首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small synthetic compounds have been implicated in treatment of human cancers. We have synthesized a small compound, BPR1K0609S1 (hereafter, BP), which inhibits Aurora-A kinase. In the present study, we studied the mechanism of BP suppression of tumorigenesis induced by Aurora-A. Given our previous results that inactivation of p53 accelerates MMTV-Aurora-A-mediated tumorigenesis in vivo, we studied the roles of p53 pathway using the isogenic human colon carcinoma cell lines of HCT116, in which p53, Puma, Bax, p21 or Chk2 is deleted. When these isogenic cell lines are treated with BP for 48 h, accumulation of G2M phase and aneuploidy are commonly observed, and HCT116 p21(-) cells show increase in apoptosis. In xenograft assay, s.c. injection of BP efficiently inhibits tumorigenesis of HCT116 deficient for Chk2 or p21. Re-transplantation of BP-resistant tumors indicates that these resistant cells do not acquire advanced tumor growth. Significantly, 5-FU (5-fluorouracil) treatment further induces apoptosis of BP-resistant HCT116 deficient for Chk2 or Puma. These results demonstrate that p21 deficiency enhances BP-mediated suppression of tumor growth, and that BP and 5-FU can collaborate for tumor regression.  相似文献   

2.
Accurate and timely visualization of apoptotic status in response to radiation is necessary for deciding whether to continue radiation or change to another mode of treatment. This is especially critical in patients with colorectal cancer, which requires a delicate combination of surgery, radiation, and chemotherapy in order to achieve optimal outcome. In this study, we investigated the potential of phosphatidylserine-recognizing peptide 1 (PSP1) as an apoptosis-targeting probe, which identifies phosphatidylserine on cell surfaces. We first screened colon cancer cell lines for their sensitivity to radiation and selected two cell lines: HCT116 and HT29. Cell binding assay using fluorescence-activated cell sorting and optical imaging showed that HCT116 cells had better binding to PSP1 than HT29 cells. Thus, mouse xenograft model using HCT116 cells was generated and was topically irradiated with either single or fractionated dose of radiation followed by systemic administration of PSP1 for subsequent molecular optical imaging. We confirmed that the PSP1 probe was selectively bound to apoptosis-induced tumor in a radiation dose-dependent manner. We also observed that fractionated radiation regimen, which is recently being used in clinical situation, was more effective in inducing tumor apoptosis than corresponding single-dose radiation treatment. We then evaluated the correlation between tumor targeting of PSP1 and suppression effect of tumor development and found that tumor volume and fluorescence intensity were correlated before (correlation coefficient r2 = 0.534) and after (r2 = 0.848) radiation therapy. Our study shows that PSP1 peptide is an efficient index probe for deciding “go or no-go” for radiation therapy in colorectal cancer.  相似文献   

3.
A phytochemical investigation of the branches and leaves of Cephalotaxus lanceolata resulted in the isolation of three new cephalotaxus alkaloids, cephalancetines A, B, and D ( 1, 2 , and 4 , resp.), together with ten known alkaloids, 3 and 5 – 13 . The structures of the alkaloids were elucidated on the basis of spectroscopic analyses, including 1D‐ and 2D‐NMR, and HR‐ESI‐MS, and single‐crystal X‐ray diffraction. All isolated compounds were tested for their cytotoxicities against four human tumor cell lines, A549, HCT116, SK‐BR‐3, and HepG2. Compounds 12 and 13 showed remarkable activities against A549, HCT116, and HepG2 cell lines.  相似文献   

4.

Background

Cathepsin B (CTSB), a member of the cathepsin family, is a cysteine protease that is widely distributed in the lysosomes of cells in various tissues. It is overexpressed in several human cancers and may be related to tumorigenesis. The main purpose of this study was to analyze CTSB expression in oral squamous cell carcinoma (OSCC) and its correlation with patient prognosis.

Methodology/Principal Findings

Tissue microarrays were used to detect CTSB expression in 280 patients and to examine the association between CTSB expression and clinicopathological parameters. In addition, the metastatic effects of the CTSB knockdown on two oral cancer cell lines were investigated by transwell migration assay. Cytoplasmic CTSB expression was detected in 34.6% (97/280) of patients. CTSB expression was correlated with positive lymph node metastasis (p = 0.007) and higher tumor grade (p = 0.008) but not with tumor size and distant metastasis. In addition, multivariate analysis using a Cox proportional hazards model revealed a higher hazard ratio, demonstrating that CTSB expression was an independent unfavorable prognostic factor in buccal mucosa carcinoma patients. Furthermore, the Kaplan–Meier curve revealed that buccal mucosa OSCC patients with positive CTSB expression had significantly shorter overall survival. Moreover, treatment with the CTSB siRNA exerted an inhibitory effect on migration in OC2 and CAL27 oral cancer cells.

Conclusions

We conclude that CTSB expression may be useful for determining OSCC prognosis, particularly for patients with lymph node metastasis, and may function as a biomarker of the survival of OSCC patients in Taiwan.  相似文献   

5.
Colorectal cancer (CC) is one of two diseases, in which the link between cancer proneness and DNA repair deficiency appears to be proved. A strict relationship between mismatch repair (MMR) gene mutations, microsatellite instability (MSI) has been found in familiar colorectal cancer (Lynch syndrome). Tumorigenesis at familiar cancer is initiated by biallelic mutations in the major MMR genes, namely MSH2 or MLH1. One of these mutations is an inherited germline alteration and the other is a somatic one. The initiating mutation in sporadic colorectal tumors was not still identified although biochemical and genetic signs of MMR deficiency are observed in tumor cells. Two currently used colorectal tumor cell lines HCT116 and COLO320HSR were derived from hereditary and sporadic tumors accordingly. HCT116 cell line exhibits MMR-deficiency due to biallelic deletion in MLH1. As a consequence this shows MSI phenotype and a near-diploid karyotype. COLO320HSR cell line is characterized by MSS phenotype with mostly imbalanced aberrations. This indicates MMR proficiency in these cells. However, both MMR-deficient HCT116 and COLO320HSR cells reveal near-diploid karyotype. Earlier we have shown that the number of secondary DNA double strand breaks, induced by methylnitrosourea (MNU), represent functional activity of cellular MMR. In the present study, using this approach we evaluated sensitivity to MNU and MMR activity in two colorectal tumor cell lines (HCT116, COLO320HSR) and compared them to that in the HeLa cell line, which have MMR-proficient phenotype. We showed that cell line COLO320HSR exhibits low MMR activity, close to the level of MMR-activity in HCT116 cell line. We found a mutation in MSH2-G520A gene in COLO320HSR. This neutral mutation apparently is not related to polymorphism as we failed to identify the same mutation in any of MSH2 gene sequences of lymphocytes from 30 patients with sporadic colorectal cancer.  相似文献   

6.
CD44 has shown prognostic values and promising therapeutic potential in multiple human cancers; however, the effects of CD44 silencing on biological behaviors of cancer stem cells (CSCs) have not been fully understood in colorectal cancer. To examine the contribution of siRNA‐induced knockdown of CD44 to the biological features of colorectal CSCs, colorectal CSCs HCT116‐CSCs were generated, and CD44 was knocked down in HCT116‐CSCs using siRNA. The proliferation, migration and invasion of HCT116‐CSCs were measured, and apoptosis and cell‐cycle analyses were performed. The sensitivity of HCT116‐CSCs to oxaliplatin was tested, and xenograft tumor growth assay was performed to examine the role of CD44 in HCT116‐CSCs tumorigenesis in vivo. In addition, the expression of epithelial–mesenchymal transition (EMT) markers E‐cadherin, N‐cadherin and vimentin was quantified. siRNA‐induced knockdown of CD44 was found to inhibit the proliferation, migration and invasion, induce apoptosis, promote cell‐cycle arrest at the G1/G0 phase and increase the sensitivity of HCT116‐CSCs to oxaliplatin in HCT116‐CSCs, and knockdown of CD44 suppressed in vivo tumorigenesis and intrapulmonary metastasis of HCT116‐CSCs. Moreover, silencing CD44 resulted in EMT inhibition. Our findings demonstrate that siRNA‐induced CD44 knockdown suppresses the proliferation, invasion and in vivo tumorigenesis and metastasis of colorectal CSCs by inhibiting EMT.  相似文献   

7.
The tumor suppressor gene p53 has roles in multiple cell-cycle checkpoints, including the G1/S transition, to prevent replication of cells with DNA damage. p53 is thought to be associated with regulation of replication timing during S-phase in the human genome. In the present study, we used p53-wild-type and p53-null HCT116 colon carcinoma cells to analyze p53-dependent changes in replication timing of the human genome. The percentage of HCT116 p53(−/−) cells in S-phase was higher than that of HCT116 p53(+/+) cells. We compared replication timing of human genes between the two cell lines using 25,000 human cDNA microarray. We identified genes that replicated earlier in HCT116 p53(−/−) cells than in HCT116 p53(+/+) cells. These genes included cell-cycle- and apoptosis-related genes. We propose that p53 plays a role in regulation of replication timing of the human genome through the control of cell-cycle checkpoints.  相似文献   

8.
Novel indeno[1,2-d]thiazole hydroxamic acids were designed, synthesized, and evaluated for histone deacetylases (HDACs) inhibition and antiproliferative activities on tumor cell lines. Most of the tested compounds exhibited HDAC inhibition and antiproliferative activity against both MCF7 and HCT116 cells with GI50 values in the sub-micromolar range. Among them, compound 6o showed good inhibitory activity against pan-HDAC with IC50 value of 0.14 μM and significant growth inhibition on MCF7 and HCT116 cells with GI50 values of 0.869 and 0.535 μM, respectively.  相似文献   

9.

Background

Tumor cells become addicted to both activated oncogenes and to proliferative and pro-survival signals provided by the abnormal tumor microenvironment. Although numerous soluble factors have been identified that shape the crosstalk between tumor cells and stroma, it has not been established how oncogenic mutations in the tumor cells alter their interaction with normal cells in the tumor microenvironment.

Principal Findings

We showed that the isogenic HCT116 and Hke-3 cells, which differ only by the presence of the mutant kRas allele, both stimulate macrophages to produce IL1β. In turn, macrophages enhanced Wnt signaling, proliferation and survival in both HCT116 and Hke-3 cells, demonstrating that signaling by oncogenic kRas in tumor cells does not impact their interaction with macrophages. HCT116 cells are heterozygous for β-catenin (HCT116WT/MT), harboring one wild type (WT) and one mutant (MT) allele, but isogenic lines that carry only the WT (HCT116WT) or MT β-catenin allele (HCT116MT) have been generated. We showed that macrophages promoted Wnt signaling in cells that carry the MT β-catenin allele, but not in HCT116WT cells. Consistent with this observation, macrophages and IL1β failed to stabilize Snail in HCT116WT cells, and to protect these cells from TRAIL-induced apoptosis. Finally, we demonstrated that HCT116 cells expressing dominant negative TCF4 (dnTCF4) or HCT116 cells with silenced Snail failed to stimulate IL1β production in macrophages, demonstrating that tumor cells activate macrophages via a Wnt-dependent factor.

Significance

Our data demonstrate that oncogenic β-catenin mutations in tumor cells, and subsequent activation of Wnt signaling, not only trigger cell-intrinsic alterations, but also have a significant impact on the crosstalk of tumor cells with the tumor associated macrophages.  相似文献   

10.
Engagement of the mitochondrial-death amplification pathway is an essential component in chemotherapeutic execution of cancer cells. Therefore, identification of mitochondria-targeting agents has become an attractive avenue for novel drug discovery. Here, we report the anticancer activity of a novel Osmium-based organometallic compound (hereafter named Os) on different colorectal carcinoma cell lines. HCT116 cell line was highly sensitive to Os and displayed characteristic features of autophagy and apoptosis; however, inhibition of autophagy did not rescue cell death unlike the pan-caspase inhibitor z-VAD-fmk. Furthermore, Os significantly altered mitochondrial morphology, disrupted electron transport flux, decreased mitochondrial transmembrane potential and ATP levels, and triggered a significant increase in reactive oxygen species (ROS) production. Interestingly, the sensitivity of cell lines to Os was linked to its ability to induce mitochondrial ROS production (HCT116 and RKO) as HT29 and SW620 cell lines that failed to show an increase in ROS were resistant to the death-inducing activity of Os. Finally, intra-peritoneal injections of Os significantly inhibited tumor formation in a murine model of HCT116 carcinogenesis, and pretreatment with Os significantly enhanced tumor cell sensitivity to cisplatin and doxorubicin. These data highlight the mitochondria-targeting activity of this novel compound with potent anticancer effect in vitro and in vivo, which could have potential implications for strategic therapeutic drug design.  相似文献   

11.
Two series of 3-aminopyrazole compounds including 24 1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazoles and 16 pyrazolo[3,4-b]pyridines were synthesized and evaluated against HCT116, A549, and A2780 tumor cell lines. Among them, three compounds were found to have the ideal anti-proliferative activities in vitro. Docking experiments showed that the novel pyrazolo[3,4-b]pyridines share the similar interaction mode with Aurora-A kinase as PHA739358.  相似文献   

12.
As serine/threonine kinase, the cyclin dependent kinase 2 (CDK2) is a promising target for various diseases such as cerebral hypoxia, cancer, and neurodegenerative diseases. Here we reported the structure-based synthesis and biological evaluation of novel 5,6-dihydropyrimido[4,5-f]quinazoline derivatives as CDK2 inhibitors, which exhibited potent CDK2 inhibitory activities, as well as anticancer activities in low concentration against two human cancer cell lines (MCF-7 and HCT116). In particular, compounds 11a and 11f (IC50 values of 0.11 and 0.09?μM for CDK2, respectively) have demonstrated significantly inhibitory potency against CDK2 and have showed great inhibitory activities against MCF-7 and HCT116 cell lines.  相似文献   

13.
A series of ethacrynic acid (2-[2,3-dichloro-4-(2-methylidenebutanoyl)phenoxy]acetic acid) (EA, Edecrin) containing sulfonamides linked via three types of linkers namely 1,2-ethylenediamine, piperazine and 4-aminopiperidine was synthesized and subsequently evaluated in vitro against HL60 and HCT116 cancer cell lines. All the EA analogs, excluding 6a and 6c, showed anti-proliferative activity with IC50s in the micromolar range (less than 4 uM). Three derivatives 6b, 7b and 7e were selected for their interesting dual activity on HL60 cell line in order to be further evaluated against a panel of cancer cell lines (HCT116, A549, MCF7, PC3, U87-MG and SKOV3) as well as on MRC5 as a normal cell line. These compounds displayed IC50 values in nanomolar range against A549, MCF7, PC3 and HCT116 cell lines, deducing the discovery that piperazine or 4-aminopiperidine is the linker’s best choice to develop EA analogs with highly potent anti-proliferative activities own up to 24 nM. Besides, in terms of selectivity, those linkers are more suitable offering safety ratios of up to 63.8.  相似文献   

14.
Deregulated miRNAs participate in colorectal carcinogenesis. In this study, miR-218 was found to be downregulated in human colorectal cancer (CRC) by miRNA profile assay. miR-218 was silenced or downregulated in all five colon cancer cells (Caco2, HT29, SW620, HCT116 and LoVo) relative to normal colon tissues. miR-218 expression was significantly lower in 46 CRC tumor tissues compared with their adjacent normal tissues (P < 0.001). Potential target genes of miR-218 were predicted and BMI1 polycomb ring finger oncogene (BMI-1), a polycomb ring finger oncogene, was identified as one of the potential targets. Upregulation of BMI-1 was detected in CRC tumors compared with adjacent normal tissues (P < 0.001) and in all five colon cancer cell lines. Transfection of miR-218 in colon cancer cell lines (HCT116, HT29) significantly reduced luciferase activity of the wild-type construct of BMI-1 3′ untranslated region (3′UTR) (P < 0.001), whereas this effect was not seen in the construct with mutant BMI-1 3′UTR, indicating a direct and specific interaction of miR-218 with BMI-1. Ectopic expression of miR-218 in HCT116 and HT29 cells suppressed BMI-1 mRNA and protein expression. In addition, miR-218 suppressed protein expression of BMI-1 downstream targets of cyclin-dependent kinase 4, a cell cycle regulator, while upregulating protein expression of p53. We further revealed that miR-218 induced apoptosis (P < 0.01), inhibited cell proliferation (P < 0.05) and promoted cell cycle arrest in the G2 phase (P < 0.01). In conclusion, miR-218 plays a pivotal role in CRC development through inhibiting cell proliferation and cycle progression and promoting apoptosis by downregulating BMI-1.  相似文献   

15.
A series of forty α-substituted chalcones were synthesized and screened for their antiproliferative activities against HCT116 (colorectal) and HCC1954 (breast) cancer cell lines. Compounds 5a and 5e were found to be the most potent compounds with GI50 values of 0.63 µM and 0.725 µM in HCC1954 cell line and 0.69 µM and 1.59 µM in HCT116 cell line, respectively. Both compounds induced a G2/M cell cycle arrest and caused apoptotic cell death in HCT116 cells as shown by the induction of PARP cleavage. The compounds also stabilized p53 in a dose-dependent manner in HCT116 cells following 24-hour treatment. Furthermore, both 5a and 5e were able to overcome multidrug resistance in two MDR-1 overexpressing multidrug resistant cell lines.  相似文献   

16.

Background

Cancer stem cells are thought to play a pivotal role in tumor maintenance, metastasis, tumor therapy resistance and relapse. Hence, the development of methods for non-invasive in vivo detection of cancer stem cells is of great importance.

Methodology/Principal Findings

Here, we describe successful in vivo detection of CD133/prominin, a cancer stem cell surface marker for a variety of tumor entities. The CD133-specific monoclonal antibody AC133.1 was used for quantitative fluorescence-based optical imaging of mouse xenograft models based on isogenic pairs of CD133 positive and negative cell lines. A first set consisted of wild-type U251 glioblastoma cells, which do not express CD133, and lentivirally transduced CD133-overexpressing U251 cells. A second set made use of HCT116 colon carcinoma cells, which uniformly express CD133 at levels comparable to primary glioblastoma stem cells, and a CD133-negative HCT116 derivative. Not surprisingly, visualization and quantification of CD133 in overexpressing U251 xenografts was successful; more importantly, however, significant differences were also found in matched HCT116 xenograft pairs, despite the lower CD133 expression levels. The binding of i.v.-injected AC133.1 antibodies to CD133 positive, but not negative, tumor cells isolated from xenografts was confirmed by flow cytometry.

Conclusions/Significance

Taken together, our results show that non-invasive antibody-based in vivo imaging of tumor-associated CD133 is feasible and that CD133 antibody-based tumor targeting is efficient. This should facilitate developing clinically applicable cancer stem cell imaging methods and CD133 antibody-based therapeutics.  相似文献   

17.
Carbonic anhydrase IX (CAIX) is a transmembrane enzyme found to be overexpressed in various tumors and associated with tumor hypoxia. Ligands binding this target may be used to visualize hypoxia, tumor manifestation or treat tumors by endoradiotherapy.

Methods

Phage display was performed with a 12 amino acid phage display library by panning against a recombinant extracellular domain of human carbonic anhydrase IX. The identified peptide CaIX-P1 was chemically synthesized and tested in vitro on various cell lines and in vivo in Balb/c nu/nu mice carrying subcutaneously transplanted tumors. Binding, kinetic and competition studies were performed on the CAIX positive human renal cell carcinoma cell line SKRC 52, the CAIX negative human renal cell carcinoma cell line CaKi 2, the human colorectal carcinoma cell line HCT 116 and on human umbilical vein endothelial cells (HUVEC). Organ distribution studies were carried out in mice, carrying SKRC 52 tumors. RNA expression of CAIX in HCT 116 and HUVEC cells was investigated by quantitative real time PCR.

Results

In vitro binding experiments of 125I-labeled-CaIX-P1 revealed an increased uptake of the radioligand in the CAIX positive renal cell carcinoma cell line SKRC 52. Binding of the radioligand in the colorectal carcinoma cell line HCT 116 increased with increasing cell density and correlated with the mRNA expression of CAIX. Radioligand uptake was inhibited up to 90% by the unlabeled CaIX-P1 peptide, but not by the negative control peptide octreotide at the same concentration. No binding was demonstrated in CAIX negative CaKi 2 and HUVEC cells. Organ distribution studies revealed a higher accumulation in SKRC 52 tumors than in heart, spleen, liver, muscle, intestinum and brain, but a lower uptake compared to blood and kidney.

Conclusions

These data indicate that CaIX-P1 is a promising candidate for the development of new ligands targeting human carbonic anhydrase IX.  相似文献   

18.
Novel berberine derivatives with disubstituents on positions C9 and C13 were synthesized and evaluated for antiproliferative activities against human prostate cancer cell lines (PC3 and DU145), breast cancer cell line (MDA-MB-231) and human colon cancer cell lines (HT29 and HCT116). All compounds showed significantly enhanced antiproliferative activities compared with berberine. Notably, compound 18e exhibited the strongest cytotoxicity against PC3 cells with an IC50 value of 0.19 μM, and the highest selectivity index (SIPC3 > 20). Further studies showed that 18e could arrest the cell cycle at G1 phase, and significantly inhibit tumor cell colony forming and migration even at low concentrations. Interestingly, 18e could significantly induce cytoplasmic vacuolation, suggesting a different mode of action from berberine.  相似文献   

19.
Human SLFN5 inhibits invasions of IFNα-sensitive renal clear-cell carcinoma and melanoma cells. However, whether this inhibition is confined to these IFNα-sensitive cancers is unclear. Here we show that SLFN5 expressions on both mRNA and protein levels are significantly higher in non/low-invasive cancer cell lines (breast cancer cell line MCF7, colorectal cancer cell line HCT116 and lung cancer cell line A549) than in highly-invasive cancer cell lines (fibrosarcoma cell line HT1080 and renal clear cell cancer cell line 786-0). SLFN5 knockdown in non/low-invasive cancer cell lines enhanced MT1-MMP expression and increased migration and invasion in vitro, and in vivo. Furthermore, SLFN5 overexpression in HT1080 and 786-0 inhibited MT1-MMP expression and repressed migration and invasion. MT1-MMP is instrumental in SLFN5-controlled inhibition of cancer cell migration and invasion, as shown by MT1-MMP-knockdown and -overexpression analyses. SLFN5 knockdown activated AKT/GSK-3β/β-catenin pathway by promotion AKT phosphorylation and subsequent GSK-3β phosphorylation, further β-catenin translocation into nucleus as un-phosphorylated protein at Ser33, 37 and 45 and Thr41 sites. This is the first study to report that SLFN5 inhibits cancer migration and invasiveness in several common cancer cell lines by repressing MT1-MMP expression via the AKT/GSK-3β/β-catenin signalling pathway, suggesting that SLFN5 plays wide inhibitory roles in various cancers.  相似文献   

20.

Background

Colorectal cancer (CRC) metastasis is a leading cause of cancer-related deaths in the United States. The molecular mechanisms underlying this complex, multi-step pathway are yet to be completely elucidated. Recent reports have stressed the importance of intra-tumoral heterogeneity in the development of a metastatic phenotype. The purpose of this study was to characterize the intra-tumoral phenotypic heterogeneity between two iso-clonal human colon cancer sublines HCT116 and HCT116b on their ability to undergo metastatic colonization and survive under growth factor deprivation stress (GFDS).

Materials and Methods

HCT116 and HCT116b cells were transfected with green fluorescence protein and subcutaneously injected into BALB/c nude male mice. Once xenografts were established, they were excised and orthotopically implanted into other male BALB/c nude mice using microsurgical techniques. Animal tissues were studied for metastases using histochemical techniques. Microarray analysis was performed to generate gene signatures associated with each subline. In vitro assessment of growth factor signaling pathway was performed under GFDS for 3 and 5 days.

Results

Both HCT116 and HCT116b iso-clonal variants demonstrated 100% primary tumor growth, invasion and peritoneal spread. However, HCT116 was highly metastatic with 68% metastasis observed in liver and/or lungs compared to 4% in HCT116b. Microarray analysis revealed an upregulation of survival and metastatic genes in HCT116 cells compared to HCT116b cells. In vitro analysis showed that HCT116 upregulated survival and migratory signaling proteins and downregulated apoptotic agents under GFDS. However, HCT116b cells effectively showed the opposite response under stress inducing cell death.

Conclusions

We demonstrate the importance of clonal variation in determining metastatic potential of colorectal cancer cells using the HCT116/HCT116b iso-clonal variants in an orthotopic metastatic mouse model. Determination of clonal heterogeneity in patient tumors can serve as useful tools to identify clinically relevant biomarkers for diagnostic and therapeutic assessment of metastatic colorectal cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号