首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyaniline as a support for urease immobilization   总被引:4,自引:0,他引:4  
Polyaniline synthesized by chemical oxidative polymerization was used as an immobilization support for jack bean urease. Such immobilized enzyme has a good catalytic activity, storage stability, and reusability. Properties of free and immobilized urease were compared. Blends of polystyrene, cellulose acetate and poly(methyl methacrylate) with polyaniline were used for urease immobilization as well.  相似文献   

2.
Summary Polyionic hydrogels have been prepared by complexation of chitosan and xanthan. These hydrogels have been used to immobilize lipase from porcine pancreas (E.C. 3.1.1.3). Immobilization efficiency varied between 90 and 99% of initial activity. Immobilized lipase retained its activity towards hydrolysis of olive oil in water as an emulsion and of olive oil in isooctane.  相似文献   

3.
Curdlan, a high molecular weight extracellular β(1→3) glucan produced by pure culture fermentation by Agrobacterium radiobacter NCIM 2443 contains large number of free hydroxyl groups. The reaction of hydroxyl containing supports with epichlorohydrin results in activated epoxy groups that can covalently link with available amino, hydroxyl, or sulfhydryl groups of enzymes, thereby immobilizing it. The present work reports on preparation of epoxy-activated matrix for immobilization of a model enzyme, porcine pancreatic lipase. The binding capacity of the matrix prepared by extraction of epoxy-activated curdlan by isopropyl alcohol was found to be 58.7% with about 0.6% loss of the enzyme activity during immobilization. Further, the specific activity of the enzyme increased marginally from 9.37 to 10.2. The corresponding value was 10.15 for a commercial sample of curdlan, epoxy-activated as for laboratory-isolated curdlan. Sepharose, the most widely used support matrix for the immobilization of enzymes was used for comparison in this study.  相似文献   

4.
Grape skins as a natural support for yeast immobilization   总被引:1,自引:0,他引:1  
Grape skins were used to immobilize Saccharomyces cerevisiae. In repeated batch fermentations of grape by immobilized and free cells, the maximum specific rate of alcohol production on glucose decreased from 7.98 h–1 at 25 °C to 0.7 h–1 at 5 °C. The rate was approximately twice as high as that on fructose. The rates for free cells were very low. The maximum alcohol yield (0.45 g g–1) was obtained at 5 °C when the immobilized biocatalyst was used.  相似文献   

5.
Natural silk fibroin as a support for enzyme immobilization   总被引:8,自引:0,他引:8  
Silk fibroin derived from Bombyx mori cocoon is being developed and utilized for purposes besides traditional textile material. Fibroin can be easily made up into various forms, several of which can serve as enzyme-immobilized supports. There are numerous reports on immobilized enzymes using these forms of silk fibroin as supports in which the enzyme-immobilized fibroin membranes were characterized in detail by means of spectrophotometry, infrared spectra, NMR, ESR. Enzyme-immobilized fibroin membranes have been successfully used in several biosensors for the determinations of glucose, hydrogen peroxide and uric acid in which glucose and urate biosensors in a flow injection system were able rapidly to analyze various biosamples including human whole blood or serum.  相似文献   

6.
Summary Poultry bone residue was found to serve as a solid support matrix to which catalase, pepsin, pectinase, lactase and invertase could be insolubilized by covalent attachment and adsorption. Bone has great potential for enzyme immobilization since it is inexpensive, abundant, chemically functional, porous, non-toxic and mechanically strong.  相似文献   

7.
8.
A new and cheap support, vermiculite was successfully used to immobilize neutral protease by adsorption and hexamethylene diamine mediated coupling using glutaraldehyde as a bifunctional agent. Neutral protease immobilized on vermiculite by adsorption showed maximum retained activity than HMD mediated coupling. The optimum temperature for both free and immobilized neutral protease was found to be 45°C. However, the pH and thermal stabilities of immobilized neutral protease was observed to be better than that of the free enzyme. The storage stability of the immobilized enzyme was also studied.  相似文献   

9.
Partially deacetylated chitin (PDAC) obtained by boiling chitin in 28.6% (w/w) sodium hydroxide was not dissolved when it was suspended in 2% acetic acid (pH 2.6) at 60°C for 12 h or autoclaved in acetate buffer (pH 5.0) for 20 min. The enzyme binding ability of the PDAC with glutaraldehyde was similar to that of chitosan. Immobilized pullulanase had low enzyme activity for high-molecular-weight material such as pullulan, but its activity for maltosyl β-cyclodextrin was almost the same as that of the free enzyme. The immobilized enzyme produced branched cyclodextrin through a reverse reaction in acetate buffer of pH 3.75 at 53°C.  相似文献   

10.
Preparation of cellulose-polyamine composite films and beads, which provide high loading of primary amines on the surface allowing direct one-step bioconjugation of active species, is reported using an ionic liquid (IL) dissolution and regeneration process. Films and bead architectures were prepared and used as immobilization supports for laccase as a model system demonstrating the applicability of this approach. Performance of these materials, compared to commercially available products, has been assessed using millimeter-sized beads of the composites and the lipase-catalyzed transesterification of ethyl butyrate.  相似文献   

11.
Candida rugosa lipase was covalently immobilized on rice straw activated with glutaraldehyde using poly(ethylene glycol) (PEG) as the stabilizing agent. The effects of PEG molecular weight and enzyme loading were studied according to a full 2(2) factorial design. Higher immobilization yields (>70%) were attained when the lipase loading was 95 units/mg of dry support, independent of PEG molecular weight. All derivatives showed high hydrolytic and synthetic activities. This work provides preliminary results on the use of agricultural residues as a support matrix for immobilizing lipase and on the application of the resulting derivatives to butyl butyrate synthesis as a study model.  相似文献   

12.
Membranes of chitosan (QS), chitosan treated with glutaraldehyde (QGA) and chitosan crown ether (QCE) were utilized as carriers for immobilization of Candida antarctica and Candida rugosa lipases. Membrane supports were characterized by several techniques (Raman spectroscopy, elemental analysis by CHN determination and Energy Dispersive X-ray (EDX), water sorption isotherms, and surface area from nitrogen sorption data). To verify the presence of enzymes, some of these techniques were also used for lipase on chitosan biocatalytic systems. Measurements of protein load from Biuret assays and catalytic activity in esterification in nonaqueous media were also made for the immobilized enzymes. Sorption isotherms at 20, 30, 40 and 50 °C for QS, QGA and QCE supports were fitted to the Guggenheim, Anderson and Böer model. GAB monolayer moisture parameter, Xm, varied between 0.029 and 0.051 for QS, 0.039 and 0.058 for QGA and 0.039–0.075 g of water g−1 s.s. for QCE membranes. Elemental analysis and Raman spectra measurements of the lipase, supports and immobilized lipase systems gave evidence of the presence of enzymes on supports. Chitosan supports with internal surface area (m2 g−1) among 3.31 and 1.26 were obtained. Regardless of these low values, acceptable protein load (0.61 to 3.21%) and esterification initial rates were achieved (0.88–2.75 mmol min−1 g of protein−1).  相似文献   

13.
Ultraporous fired bricks (porosities from 56 to 72%) were developed from materials locally available in Nigeria. The grog particle size was used to modulate the porosity of the bricks. The porous bricks produced were then employed as supports for the immobilization of a yeast strain isolated from a local alcoholic beverage, palm wine. The influence of a brick's porosity and particle size on the cell-loading capacity and cell growth inside the fired brick support were studied. The study revealed that a brick's porosity varied linearly with the mean particle size of the grog, increasing from a porosity of 56% at a particle size of 0.805 mm to 72% at a particle size of 0.075 mm. Cell saturation of the surface area available within the support matrix was completed within four hours of contact between the cell and the adsorbing surface especially for the most porous samples. Cell growth was therefore not observed in such cases; however, the less porous samples supported some cell growth upon incubation. Cell holdup was also observed to increase exponentially when either the porosity was increased or the particle size was decreased. The influence of particle size, however, became insignificant at very high porosities.  相似文献   

14.
Summary Porous glass fiber has a very high surface area and good mechanical properties that make it an excellent support for biocatalyst immobilization. By packing aligned glass fibers in a tubular reactor such that the fibers are all parallel to the axis of the tube, the resulting pressure drop is considerably smaller than for a similar bed of packed beads. The utility of this support was demonstrated by immobilizing -glucoamylase by silane-glutaraldehyde coupling, and measuring its activity toward converting maltose to glucose. Using optimized immobilization conditions, an enzyme loading of 1.5 mg protein perm 2 surface area was obtained, with an activity of 370 units/g glass at 50°C. The half-life of the immobilized glucoamylase was more than twice as long as that of the free enzyme.  相似文献   

15.
Endoglucanase CelA from Clostridium thermocellum (CtCelA) is a thermophilic endo-β-1,4-glucanase and has a low solubility when expressed in Escherichia coli. To make industrial application of CtCeA more appealing, artificial oil bodies (AOBs) was implemented for one-step renaturation and immobilization of recombinant CtCelA. CtCelA was first fused with oleosin (Ole-CtCelA), a structural protein of plant seed oils. Ole-CtCelA was overexpressed in E. coli, and its insoluble form was recovered and mixed with plant oils to assemble AOBs. Moreover, the Box–Behnken design and the central composite design were employed to optimize the condition for assembly of AOBs and the enzymatic reaction condition, respectively. Consequently, the approach led to the resumption of active CtCelA on AOBs. CtCelA-bound AOBs exhibited an optimum activity at 69 °C and pH 6.3 while the immobilized protein remained stable for several hours at 70 °C and after 5 repeated uses. Overall, it indicates a promise of this novel approach for direct processing and immobilization of recombinant CtCelA.  相似文献   

16.
Summary Whole cells of Zygosaccharomyces lactis have been covalently linked to fine-grained hydroxyalkyl methacrylate gel Spheron P 1000 E which was prepared by treatment with epichlorhydrin and modified by an amine spacer. Experiments on the coupling of permeabilized and non-permeabilized cells to this gel support have shown that immobilized cell agregates may be obtained by the immobilization of thermally permeabilized cells. Cell clustering can be bypassed by immobilizing non-permeabilized cells. This immobilization procedure makes additional permeabilization possible.  相似文献   

17.
Chitosan from a native Mucoralean strain, Syncephalastrum racemosum, isolated from herbivorous dung (Northeast-Brazil), was used as a film support for lipase immobilization. S. racemosum showed highest chitosan yield (152 mg g dry mycelia weight(-1); 15.2% of dry mycelia weight) among the nine strains screened, which presented 89% D-glucosamine. A chitosan film was used for lipase (EC 3.1.1.3) immobilization using glutaraldehyde as a bifunctional agent. The immobilized lipase retained 47% (12.6 micromol s(-1) m(-2)) of its initial catalytic activity after four cycles of reaction. This result is comparable (same order of magnitude) to that of the enzyme immobilized on film made from commercially available crustacean chitosan.  相似文献   

18.
Pig bone was examined for its suitability as a support material for lipase immobilization. It was observed that pig bone (PB) particles dispersed readily in both polar and nonpolar solvents, and lipase was easily adsorbed. In particular lipase adsorbed on olive oil-soaked pig bone (OPB) particles exhibited a higher hydrolytic activity than that in lipase adsorbed on a selection of other representative supports, regardless of removing the presoaked olive oil from the particles after immobilization of lipase. The optimum pH and temperature for hydrolytic activity of OPB-adsorbed lipase were the same as those for free lipase, although thermal resistance was increased by immobilization. When OPB-adsorbed lipase was used for repeated batch reactions of olive oil hydrolysis, an activity of more than 80% of the initial activity of each run could he retained after 46 h reaction. The results suggest that PB is an excellent support material.  相似文献   

19.
A new type of coating for manufacturing DNA chips was constructed on the basis of an organicinorganic nanocomposite based on the polyvinylbutyral-tetraethoxysilane copolymer. The organosilicon composite was functionalized by introduction of ethanolamine vinyl ether copolymers, which contain amino groups and anchor vinyloxide units capable of reacting with silanol groups of the nanocomposite. The resulting coatings form a film on glass slides with a high surface density of amino groups (up to 700 groups/nm2) suitable for three-dimensional immobilization of oligonucleotides. The use of bifunctional reagents (e.g., phenylene diisothiocyanate) for the attachment of oligonucleotides bearing amino linkers to the amino-containing surface provides an immobilization density of 0.5–1.6 pmol/mm2. Immobilization with a higher density (10–12 pmol/mm2) was achieved for attachment to amino-containing glass slides upon the use of oligonucleotides containing a selectively activated terminal phosphate group. The activation of oligonucleotides was carried out with the triphenylphosphine-dithiodipyridine pair in the presence of dimethylaminopyridine N-oxide. The resulting DNA chips were shown to be useful in principle for DNA detection.  相似文献   

20.
A new type of coating for manufacturing DNA chips was constructed of the basis of an organic-inorganic nanocomposite based on the polyvinylbutyral-tetraethoxysilane copolymer. The organosilicon composite was functionalized by introduction of ethanolamine vinyl ether copolymers, which contain amino groups and anchor vinyloxide units capable of reacting with silanol groups of the nanocomposite. The resulting coatings form a film on glass slides with a high surface density of amino groups (up to 700 groups/nm2) suitable for three-dimensional immobilization of oligonucleotides. The use of bifunctional reagents (e.g., phenylene diisothiocyanate) for the attachment of oligonucleotides bearing amino linkers to the amino-containing surface provides an immobilization density of 0.5-1.6 pmol/mm2. Immobilization with a higher density (10-12 pmol/mm2) was achieved for attachment to amino-containing glass slides upon the use of oligonucleotides containing selectively activated terminal phosphate groups. The activation of oligonucleotides was carried out with the triphenylphosphine-dithiodipyridine pair in the presence of dimethylaminopyridine N-oxide. The resulting DNA chips were shown to be useful in principle for DNA detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号