首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.

Background

Freezing of gait is a common and debilitating symptom affecting many patients with advanced Parkinson’s disease. Although the pathophysiology of freezing of gait is not fully understood, a number of observations regarding the pattern of gait in patients with this symptom have been made. Increased ‘Stride Time Variability’ has been one of the most robust of these features. In this study we sought to identify whether patients with freezing of gait demonstrated similar fluctuations in their stepping rhythm whilst performing a seated virtual reality gait task that has recently been used to demonstrate the neural correlate of the freezing phenomenon.

Methods

Seventeen patients with freezing and eleven non-freezers performed the virtual reality task twice, once whilst ‘On’ their regular Parkinsonian medication and once in their practically defined ‘Off’ state.

Results

All patients displayed greater step time variability during their ‘Off’ state assessment compared to when medicated. Additionally, in the ‘Off’ state, patients with freezing of gait had greater step time variability compared to non-freezers. The five steps leading up to a freezing episode in the virtual reality environment showed a significant increase in step time variability although the final three steps preceding the freeze were not characterized by a progressive shortening of latency.

Conclusions

The results of this study suggest that characteristic features of gait disturbance observed in patients with freezing of gait can also be demonstrated with a virtual reality paradigm. These findings suggest that virtual reality may offer the potential to further explore the freezing phenomenon in Parkinson’s disease.  相似文献   

2.
Balance control (the ability to maintain an upright posture) is asymmetrically controlled in a proportion of patients with Parkinson’s disease. Gait asymmetries have been linked to the pathophysiology of freezing of gait. We speculate that asymmetries in balance could contribute to freezing by a) hampering the unloading of the stepping leg and/or b) leading to a preferred stance leg during gait, which then results in asymmetric gait. To investigate this, we examined the relationship between balance control and weight-bearing asymmetries and freezing. We included 20 human patients with Parkinson (tested OFF medication; nine freezers) and nine healthy controls. Balance was perturbed in the sagittal plane, using continuous multi-sine perturbations, applied by a motion platform and by a force at the sacrum. Applying closed-loop system identification techniques, relating the body sway angle to the joint torques of each leg separately, determined the relative contribution of each ankle and hip joint to the total amount of joint torque. We also calculated weight-bearing asymmetries. We determined the 99-percent confidence interval of weight-bearing and balance-control asymmetry using the responses of the healthy controls. Freezers did not have larger asymmetries in weight bearing (p = 0.85) nor more asymmetrical balance control compared to non-freezers (p = 0.25). The healthy linear one-to-one relationship between weight bearing and balance control was significantly different for freezers and non-freezers (p = 0.01). Specifically, non-freezers had a significant relationship between weight bearing and balance control (p = 0.02), whereas this relation was not significant for freezers (p = 0.15). Balance control is asymmetrical in most patients (about 75 percent) with Parkinson’s disease, but this asymmetry is not related to freezing. The relationship between weight bearing and balance control seems to be less pronounced in freezers, compared to healthy controls and non-freezers. However, this relationship should be investigated further in larger groups of patients.  相似文献   

3.

Introduction

The pathophysiology underlying postural instability in Parkinson’s disease is poorly understood. The frequent co-existence with freezing of gait raises the possibility of shared pathophysiology. There is evidence that dysfunction of brainstem structures contribute to freezing of gait. Here, we evaluated whether dysfunction of these structures contributes to postural instability as well. Brainstem function was assessed by studying the StartReact effect (acceleration of latencies by a startling acoustic stimulus (SAS)).

Methods

We included 25 patients, divided in two different ways: 1) those with postural instability (HY = 3, n = 11) versus those without (HY<3, n = 14); and 2) those with freezing (n = 11) versus those without freezing (n = 14). We also tested 15 matched healthy controls. We tested postural responses by translating a balance platform in the forward direction, resulting in backward balance perturbations. In 25% of trials, the start of the balance perturbation was accompanied by a SAS.

Results

The amplitude of automatic postural responses and length of the first balance correcting step were smaller in patients with postural instability compared to patients without postural instability, but did not differ between freezers and non-freezers. In contrast, the StartReact effect was intact in patients with postural instability but was attenuated in freezers.

Discussion

We suggest that the mechanisms underlying freezing of gait and postural instability in Parkinson’s disease are at least partly different. Underscaling of automatic postural responses and balance-correcting steps both contribute to postural instability. The attenuated StartReact effect was seen only in freezers and likely reflects inadequate representation of motor programs at upper brainstem level.  相似文献   

4.
Spinal pattern generators in quadrupedal animals can coordinate different forms of locomotion, like trotting or galloping, by altering coordination between the limbs (interlimb coordination). In the human system, infants have been used to study the subcortical control of gait, since the cerebral cortex and corticospinal tract are immature early in life. Like other animals, human infants can modify interlimb coordination to jump or step. Do human infants possess functional neuronal circuitry necessary to modify coordination within a limb (intralimb coordination) in order to generate distinct forms of alternating bipedal gait, such as walking and running? We monitored twenty-eight infants (7–12 months) stepping on a treadmill at speeds ranging between 0.06–2.36 m/s, and seventeen adults (22–47 years) walking or running at speeds spanning the walk-to-run transition. Six of the adults were tested with body weight support to mimic the conditions of infant stepping. We found that infants could accommodate a wide range of speeds by altering stride length and frequency, similar to adults. Moreover, as the treadmill speed increased, we observed periods of flight during which neither foot was in ground contact in infants and in adults. However, while adults modified other aspects of intralimb coordination and the mechanics of progression to transition to a running gait, infants did not make comparable changes. The lack of evidence for distinct walking and running patterns in infants suggests that the expression of different functional, alternating gait patterns in humans may require neuromuscular maturation and a period of learning post-independent walking.  相似文献   

5.

Background

Recent studies show that besides freezing of gait (FOG), many people with Parkinson’s disease (PD) also suffer from freezing in the upper limbs (FOUL). Up to now, it is unclear which task constraints provoke and explain upper limb freezing.

Objective

To investigate whether upper limb freezing and other kinematic abnormalities during writing are provoked by (i) gradual changes in amplitude or by (ii) sustained amplitude generation in patients with and without freezing of gait.

Methods

Thirty-four patients with PD, including 17 with and 17 without FOG, performed a writing task on a touch-sensitive writing tablet requiring writing at constant small and large size as well as writing at gradually increasing and decreasing size. Patients of both groups were matched for disease severity, tested while ‘on’ medication and compared to healthy age-matched controls.

Results

Fifty upper limb freezing episodes were detected in 10 patients, including 8 with and 2 without FOG. The majority of the episodes occurred when participants had to write at small or gradually decreasing size. The occurrence of FOUL and the number of FOUL episodes per patient significantly correlated with the occurrence and severity of FOG. Patients with FOUL also showed a significantly smaller amplitude in the writing parts outside the freezing episodes.

Conclusions

Corroborating findings of gait research, the current study supports a core problem in amplitude control underlying FOUL, both in maintaining as well as in flexibly adapting the cycle size.  相似文献   

6.
Walking ability is frequently assessed with the 10-meter walking test (10MWT), which may be instrumented with multiple Kinect v2 sensors to complement the typical stopwatch-based time to walk 10 meters with quantitative gait information derived from Kinect’s 3D body point’s time series. The current study aimed to evaluate a multi-Kinect v2 set-up for quantitative gait assessments during the 10MWT against a gold-standard motion-registration system by determining between-systems agreement for body point’s time series, spatiotemporal gait parameters and the time to walk 10 meters. To this end, the 10MWT was conducted at comfortable and maximum walking speed, while 3D full-body kinematics was concurrently recorded with the multi-Kinect v2 set-up and the Optotrak motion-registration system (i.e., the gold standard). Between-systems agreement for body point’s time series was assessed with the intraclass correlation coefficient (ICC). Between-systems agreement was similarly determined for the gait parameters’ walking speed, cadence, step length, stride length, step width, step time, stride time (all obtained for the intermediate 6 meters) and the time to walk 10 meters, complemented by Bland-Altman’s bias and limits of agreement. Body point’s time series agreed well between the motion-registration systems, particularly so for body points in motion. For both comfortable and maximum walking speeds, the between-systems agreement for the time to walk 10 meters and all gait parameters except step width was high (ICC ≥ 0.888), with negligible biases and narrow limits of agreement. Hence, body point’s time series and gait parameters obtained with a multi-Kinect v2 set-up match well with those derived with a gold standard in 3D measurement accuracy. Future studies are recommended to test the clinical utility of the multi-Kinect v2 set-up to automate 10MWT assessments, thereby complementing the time to walk 10 meters with reliable spatiotemporal gait parameters obtained objectively in a quick, unobtrusive and patient-friendly manner.  相似文献   

7.

Background

Pulmonary thromboembolism is a common cause of death in patients with autopsy-confirmed Parkinsonism. This study investigated the incidence of leg deep vein thrombosis in Parkinson’s disease and relationships between deep vein thrombosis and clinical/laboratory findings, including postural abnormalities as assessed by photographic measurements.

Methods

This cross-sectional study assessed the presence of deep vein thrombosis using bilateral leg Doppler ultrasonography in 114 asymptomatic outpatients with Parkinson’s disease.

Results

Deep vein thrombosis was detected in 23 patients (20%) with Parkinson’s disease. Deep vein thrombosis was located in the distal portion in 18 patients and in the proximal portion in 5 patients. No significant differences in age, sex, body mass index, disease duration, Hoehn-Yahr stage, anti-Parkinson’s drugs, or daily levodopa-equivalent dose were seen between deep vein thrombosis-positive and -negative groups. Univariate analysis for developing deep vein thrombosis in patients with Parkinson’s disease identified the following markers: long-term wheelchair use, bent knee, bent spine, and D-dimer elevation. Bending angles were significantly greater in the deep vein thrombosis-positive group at the knee and spine than in the deep vein thrombosis-negative group. Half of Parkinson’s disease patients with camptocormia had deep vein thrombosis. Among diabetes mellitus cases, long-term wheelchair use, bent knee over 15°, camptocormia, D-dimer elevation, the more risk markers were associated with a higher incidence of DVT. The presence of risk markers contributed to the development of deep vein thrombosis. On multivariate logistic regression analysis, a bent knee posture was strongly associated with an increased risk of deep vein thrombosis.

Conclusion

Presence of leg deep vein thrombosis correlated with postural abnormalities in Parkinson’s disease. We recommend non-invasive ultrasonographic screening for leg deep vein thrombosis in these high-risk patients with Parkinson’s disease.  相似文献   

8.
Idealized models of walking and running demonstrate that, energetically, walking should be favoured up to, and even somewhat over, those speeds and step lengths that can be achieved while keeping the stance leg under compression. Around these speeds, and especially with relatively long step lengths, computer optimization predicts a third, ‘hybrid’, gait: (inverted) pendular running (Srinivasan & Ruina 2006 Nature 439, 72–75 (doi:10.1038/nature04113)). This gait involves both walking-like vaulting mechanics and running-like ballistic paths. Trajectories of horizontal versus vertical centre of mass velocities—‘hodographs’—over the step cycle are distinctive for each gait: anticlockwise for walk; clockwise for run; figure-of-eight for the hybrid gait. Both pheasants and guineafowl demonstrate each gait at close to the predicted speed/step length combinations, although fully aerial ballistic phases are never achieved during the hybrid or ‘Grounded Inverted Pendular Running’ gait.  相似文献   

9.
The duration of stance and swing phase and step and stride length are important parameters in human gait. In this technical note a low-cost ultrasonic motion analysis system is described that is capable of measuring these temporal and spatial parameters while subjects walk on the floor. By using the propagation delay of sound when transmitted in air, this system is able to record the position of the subjects' feet. A small ultrasonic receiver is attached to both shoes of the subject while a transmitter is placed stationary on the floor. Four healthy subjects were used to test the device. Subtracting positions of the foot with zero velocity yielded step and stride length. The duration of stance and swing phase was calculated from heel-strike and toe-off. Comparison with data obtained from foot contact switches showed that applying two relative thresholds to the speed graph of the foot could reliably generate heel-strike and toe-off. Although the device is tested on healthy subjects in this study, it promises to be extremely valuable in examining pathological gait. When gait is asymmetrical, walking speed is not constant or when patients do not completely lift their feet, most existing devices will fail to correctly assess the proper gait parameters. Our device does not have this shortcoming and it will accurately demonstrate asymmetries and variations in the patient's gait. As an example, the recording of a left hemiplegic patient is presented in the discussion.  相似文献   

10.
When increasing ambulation speed in Parkinson’s disease, step cadence increases more than stride length, indicating movement scaling difficulties that affect step generation in particular. We investigated whether step length variation when increasing ambulation speed was related to disease progression. Patients with Parkinson’s disease (N = 39) and controls (N = 152) performed two timed ambulation tasks: at a ''free'' (self-selected) pace and then at ''maximal'' speed. The total number of steps (including during turns) and time to complete the task were clinically measured. The relative contribution of step length and cadence to increased ambulation speed was determined using two methods: the ratios of change in step length or in cadence to the change in ambulation speed, and the step length index. While the relative contribution of step length and cadence to increased ambulation speed was independent of age in both control and patient groups, in Parkinson’s disease there was a negative correlation between time from diagnosis and the ratio of change in step length to change in ambulation speed (R = 0.54; p = 0.0004) and the step length index (R = 0.56, p = 0.0002). In parallel, there was a positive correlation between time since diagnosis and the ratio of change in cadence to change in ambulation speed (R = 0.57; p = 0.0002). The relative contribution of step length and cadence to increased ambulation speed is age invariant but a marker of Parkinson''s disease advancement, and can be easily determined in the clinical setting.  相似文献   

11.

Background

A well-established connection exists between increased gait variability and greater fall likelihood in Parkinson’s disease (PD); however, a portable, validated means of quantifying gait variability (and testing the efficacy of any intervention) remains lacking. Furthermore, although rhythmic auditory cueing continues to receive attention as a promising gait therapy for PD, its widespread delivery remains bottlenecked. The present paper describes a smartphone-based mobile application (“SmartMOVE”) to address both needs.

Methods

The accuracy of smartphone-based gait analysis (utilizing the smartphone’s built-in tri-axial accelerometer and gyroscope to calculate successive step times and step lengths) was validated against two heel contact–based measurement devices: heel-mounted footswitch sensors (to capture step times) and an instrumented pressure sensor mat (to capture step lengths). 12 PD patients and 12 age-matched healthy controls walked along a 26-m path during self-paced and metronome-cued conditions, with all three devices recording simultaneously.

Results

Four outcome measures of gait and gait variability were calculated. Mixed-factorial analysis of variance revealed several instances in which between-group differences (e.g., increased gait variability in PD patients relative to healthy controls) yielded medium-to-large effect sizes (eta-squared values), and cueing-mediated changes (e.g., decreased gait variability when PD patients walked with auditory cues) yielded small-to-medium effect sizes—while at the same time, device-related measurement error yielded small-to-negligible effect sizes.

Conclusion

These findings highlight specific opportunities for smartphone-based gait analysis to serve as an alternative to conventional gait analysis methods (e.g., footswitch systems or sensor-embedded walkways), particularly when those methods are cost-prohibitive, cumbersome, or inconvenient.  相似文献   

12.

Background

Dementia in Parkinson’s disease (PD) is defined as cognitive decline severe enough to affect activities of daily living function (ADL). The aim of our exploratory study was to compare two groups of PD patients. Both groups had cognitive deficits severe enough to justify diagnosis of dementia, but they differed according to caregivers’ rating on ADL dysfunction. Parameters which differed between the two groups were interpreted to affect the caregivers’ perception of ADL dysfunction in PD patients with cognitive impairment indicative of Parkinson’s disease dementia.

Methodology/Principal Findings

Thirty of 131 Parkinson’s disease patients fulfilled the Movement Disorders Society Task Force – recommended, cognitive Level-I-criteria for dementia. According to standardized caregiver ratings, volunteers were grouped into 18 patients with (ADL-) and 12 without instrumental activities of daily living dysfunction (ADL+). Caregiver activities of daily living function ratings closely correlated with self-estimates of patients and those of physician (p<0.001). ADL- patients performed worse on tests assessing visual-construction (p<0.05) and attention (p=0.03) than ADL+ patients. Moreover, the postural instability and gait disorder subtype was more frequent in ADL- patients (p=0.009). ADL- patients tended to have more communication problems (p=0.05), more anxiety (p=0.05) and showed a tendency to be treated more often with neuroleptics (p=0.049) than ADL+.

Conclusions/Significance

Results indicate that worse attention, visual-construction abilities, the postural instability and gait disorder subtype, communication problems, medication and presence of anxiety are related to activities of daily living dysfunctions in Parkinson’s disease patients with cognitive decline indicative of dementia. Our data suggests that not only cognitive factors but also non-cognitive factors seem to be linked to the diagnosis of Parkinson’s disease dementia associated with significant impact on instrumental activities of daily living function. Further studies with larger sample sizes are needed to verify our results.  相似文献   

13.
The literature on gait analysis in Vascular Parkinsonism (VaP), addressing issues such as variability, foot clearance patterns, and the effect of levodopa, is scarce. This study investigates whether spatiotemporal, foot clearance and stride-to-stride variability analysis can discriminate VaP, and responsiveness to levodopa.Fifteen healthy subjects, 15 Idiopathic Parkinson's Disease (IPD) patients and 15 VaP patients, were assessed in two phases: before (Off-state), and one hour after (On-state) the acute administration of a suprathreshold (1.5 times the usual) levodopa dose. Participants were asked to walk a 30-meter continuous course at a self-selected walking speed while wearing foot-worn inertial sensors. For each gait variable, mean, coefficient of variation (CV), and standard deviations SD1 and SD2 obtained by Poincaré analysis were calculated. General linear models (GLMs) were used to identify group differences. Patients were subject to neuropsychological evaluation (MoCA test) and Brain MRI.VaP patients presented lower mean stride velocity, stride length, lift-off and strike angle, and height of maximum toe (later swing) (p < .05), and higher %gait cycle in double support, with only the latter unresponsive to levodopa. VaP patients also presented higher CV, significantly reduced after levodopa. Yet, all VaP versus IPD differences lost significance when accounting for mean stride length as a covariate.In conclusion, VaP patients presented a unique gait with reduced degrees of foot clearance, probably correlated to vascular lesioning in dopaminergic/non-dopaminergic cortical and subcortical non-dopaminergic networks, still amenable to benefit from levodopa. The dependency of gait and foot clearance and variability deficits from stride length deserves future clarification.  相似文献   

14.
Radial expanding optic flow is a visual consequence of forward locomotion. Presented on screen, it generates illusionary forward self-motion, pointing at a close vision-gait interrelation. As particularly parkinsonian gait is vulnerable to external stimuli, effects of optic flow on motor-related cerebral circuitry were explored with functional magnetic resonance imaging in healthy controls (HC) and patients with Parkinson’s disease (PD). Fifteen HC and 22 PD patients, of which 7 experienced freezing of gait (FOG), watched wide-field flow, interruptions by narrowing or deceleration and equivalent control conditions with static dots. Statistical parametric mapping revealed that wide-field flow interruption evoked activation of the (pre-)supplementary motor area (SMA) in HC, which was decreased in PD. During wide-field flow, dorsal occipito-parietal activations were reduced in PD relative to HC, with stronger functional connectivity between right visual motion area V5, pre-SMA and cerebellum (in PD without FOG). Non-specific ‘changes’ in stimulus patterns activated dorsolateral fronto-parietal regions and the fusiform gyrus. This attention-associated network was stronger activated in HC than in PD. PD patients thus appeared compromised in recruiting medial frontal regions facilitating internally generated virtual locomotion when visual motion support falls away. Reduced dorsal visual and parietal activations during wide-field optic flow in PD were explained by impaired feedforward visual and visuomotor processing within a magnocellular (visual motion) functional chain. Compensation of impaired feedforward processing by distant fronto-cerebellar circuitry in PD is consistent with motor responses to visual motion stimuli being either too strong or too weak. The ‘change’-related activations pointed at covert (stimulus-driven) attention.  相似文献   

15.

Background

Reduced muscle strength is an independent risk factor for falls and related to postural instability in individuals with Parkinson’s disease. The ability of resistance training to improve postural control still remains unclear.

Objective

To compare resistance training with balance training to improve postural control in people with Parkinson’s disease.

Methods

40 patients with idiopathic Parkinson’s disease (Hoehn&Yahr: 2.5–3.0) were randomly assigned into resistance or balance training (2x/week for 7 weeks). Assessments were performed at baseline, 8- and 12-weeks follow-up: primary outcome: Fullerton Advanced Balance (FAB) scale; secondary outcomes: center of mass analysis during surface perturbations, Timed-up-and-go-test, Unified Parkinson’s Disease Rating Scale, Clinical Global Impression, gait analysis, maximal isometric leg strength, PDQ-39, Beck Depression Inventory. Clinical tests were videotaped and analysed by a second rater, blind to group allocation and assessment time.

Results

32 participants (resistance training: n = 17, balance training: n = 15; 8 drop-outs) were analyzed at 8-weeks follow-up. No significant difference was found in the FAB scale when comparing the effects of the two training types (p = 0.14; effect size (Cohen’s d) = -0.59). Participants from the resistance training group, but not from the balance training group significantly improved on the FAB scale (resistance training: +2.4 points, Cohen’s d = -0.46; balance training: +0.3 points, Cohen’s d = -0.08). Within the resistance training group, improvements of the FAB scale were significantly correlated with improvements of rate of force development and stride time variability. No significant differences were found in the secondary outcome measures when comparing the training effects of both training types.

Conclusions

The difference between resistance and balance training to improve postural control in people with Parkinson’s disease was small and not significant with this sample size. There was weak evidence that freely coordinated resistance training might be more effective than balance training. Our results indicate a relationship between the enhancement of rate of force development and the improvement of postural control.

Trial Registration

ClinicalTrials.gov ID: NCT02253563  相似文献   

16.
The pedunculopontine area (PPNa) including the pedunculopontine and cuneiform nuclei, belongs to the mesencephalic locomotor region. Little is known about the oscillatory mechanisms underlying the function of this region in postural and gait control. We examined the modulations of the oscillatory activity of the PPNa and cortex during stepping, a surrogate of gait, and stance in seven Parkinson’s disease patients who received bilateral PPNa implantation for disabling freezing of gait (FOG). In the days following the surgery, we recorded behavioural data together with the local field potentials of the PPNa during sitting, standing and stepping-in-place, under two dopaminergic medication conditions (OFF and ON levodopa). Our results showed that OFF levodopa, all subjects had FOG during step-in-place trials, while ON levodopa, stepping was effective (mean duration of FOG decreasing from 61.7±36.1% to 7.3±10.1% of trial duration). ON levodopa, there was an increase in PPNa alpha (5–12 Hz) oscillatory activity and a decrease in beta (13–35 Hz) and gamma (65–90 Hz) bands activity. PPNa activity was not modulated during quiet standing and sitting. Our results confirm the role of the PPNa in the regulation of gait and suggest that, in Parkinson disease, gait difficulties could be related to an imbalance between low and higher frequencies.  相似文献   

17.
This study describes the validation of a new wearable system for assessment of 3D spatial parameters of gait. The new method is based on the detection of temporal parameters, coupled to optimized fusion and de-drifted integration of inertial signals. Composed of two wirelesses inertial modules attached on feet, the system provides stride length, stride velocity, foot clearance, and turning angle parameters at each gait cycle, based on the computation of 3D foot kinematics. Accuracy and precision of the proposed system were compared to an optical motion capture system as reference. Its repeatability across measurements (test-retest reliability) was also evaluated. Measurements were performed in 10 young (mean age 26.1±2.8 years) and 10 elderly volunteers (mean age 71.6±4.6 years) who were asked to perform U-shaped and 8-shaped walking trials, and then a 6-min walking test (6 MWT). A total of 974 gait cycles were used to compare gait parameters with the reference system. Mean accuracy±precision was 1.5±6.8 cm for stride length, 1.4±5.6 cm/s for stride velocity, 1.9±2.0 cm for foot clearance, and 1.6±6.1° for turning angle. Difference in gait performance was observed between young and elderly volunteers during the 6 MWT particularly in foot clearance. The proposed method allows to analyze various aspects of gait, including turns, gait initiation and termination, or inter-cycle variability. The system is lightweight, easy to wear and use, and suitable for clinical application requiring objective evaluation of gait outside of the lab environment.  相似文献   

18.
During human walking, perturbations to the upper body can be partly corrected by placing the foot appropriately on the next step. Here, we infer aspects of such foot placement dynamics using step-to-step variability over hundreds of steps of steady-state walking data. In particular, we infer dependence of the ‘next’ foot position on upper body state at different phases during the ‘current’ step. We show that a linear function of the hip position and velocity state (approximating the body center of mass state) during mid-stance explains over 80% of the next lateral foot position variance, consistent with (but not proving) lateral stabilization using foot placement. This linear function implies that a rightward pelvic deviation during a left stance results in a larger step width and smaller step length than average on the next foot placement. The absolute position on the treadmill does not add significant information about the next foot relative to current stance foot over that already available in the pelvis position and velocity. Such walking dynamics inference with steady-state data may allow diagnostics of stability and inform biomimetic exoskeleton or robot design.  相似文献   

19.
The central nervous system of humans and other animals modulates spinal cord activity to achieve several locomotion behaviors. Previous neuromechanical models investigated the modulation of human gait changing selected parameters belonging to CPGs (Central Pattern Generators) feedforward oscillatory structures or to feedback reflex circuits. CPG-based models could replicate slow and fast walking by changing only the oscillation’s properties. On the other hand, reflex-based models could achieve different behaviors through optimizations of large dimensional parameter spaces. However, they could not effectively identify individual key reflex parameters responsible for gait characteristics’ modulation. This study investigates which reflex parameters modulate the gait characteristics through neuromechanical simulations. A recently developed reflex-based model is used to perform optimizations with different target behaviors on speed, step length, and step duration to analyze the correlation between reflex parameters and their influence on these gait characteristics. We identified nine key parameters that may affect the target speed ranging from slow to fast walking (0.48 and 1.71 m/s) as well as a large range of step lengths (0.43 and 0.88 m) and step duration (0.51, 0.98 s). The findings show that specific reflexes during stance significantly affect step length regulation, mainly given by positive force feedback of the ankle plantarflexors’ group. On the other hand, stretch reflexes active during swing of iliopsoas and gluteus maximus regulate all the gait characteristics under analysis. Additionally, the results show that the hamstrings’ group’s stretch reflex during the landing phase is responsible for modulating the step length and step duration. Additional validation studies in simulations demonstrated that the modulation of identified reflexes is sufficient to regulate the investigated gait characteristics. Thus, this study provides an overview of possible reflexes involved in modulating speed, step length, and step duration of human gaits.  相似文献   

20.
Several methods derived from nonlinear time series analysis have been suggested to quantify stability in human gait kinematics. One of these methods is the definition of the maximum finite time Lyapunov exponent (λ) that quantifies how the system responds to infinitesimal perturbations. However, there are fundamental limitations to the conventional definition of λ for gait kinematics. First, exponential increase in initial perturbations cannot be assumed since real-life perturbations of gait kinematics are finite sized. Second, the transitions between single and double support phase within each stride cycle define two distinct dynamical regimes that may not be captured by a single λ. The present article presents a new method to quantify intra-stride changes λ(t) in local dynamical stability and employs the method to 3D lower extremity gait kinematics in 10 healthy adults walking on a treadmill at 3 different speeds. All participants showed an intra-stride change in λ(t) in the transition between single and double support phase. The intra-stride change reflected an both a increase and decrease in λ(t) at heel strike and toe off, respectively, with increased gait speed. Furthermore, a close relationship was found between the intra-stride change in standard deviation of foot velocity in the anterior-posterior direction and the intra-stride change of the initial perturbations. The present results indicate that local dynamical stability has gait phase-dependent changes that are not identified by conventional computation of a single λ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号