首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Centromere mapping is a powerful tool for improving linkage maps, investigating crossover events, and understanding chiasma interference during meiosis. Ninety microsatellite markers selected across all linkage groups (LGs) from a previous Chlamys farreri genetic map were studied in three artificially induced meiogynogenetic families for centromere mapping by half-tetrad analysis. Inheritance analyses showed that all 90 microsatellite loci conformed to Mendelian inheritance in the control crosses, while 4.4 % of the microsatellite loci showed segregation departures from an expected 1:1 ratio of two homozygote classes in meiogynogenetic progeny. The second division segregation frequency (y) of the microsatellites ranged from 0.033 to 0.778 with a mean of 0.332, confirming the occurrence of partial chiasma interference in this species. Heterogeneity of y is observed in one of 42 cases in which markers were typed in more than one family, suggesting variation in gene–centromere recombination among families. Centromere location was mostly in accordance with the C. farreri karyotype, but differences in marker order between linkage and centromere maps occurred. Overall, this study makes the genetic linkage map a more complete and informative tool for genomic studies and it will also facilitate future research of the structure and function of the scallop centromeres.  相似文献   

2.
Nie H  Li Q  Kong L 《Animal genetics》2012,43(3):290-297
Centromere mapping is an essential prerequisite for our understanding of the composition and structure of genomes. For centromere mapping, in two meiogynogenetic families of the Pacific abalone (Haliotis discus hannai), we screened 97 microsatellite markers that cover all linkage groups from a currently available abalone linkage map. Microsatellite analysis showed that no unique paternal allele was found in all gynogenetic progeny, which confirmed 100% success of induction of gynogenesis. In the control crosses, all 97 microsatellite loci were compatible with Mendelian inheritance, while in meiogynogenetic progeny, 5.2% of the microsatellite loci showed segregation distortions from an expected 1:1 ratio of two homozygote classes. The second division segregation frequency of the microsatellites ranged from 0.037 to 0.950 with a mean of 0.399, indicating the existence of interference. Heterogeneity among linkage groups in the crossover distribution was observed. Centromere location was mostly in accordance with the abalone karyotype, but differences in marker order between linkage and centromere maps occurred. Information on the positions of centromeres in relation to the microsatellite loci will represent a contribution towards assembly of genetic maps in the commercially important abalone species.  相似文献   

3.
C. Zhu  J. Tong  X. Yu  W. Guo  X. Wang  H. Liu  X. Feng  Y. Sun  L. Liu  B. Fu 《Animal genetics》2014,45(5):699-708
Bighead carp (Aristichthys nobilis) is an important aquaculture fish worldwide. Genetic linkage maps for the species were previously reported, but map resolution remained to be improved. In this study, a second‐generation genetic linkage map was constructed for bighead carp through a pseudo‐testcross strategy using interspecific hybrids between bighead carp and silver carp. Of the 754 microsatellites genotyped in two interspecific mapping families (with 77 progenies for each family), 659 markers were assigned to 24 linkage groups, which were equal to the chromosome numbers of the haploid genome. The consensus map spanned 1917.3 cM covering 92.8% of the estimated bighead carp genome with an average marker interval of 2.9 cM. The length of linkage groups ranged from 52.2 to 133.5 cM with an average of 79.9 cM. The number of markers per linkage group varied from 11 to 55 with an average of 27.5 per linkage group. Normality tests on interval distances of the map showed a non‐normal marker distribution; however, significant correlation was found between the length of linkage group and the number of markers below the 0.01 significance level (two‐tailed). The length of the female map was 1.12 times that of the male map, and the average recombination ratio of female to male was 1.10:1. Visual inspection showed that distorted markers gathered in some linkage groups and in certain regions of the male and female maps. This well‐defined genetic linkage map will provide a basic framework for further genome mapping of quantitative traits, comparative mapping and marker‐assisted breeding in bighead carp.  相似文献   

4.
Liao M  Zhang L  Yang G  Zhu M  Wang D  Wei Q  Zou G  Chen D 《Animal genetics》2007,38(4):364-370
Silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) are two of the four most important pond-cultured fish species inhabiting the major river basins of China. In the present study, genetic maps of silver carp and bighead carp were constructed using microsatellite and AFLP markers and a two-way pseudo-testcross strategy. To create the maps, 60 individuals were obtained from a cross of a single bighead carp (female) and a single silver carp (male). The silver carp map consisted of 271 markers (48 microsatellites and 223 AFLPs) that were assembled into 27 linkage groups, of which 22 contained at least four markers. The total length of the silver carp map was 952.2 cM, covering 82.8% of the estimated genome size. The bighead carp map consisted of 153 markers (27 microsatellites and 126 AFLPs) which were organized into 30 linkage groups, of which 19 contained at least four markers. The total length of the bighead carp map was 852.0 cM, covering 70.5% of the estimated genome size. Eighteen microsatellite markers were common to both maps. These maps will contribute to discovery of genes and genetic regions controlling traits in the two species of carp.  相似文献   

5.
A Genetic linkage map of Atlantic halibut (Hippoglossus hippoglossus L.)   总被引:2,自引:0,他引:2  
A genetic linkage map has been constructed for Atlantic halibut on the basis of 258 microsatellites and 346 AFLPs. Twenty-four linkage groups were identified, consistent with the 24 chromosomes seen in chromosome spreads. The total map distance is 1562.2 cM in the female and 1459.6 cM in the male with an average resolution of 4.3 and 3.5 cM, respectively. Using diploid gynogens, we estimated centromere locations in 19 of 24 linkage groups. Overall recombination in the female was approximately twice that of the male; however, this trend was not consistent along the linkage groups. In the centromeric regions, females had 11-17.5 times the recombination of the males, whereas this trend reversed toward the distal end with males having three times the recombination of the females. Correspondingly, in the male, markers clustered toward the centromeric region with 50% of markers within 20 cM of the putative centromere, whereas 35% of markers in the female were found between 60 and 80 cM from the putative centromere. Limited interspecies comparisons within Japanese flounder and Tetraodon nigroviridis revealed blocks of conservation in sequence and marker order, although regions of chromosomal rearrangement were also apparent.  相似文献   

6.
Xie W  Zhang X  Cai H  Huang L  Peng Y  Ma X 《Génome》2011,54(3):212-221
Orchardgrass (Dactylis glomerata L.) is one of the most important cool-season forage grasses commonly grown throughout the temperate regions of the world. The objective of this work was to construct a diploid (2n = 2x = 14) orchardgrass genetic linkage map useful as a framework for basic genetic studies and plant breeding. A combination of simple sequence repeat (SSR) and sequence-related amplified polymorphism (SRAP) molecular markers were used for map construction. The linkage relationships among 164 SSRs and 108 SRAPs, assayed in a pseudo-testcross F1 segregating population generated from a cross between two diploid parents, were used to construct male (01996) and female (YA02-103) parental genetic maps. The paternal genetic map contains 90 markers (57 SSRs and 33 SRAPs) over 9 linkage groups (LGs), and the maternal genetic map is composed of 87 markers (54 SSRs and 33 SRAPs) assembled over 10 LGs. The total map distance of the male map is 866.7 centimorgans (cM), representing 81% genome coverage, whereas the female map spans 772.0 cM, representing 75% coverage. The mean map distance between markers is 9.6 cM in the male map and 8.9 cM in the female map. About 14% of the markers remained unassigned. The level of segregation distortion observed in this cross was 15%. Homology between the two maps was established between five LGs of the male map and five LGs of the female map using 10 bridging markers. The information presented in this study establishes a foundation for extending genetic mapping in this species, serves as a framework for mapping quantitative trait loci (QTLs), and provides basic information for future molecular breeding studies.  相似文献   

7.
The progeny of 87 BC(1) hybrids of 'Murcott' tangor and 'Pera' sweet orange, genotyped with fluorescent amplified fragment length polymorphism (fAFLP) markers, was used for the construction of genetic maps for both citrus varieties. Mapping strategies, considering the progeny as a result of backcrossing and cross-pollination, were exploited in Mapmaker 2.0 (LOD score >or= 3.0 and or= 3.0 and theta 相似文献   

8.
9.
A cross between the sweet cherry (Prunus avium) cultivars ‘Wanhongzhu’ and ‘Lapins’ was performed to create a mapping population suitable for the construction of a linkage map. The specific-locus amplified fragment (SLAF) sequencing technique used as a single nucleotide polymorphism (SNP) discovery platform and generated 701 informative genotypic assays; these, along with 16 microsatellites (SSRs) and the incompatibility (S) gene, were used to build a map which comprised 8 linkage groups (LGs) and covered a genetic distance of 849.0 cM. The mean inter-marker distance was 1.18 cM and there were few gaps > 5 cM in length. Marker collinearity was maintained with the established peach genomic sequence. The map was used to show that trunk diameter (TD) is under the control of 4 loci, mapping to 3 different LGs. Different locus influenced TD at a varying stage of the tree’s development. The high density ‘W×L’ genetic linkage map has the potential to enable high-resolution identification of QTLs of agronomically relevant traits, and accelerate sweet cherry breeding.  相似文献   

10.
Lentil (Lens culinaris ssp. culinaris), is a self-pollinating diploid (2n?=?2x?=?14), cool-season legume crop and is consumed worldwide as a rich source of protein (~24.0%), largely in vegetarian diets. Here we report development of a genetic linkage map of Lens using 114 F2 plants derived from the intersubspecific cross between L 830 and ILWL 77. RAPD (random amplified polymorphic DNA) primers revealed more polymorphism than ISSR (intersimple sequence repeat) and SSR (simple sequence repeat) markers. The highest proportion (30.72%) of segregation distortion was observed in RAPD markers. Of the 235 markers (34 SSR, 9 ISSR and 192 RAPD) used in the mapping study, 199 (28 SSRs, 9 ISSRs and 162 RAPDs) were mapped into 11 linkage groups (LGs), varying between 17.3 and 433.8 cM and covering 3843.4 cM, with an average marker spacing of 19.3 cM. Linkage analysis revealed nine major groups with 15 or more markers each and two small LGs with two markers each, and 36 unlinked markers. The study reported assigning of 11 new SSRs on the linkage map. Of the 66 markers with aberrant segregation, 14 were unlinked and the remaining 52 were mapped. ISSR and RAPD markers were found to be useful in map construction and saturation. The current map represents maximum coverage of lentil genome and could be used for identification of QTL regions linked to agronomic traits, and for marker-assisted selection in lentil.  相似文献   

11.
In the nuclei of some interspecific hybrid and allopolyploid plant species, each genome occupies a separate spatial domain. To analyze this phenomenon, we studied localization of the centromeres in the nuclei of a hybrid between Torenia fournieri and T. baillonii during mitosis and meiosis using three-dimensional fluorescence in situ hybridization (3D-FISH) probed with species-specific centromere repeats. Centromeres of each genome were located separately in undifferentiated cells but not differentiated cells, suggesting that cell division might be the possible force causing centromere separation. However, no remarkable difference of dividing distance was detected between chromatids with different centromeres in anaphase and telophase, indicating that tension of the spindle fiber attached to each chromatid is not the cause of centromere separation in Torenia. In differentiated cells, centromeres in both genomes were not often observed for the expected chromosome number, indicating centromere association. In addition, association of centromeres from the same genome was observed at a higher frequency than between different genomes. This finding suggests that centromeres within one genome are spatially separated from those within the other. This close position may increase possibility of association between centromeres of the same genome. In meiotic prophase, all centromeres irrespective of the genome were associated in a certain portion of the nucleus. Since centromere association in the interspecific hybrid and amphiploid was tighter than that in the diploid parents, it is possible that this phenomenon may be involved in sorting and pairing of homologous chromosomes.  相似文献   

12.
A pseudo-testcross mapping strategy was used in combination with the random amplified polymorphism DNA (RAPD) and amplified fragment length polymorphism (AFLP) genotyping methods to develop two moderately dense genetic linkage maps for Betula platyphylla Suk. (Asian white birch) and B. pendula Roth (European white birch). Eighty F1 progenies were screened with 291 RAPD markers and 451 AFLP markers. We selected 230 RAPD and 362 AFLP markers with 1:1 segregation and used them for constructing the parent-specific linkage maps. The resultant map for B. platyphylla was composed of 226 markers in 24 linkage groups (LGs), and spanned 2864.5 cM with an average of 14.3 cM between adjacent markers. The linkage map for B. pendula was composed of 226 markers in 23 LGs, covering 2489.7 cM. The average map distance between adjacent markers was 13.1 cM. Clustering of AFLP markers was observed on several LGs. The availability of these white birch linkage maps will contribute to the molecular genetics and the implementation of marker-assisted selection in these important forest species.  相似文献   

13.
The centromere is a functional chromosome domain that is essential for faithful chromosome segregation during cell division and that can be reliably identified by the presence of the centromere-specific histone H3 variant CenH3. In monocentric chromosomes, the centromere is characterized by a single CenH3-containing region within a morphologically distinct primary constriction. This region usually spans up to a few Mbp composed mainly of centromere-specific satellite DNA common to all chromosomes of a given species. In holocentric chromosomes, there is no primary constriction; the centromere is composed of many CenH3 loci distributed along the entire length of a chromosome. Using correlative fluorescence light microscopy and high-resolution electron microscopy, we show that pea (Pisum sativum) chromosomes exhibit remarkably long primary constrictions that contain 3-5 explicit CenH3-containing regions, a novelty in centromere organization. In addition, we estimate that the size of the chromosome segment delimited by two outermost domains varies between 69 Mbp and 107 Mbp, several factors larger than any known centromere length. These domains are almost entirely composed of repetitive DNA sequences belonging to 13 distinct families of satellite DNA and one family of centromeric retrotransposons, all of which are unevenly distributed among pea chromosomes. We present the centromeres of Pisum as novel "meta-polycentric" functional domains. Our results demonstrate that the organization and DNA composition of functional centromere domains can be far more complex than previously thought, do not require single repetitive elements, and do not require single centromere domains in order to segregate properly. Based on these findings, we propose Pisum as a useful model for investigation of centromere architecture and the still poorly understood role of repetitive DNA in centromere evolution, determination, and function.  相似文献   

14.
Bagre marinus has a diploid complement of 54 chromosomes composed of 12 metacentrics, 8 submetacentrics, and the remainder with terminal or near-terminal centromeres. Karyotypes for three species of ariid catfishes (Arius dussumieri, A. felis, andBagre marinus) indicate the same diploid number, but each species has a different arm number. Data for 132 species in 14 families of catfishes show a predominance of 56±2 chromosomes in the diploid set. This range in diploid number is most common in the Ariidae, Bagridae, Ictaluridae, and Pimelodidae, which, together with the Doradidae (no karyotypes available), have been suggested, from osteology, as forming a group close to ancestral stock from which living catfishes evolved.  相似文献   

15.
Five families of gynogenetic diploid Pacific oyster (Crassostrea gigas) were induced by inhibiting the second polar body in meiotic cell division of eggs fertilized with UV-irradiated sperm. Segregation patterns of eight microsatellite loci were investigated in the gynogenetic diploid offspring; the proportion of heterozygous progeny was used to estimate microsatellite-centromere (M-C) distances. Mendelian inheritance was confirmed for the eight loci by examining the genotypic segregation in the control crosses. Three of the eight microsatellite loci showed the existence of null alleles in four control crosses. All gynogenetic offspring only possessed the alleles of the mother, indicating 100% success level for the five families. The M-C recombination frequency estimates ranged from 0.62 to 0.77 (0.72 mean), comparable to those in the oyster based on allozyme markers and suggesting that meiotic gynogenesis does not appear to be a very efficient inbreeding method in the oyster. Recombination frequencies observed were often higher than the theoretical maximum of 0.67, indicating the existence of positive interference after a single chiasma formation in some chromosomes. Information on the positions of centromeres in relation to the microsatellite loci will represent a contribution toward assembly of genetic maps in C. gigas.  相似文献   

16.
A (GT)(n) enriched partial genomic library of bighead carp (Aristichthys nobilis) was constructed by employing the (fast isolation by AFLP of sequences containing repeats) FIASCO protocol. Sixteen loci exhibited polymorphism with two to seven alleles/locus (mean 3.263) in a test population and the observed heterozygosity ranging from 0.100 to 0.690 (mean 0.392). Eleven of the 16 bighead carp microsatellites were found to be also polymorphic in silver carp. These polymorphic loci should provide sufficient level of genetic diversity to evaluate population structure of bighead carp.  相似文献   

17.
An F1 mapping population was bred by crossing an accession of wild cardoon with a single Argentinian globe artichoke plant of the variety Estrella del Sur FCA with a view to generating new Cynara cardunculus linkage maps. Genotyping was conducting using a set of 553 SRAP, SSR, AFLP and SNP markers. The 1,465.5 cM map based on the segregation of alleles present in the wild cardoon parent comprised 214 loci distributed across 16 linkage groups (LGs), while the 910.1 cM globe artichoke-based map featured 141 loci falling into 12 LGs covering the total length. Three of the morphological traits (head spininess, leaf spininess and head color) for which the parents contrasted were inherited monogenically, and the genes conditioning them were mapped. A set of 48 co-dominant loci was used to align the LGs with those derived from a reference SSR-based consensus map of the species.  相似文献   

18.
Morishima K  Nakayama I  Arai K 《Genetica》2008,132(3):227-241
In the present study, the first genetic linkage map of the loach Misgurnus anguillicaudatus was constructed with 164 microsatellite markers and a color locus, and it included 155 newly developed markers. A total of 159 microsatellite markers and a color locus were mapped in 27 linkage groups (LGs). The female map covered 784.5 cM with 153 microsatellite markers and a color locus, whereas the male map covered 662.2 cM with 119 microsatellite markers. The centromeric position in each LG was estimated by marker-centromere mapping based on half-tetrad analysis. In 4 LGs (LG2, LG3, LG4, and LG5), the centromere was estimated at the intermediate region. In LG1, LG11, and LG12, the centromere was estimated to shift from the sub-intermediate region to the end (telomeric). The number of these LGs (7) was identical to the collective number of bi-arm metacentric (5) and sub-metacentric chromosome (2) of the haploid chromosome set (n = 5) of the loach. In the other LGs, the position of the centromere was estimated at the end or outside. These results indicate satisfactory compliance between the linkage map and the chromosome set. Our map would cover approximately almost the entire loach genome because most markers were successfully mapped.  相似文献   

19.
The utility of two pollen genetic markers for estimating the extent of meiotic recombination between the centromere and a marker gene was tested in 2n pollen of diploid potato clones. One of these markers was the distal locus amylose-free (amf) on chromosome 8 and the other was the isozyme locus alcohol dehydrogenase (Adh-1) on chromosome 4. In the case of the amf locus, the gene-centromere distance was estimated in a normal synaptic and a desynaptic genotype. In both cases the genetic analysis was confined to: (1) a direct estimation of the phenotypic (blue vs red) segregation ratios in FDR (first-division restitution) 2n pollen and (2) a classification of the 4 x progeny from 4x (nulliplex amf) x 2x (Amf/amf) crosses into duplex, simplex and nulliplex classes. The recombination frequency between the centromere and the amf locus in the normal synaptic genotype B92-7015-4 corresponded to a gene-centromere distance of 48.8 cM, whereas this distance amounted to 13.3 cM in the desynaptic genotype RS93-8025-1. Hence desynapsis reduced crossing-over by 73%. The observed genetic distance of 48.8 cM in the normal synaptic clone, B92-7015-4, is the highest gene-centromere distance reported so far in potato and this could be explained on the assumption of absolute chiasma interference. For the Adh-1 locus, it was found that heterozygous 2n pollen grains could be detected in pollen samples of the diploid clones, because of the occurrence of a heterodimeric band of the isozyme. Unlike the amf locus, the genecentromere distance for the Adh-1 locus was estimated only on the basis of the duplex, simplex and nulliplex classes in the progenies from 4x (nulliplex Adh-1 2 )x B92-7015-4 (Adh-1 1 /Adh-1 2 )crosses and was found to be 19.4 cM. Because the accurate positions of centromeres in relation to other loci are not available in the existing genetic maps of potato, which are saturated with molecular markers, halftetrad analysis is a promising additional approach to the basic genetics of this crop.  相似文献   

20.
T. Ashley 《Genetica》1990,83(1):1-7
The karyotype of moose (2n=68) is characterized by very large C-bands close to the centromeres of most chromosomes. The C-banded material represents 40% of the genome. For further characterization of the heterochromatin chromosome spreads were treated with restriction endonucleases and the restriction enzyme (Re) banding pattern was analysed. HaeIII, AluI, MboI, RsaI and HinfI produced informative Re-bands. DdeI induced an even digestion with no banding. Staining with chromomycin A3 produced bright fluorescence in regions corresponding to C-bands. Labeling with BrdUrd during late S phase differentiates four regions in the C banded area. The sequence of these regions from centromere to telomere are: late, early, late and early replicating.The authors propose the existence of five satellite DNA families with distinctive characteristics of G-C and A-T richness and different replication timing, and point out the different clusters for the endonucleases detailed above and their varying location in the chromosomes examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号