse model of closed head injury, we demonstrated that a single dose of ITF2357 administered 24 h after injury improves neurobehavioral recovery and reduces tissue damage. ITF2357-induced functional improvement was found to be sustained up to 14 d after trauma and was associated with augmented histone acetylation. Single postinjury administration of ITF2357 also attenuated injury-induced inflammatory responses, as indicated by reduced glial accumulation and activation as well as enhanced caspase-3 expression within microglia/macrophages after treatment. Because no specific therapeutic intervention is currently available for treating brain trauma patients, the ability to affect functional outcome by postinjury administration of HDAC inhibitors within a clinically feasible timeframe may be of great importance. Furthermore, a growing body of evidence indicates that HDAC inhibitors are beneficial for treating various forms of acute CNS injury including ischemic and hemorrhagic stroke. Because HDAC inhibitors are currently approved for other use, they represent a promising new avenue of treatment, and their use in the setting of CNS injury warrants clinical evaluation.  相似文献   

19.
Traumatic injury to the central nervous system (CNS) is highly debilitating, with the clinical need for regenerative therapies apparent. Neural stem/progenitor cells (NSPCs) are promising because they can repopulate lost or damaged cells and tissues. However, the adult CNS does not provide an optimal milieu for exogenous NSPCs to survive, engraft, differentiate, and integrate with host tissues. This review provides an overview of tissue engineering strategies to improve stem cell therapies by providing a defined microenvironment during transplantation. The use of biomaterials for physical support, growth factor delivery, and cellular co-transplantation are discussed. Providing the proper environment for stem cell survival and host tissue integration is crucial in realizing the full potential of these cells in CNS repair strategies.  相似文献   

20.
Leukocyte migration into and through tissues is fundamental to normal physiology, immunopathology and host defence. Leukocyte entry into the central nervous system (CNS) is restricted, in part, because of the blood-brain barrier (BBB). During the past decade, crucial components that are involved in the process of leukocyte migration have been identified and progress has been made in understanding the mechanisms of neuroinflammatory reactions. In this review, present knowledge of the trafficking determinants that guide the migration of leukocytes is superimposed onto the vascular and compartmental anatomy of the CNS. We discuss three distinct routes for leukocytes to enter the CNS and consider how different populations of leukocytes use trafficking signals to gain entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号