首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by motor neuron degeneration. How this disease affects the central motor network is largely unknown. Here, we combined for the first time structural and functional imaging measures on the motor network in patients with ALS and healthy controls.

Methodology/Principal Findings

Structural measures included whole brain cortical thickness and diffusion tensor imaging (DTI) of crucial motor tracts. These structural measures were combined with functional connectivity analysis of the motor network based on resting state fMRI. Focal cortical thinning was observed in the primary motor area in patients with ALS compared to controls and was found to correlate with disease progression. DTI revealed reduced FA values in the corpus callosum and in the rostral part of the corticospinal tract. Overall functional organisation of the motor network was unchanged in patients with ALS compared to healthy controls, however the level of functional connectedness was significantly correlated with disease progression rate. Patients with increased connectedness appear to have a more progressive disease course.

Conclusions/Significance

We demonstrate structural motor network deterioration in ALS with preserved functional connectivity measures. The positive correlation between functional connectedness of the motor network and disease progression rate could suggest spread of disease along functional connections of the motor network.  相似文献   

2.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by cortical and spinal motor neuron dysfunction. Routine magnetic resonance imaging (MRI) studies have previously shown hypointense signal in the motor cortex on T(2)-weighted images in some ALS patients, however, the cause of this finding is unknown. To investigate the utility of this MR signal change as a marker of cortical motor neuron degeneration, signal abnormalities on 3T and 7T MR images of the brain were compared, and pathology was obtained in two ALS patients to determine the origin of the motor cortex hypointensity. Nineteen patients with clinically probable or definite ALS by El Escorial criteria and 19 healthy controls underwent 3T MRI. A 7T MRI scan was carried out on five ALS patients who had motor cortex hypointensity on the 3T FLAIR sequence and on three healthy controls. Postmortem 7T MRI of the brain was performed in one ALS patient and histological studies of the brains and spinal cords were obtained post-mortem in two patients. The motor cortex hypointensity on 3T FLAIR images was present in greater frequency in ALS patients. Increased hypointensity correlated with greater severity of upper motor neuron impairment. Analysis of 7T T(2)(*)-weighted gradient echo imaging localized the signal alteration to the deeper layers of the motor cortex in both ALS patients. Pathological studies showed increased iron accumulation in microglial cells in areas corresponding to the location of the signal changes on the 3T and 7T MRI of the motor cortex. These findings indicate that the motor cortex hypointensity on 3T MRI FLAIR images in ALS is due to increased iron accumulation by microglia.  相似文献   

3.
Parkinson’s disease (PD) is a neurodegenerative disorder affecting dopaminergic neurons in the substantia nigra leading to dysfunctional cortico-striato-thalamic-cortical loops. In addition to the characteristic motor symptoms, PD patients often show cognitive impairments, affective changes and other non-motor symptoms, suggesting system-wide effects on brain function. Here, we used functional magnetic resonance imaging and graph-theory based analysis methods to investigate altered whole-brain intrinsic functional connectivity in PD patients (n = 37) compared to healthy controls (n = 20). Global network properties indicated less efficient processing in PD. Analysis of brain network modules pointed to increased connectivity within the sensorimotor network, but decreased interaction of the visual network with other brain modules. We found lower connectivity mainly between the cuneus and the ventral caudate, medial orbitofrontal cortex and the temporal lobe. To identify regions of altered connectivity, we mapped the degree of intrinsic functional connectivity both on ROI- and on voxel-level across the brain. Compared to healthy controls, PD patients showed lower connectedness in the medial and middle orbitofrontal cortex. The degree of connectivity was also decreased in the occipital lobe (cuneus and calcarine), but increased in the superior parietal cortex, posterior cingulate gyrus, supramarginal gyrus and supplementary motor area. Our results on global network and module properties indicated that PD manifests as a disconnection syndrome. This was most apparent in the visual network module. The higher connectedness within the sensorimotor module in PD patients may be related to compensation mechanism in order to overcome the functional deficit of the striato-cortical motor loops or to loss of mutual inhibition between brain networks. Abnormal connectivity in the visual network may be related to adaptation and compensation processes as a consequence of altered motor function. Our analysis approach proved sensitive for detecting disease-related localized effects as well as changes in network functions on intermediate and global scale.  相似文献   

4.
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease selectively affecting upper and lower motor neurons. Patients with ALS suffer from progressive paralysis and eventually die on average after three years. The underlying neurobiology of upper motor neuron degeneration and its effects on the complex network of the brain are, however, largely unknown. Here, we examined the effects of ALS on the structural brain network topology in 35 patients with ALS and 19 healthy controls. Using diffusion tensor imaging (DTI), the brain network was reconstructed for each individual participant. The connectivity of this reconstructed brain network was compared between patients and controls using complexity theory without - a priori selected - regions of interest. Patients with ALS showed an impaired sub-network of regions with reduced white matter connectivity (p = 0.0108, permutation testing). This impaired sub-network was strongly centered around primary motor regions (bilateral precentral gyrus and right paracentral lobule), including secondary motor regions (bilateral caudal middle frontal gyrus and pallidum) as well as high-order hub regions (right posterior cingulate and precuneus). In addition, we found a significant reduction in overall efficiency (p = 0.0095) and clustering (p = 0.0415). From our findings, we conclude that upper motor neuron degeneration in ALS affects both primary motor connections as well as secondary motor connections, together composing an impaired sub-network. The degenerative process in ALS was found to be widespread, but interlinked and targeted to the motor connectome.  相似文献   

5.
Amyotrophic lateral sclerosis (ALS) is characterized by progressive loss of upper and lower motor neurons. Advanced MRI techniques such as diffusion tensor imaging have shown great potential in capturing a common white matter pathology. However the sensitivity is variable and diffusion tensor imaging is not yet applicable to the routine clinical environment. Voxel-based morphometry (VBM) has revealed grey matter changes in ALS, but the bias-reducing algorithms inherent to traditional VBM are not optimized for the assessment of the white matter changes. We have developed a novel approach to white matter analysis, namely voxel-based intensitometry (VBI). High resolution T1-weighted MRI was acquired at 1.5 Tesla in 30 ALS patients and 37 age-matched healthy controls. VBI analysis at the group level revealed widespread white matter intensity increases in the corticospinal tracts, corpus callosum, sub-central, frontal and occipital white matter tracts and cerebellum. VBI results correlated with disease severity (ALSFRS-R) and patterns of cerebral involvement differed between bulbar- and limb-onset. VBI would be easily translatable to the routine clinical environment, and once optimized for individual analysis offers significant biomarker potential in ALS.  相似文献   

6.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by degeneration of upper and lower motor neurons. To date, glycosylation patterns of glycoproteins in fluids of ALS patients have not been described. Moreover, the aberrant glycosylation related to the pathogenesis of other neurodegenerative diseases encouraged us to explore the glycome of ALS patient sera. We found high levels of sialylated glycans and low levels of core fucosylated glycans in serum-derived N-glycans of patients with ALS, compared to healthy volunteer sera. Based on these results, we analyzed the IgG Fc N(297)-glycans, as IgG are major serum glycoproteins affected by sialylation or core fucosylation and are found in the motor cortex of ALS patients. The analyses revealed a distinct glycan, A2BG2, in IgG derived from ALS patient sera (ALS-IgG). This glycan increases the affinity of IgG to CD16 on effector cells, consequently enhancing Antibody-Dependent Cellular Cytotoxicity (ADCC). Therefore, we explore whether the Fc-N(297)-glycans of IgG may be involved in ALS disease. Immunostaining of brain and spinal cord tissues revealed over-expression of CD16 and co-localization of intact ALS-IgG with CD16 and in brain with activated microglia of G93A-SOD1 mice. Intact ALS-IgG enhanced effector cell activation and ADCC reaction in comparison to sugar-depleted or control IgG. ALS-IgG were localized in the synapse between brain microglia and neurons of G93A-SOD1 mice, manifesting a promising in vivo ADCC reaction. Therefore, glycans of ALS-IgG may serve as a biomarker for the disease and may be involved in neuronal damage.  相似文献   

7.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of unknown origin and characterized by a relentless loss of motor neurons that causes a progressive muscle weakness until death. Among the several pathogenic mechanisms that have been related to ALS, a dysregulation of calcium-buffering proteins in motor neurons of the brain and spinal cord can make these neurons more vulnerable to disease progression. Downstream regulatory element antagonist modulator (DREAM) is a neuronal calcium-binding protein that plays multiple roles in the nucleus and cytosol. The main aim of this study was focused on the characterization of DREAM and glial fibrillary acid protein (GFAP) in the brain and spinal cord tissues from transgenic SOD1G93A mice and ALS patients to unravel its potential role under neurodegenerative conditions. The DREAM and GFAP levels in the spinal cord and different brain areas from transgenic SOD1G93A mice and ALS patients were analyzed by Western blot and immunohistochemistry. Our findings suggest that the calcium-dependent excitotoxicity progressively enhanced in the CNS in ALS could modulate the multifunctional nature of DREAM, strengthening its apoptotic way of action in both motor neurons and astrocytes, which could act as an additional factor to increase neuronal damage. The direct crosstalk between astrocytes and motor neurons can become vulnerable under neurodegenerative conditions, and DREAM could act as an additional switch to enhance motor neuron loss. Together, these findings could pave the way to further study the molecular targets of DREAM to find novel therapeutic strategies to fight ALS.  相似文献   

8.

Background

Amyotrophic Lateral Sclerosis (ALS) is heterogeneous and overlaps with frontotemporal dementia. Spectral EEG can predict damage in structural and functional networks in frontotemporal dementia but has never been applied to ALS.

Methods

18 incident ALS patients with normal cognition and 17 age matched controls underwent 128 channel EEG and neuropsychology assessment. The EEG data was analyzed using FieldTrip software in MATLAB to calculate simple connectivity measures and scalp network measures. sLORETA was used in nodal analysis for source localization and same methods were applied as above to calculate nodal network measures. Graph theory measures were used to assess network integrity.

Results

Cross spectral density in alpha band was higher in patients. In ALS patients, increased degree values of the network nodes was noted in the central and frontal regions in the theta band across seven of the different connectivity maps (p<0.0005). Among patients, clustering coefficient in alpha and gamma bands was increased in all regions of the scalp and connectivity were significantly increased (p=0.02). Nodal network showed increased assortativity in alpha band in the patients group. The Clustering Coefficient in Partial Directed Connectivity (PDC) showed significantly higher values for patients in alpha, beta, gamma, theta and delta frequencies (p=0.05).

Discussion

There is increased connectivity in the fronto-central regions of the scalp and areas corresponding to Salience and Default Mode network in ALS, suggesting a pathologic disruption of neuronal networking in early disease states. Spectral EEG has potential utility as a biomarker in ALS.  相似文献   

9.
The underlying functional neuroanatomy of tinnitus remains poorly understood. Few studies have focused on functional cerebral connectivity changes in tinnitus patients. The aim of this study was to test if functional MRI "resting-state" connectivity patterns in auditory network differ between tinnitus patients and normal controls. Thirteen chronic tinnitus subjects and fifteen age-matched healthy controls were studied on a 3 tesla MRI. Connectivity was investigated using independent component analysis and an automated component selection approach taking into account the spatial and temporal properties of each component. Connectivity in extra-auditory regions such as brainstem, basal ganglia/NAc, cerebellum, parahippocampal, right prefrontal, parietal, and sensorimotor areas was found to be increased in tinnitus subjects. The right primary auditory cortex, left prefrontal, left fusiform gyrus, and bilateral occipital regions showed a decreased connectivity in tinnitus. These results show that there is a modification of cortical and subcortical functional connectivity in tinnitus encompassing attentional, mnemonic, and emotional networks. Our data corroborate the hypothesized implication of non-auditory regions in tinnitus physiopathology and suggest that various regions of the brain seem involved in the persistent awareness of the phenomenon as well as in the development of the associated distress leading to disabling chronic tinnitus.  相似文献   

10.
Amyotrophic lateral sclerosis (ALS) is a late-onset, progressive motor neuronal degenerative disease occurring as sporadically and as a familial disorder. The patients with ALS typically become progressively paralyzed and develop respiratory failure that eventually leads to death within 3–5 years. For this disease, there is no effective diagnostic method and also drug. This report describes a simple and useful diagnostic biomarker for ALS. Our findings suggest that the combination analysis of a metabolite of prostaglandin D2, 11,15-dioxo-9-hydroxy-,2,3,4,5-tetranorprostan-1,20-dioic acid (tetranor PGDM and tPGDM) with creatinine is the diagnostic approach for ALS with high accuracy. tPGDM has the potential to be an important diagnostic tool in the pre-symptomatic stages and progression evaluation of ALS, and also to be a biomarker for the evaluation of drug effect.  相似文献   

11.
Bipolar disorder is characterized by a functional imbalance between hyperactive ventral/limbic areas and hypoactive dorsal/cognitive brain regions potentially contributing to affective and cognitive symptoms. Resting-state studies in bipolar disorder have identified abnormal functional connectivity between these brain regions. However, most of these studies used a seed-based approach, thus restricting the number of regions that were analyzed. Using data-driven approaches, researchers identified resting state networks whose spatial maps overlap with frontolimbic areas such as the default mode network, the frontoparietal networks, the salient network, and the meso/paralimbic network. These networks are specifically engaged during affective and cognitive tasks and preliminary evidence suggests that functional connectivity within and between some of these networks is impaired in bipolar disorder. The present study used independent component analysis and functional network connectivity approaches to investigate functional connectivity within and between these resting state networks in bipolar disorder. We compared 30 euthymic bipolar I disorder patients and 35 age- and gender-matched healthy controls. Inter-network connectivity analysis revealed increased functional connectivity between the meso/paralimbic and the right frontoparietal network in bipolar disorder. This abnormal connectivity pattern did not correlate with variables related to the clinical course of the disease. The present finding may reflect abnormal integration of affective and cognitive information in ventral-emotional and dorsal-cognitive networks in euthymic bipolar patients. Furthermore, the results provide novel insights into the role of the meso/paralimbic network in bipolar disorder.  相似文献   

12.
The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. Diffusion MRI studies have revealed the efficient small-world properties and modular structure of the anatomical network in normal subjects. However, no previous study has used diffusion MRI to reveal changes in the brain anatomical network in early blindness. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 17 early blind subjects and 17 age- and gender-matched sighted controls. We established the existence of structural connections between any pair of the 90 cortical and sub-cortical regions using deterministic tractography. Compared with controls, early blind subjects showed a decreased degree of connectivity, a reduced global efficiency, and an increased characteristic path length in their brain anatomical network, especially in the visual cortex. Moreover, we revealed some regions with motor or somatosensory function have increased connections with other brain regions in the early blind, which suggested experience-dependent compensatory plasticity. This study is the first to show alterations in the topological properties of the anatomical network in early blindness. From the results, we suggest that analyzing the brain''s anatomical network obtained using diffusion MRI data provides new insights into the understanding of the brain''s re-organization in the specific population with early visual deprivation.  相似文献   

13.

Background

Recently, non-motor symptoms of Parkinson’s disease (PD) have been considered crucial factors in determining a patient’s quality of life and have been proposed as the predominant features of the premotor phase. Researchers have investigated the relationship between non-motor symptoms and the motor laterality; however, this relationship remains disputed. This study investigated the neural connectivity correlates of non-motor and motor symptoms of PD with respect to motor laterality.

Methods

Eight-seven patients with PD were recruited and classified into left-more-affected PD (n = 44) and right-more affected PD (n = 37) based on their MDS-UPDRS (Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale) motor examination scores. The patients underwent MRI scanning, which included resting fMRI. Brain regions were labeled as ipsilateral and contralateral to the more-affected body side. Correlation analysis between the functional connectivity across brain regions and the scores of various symptoms was performed to identify the neural connectivity correlates of each symptom.

Results

The resting functional connectivity centered on the ipsilateral inferior orbito-frontal area was negatively correlated with the severity of non-motor symptoms, and the connectivity of the contralateral inferior parietal area was positively correlated with the severity of motor symptoms (p < 0.001, |r| > 0.3).

Conclusions

These results suggest that the inferior orbito-frontal area may play a crucial role in non-motor dysfunctions, and that the connectivity information may be utilized as a neuroimaging biomarker for the early diagnosis of PD.  相似文献   

14.
Understanding network features of brain pathology is essential to reveal underpinnings of neurodegenerative diseases. In this paper, we introduce a novel graph regression model (GRM) for learning structural brain connectivity of Alzheimer''s disease (AD) measured by amyloid-β deposits. The proposed GRM regards 11C-labeled Pittsburgh Compound-B (PiB) positron emission tomography (PET) imaging data as smooth signals defined on an unknown graph. This graph is then estimated through an optimization framework, which fits the graph to the data with an adjustable level of uniformity of the connection weights. Under the assumed data model, results based on simulated data illustrate that our approach can accurately reconstruct the underlying network, often with better reconstruction than those obtained by both sample correlation and ℓ1-regularized partial correlation estimation. Evaluations performed upon PiB-PET imaging data of 30 AD and 40 elderly normal control (NC) subjects demonstrate that the connectivity patterns revealed by the GRM are easy to interpret and consistent with known pathology. Moreover, the hubs of the reconstructed networks match the cortical hubs given by functional MRI. The discriminative network features including both global connectivity measurements and degree statistics of specific nodes discovered from the AD and NC amyloid-beta networks provide new potential biomarkers for preclinical and clinical AD.  相似文献   

15.
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by the degeneration of motor neurons in the spinal cord. Main symptoms are manifested as weakness, muscle loss, and muscle atrophy. Some studies have reported that alterations in sphingolipid metabolism may be intimately related to neurodegenerative diseases, including ALS. Acid sphingomyelinase (ASM), a sphingolipid-metabolizing enzyme, is considered an important mediator of neurodegenerative diseases. Herein, we show that ASM activity increases in samples from patients with ALS and in a mouse model. Moreover, genetic inhibition of ASM improves motor function impairment and spinal neuronal loss in an ALS mouse model. Therefore, these results suggest the role of ASM as a potentially effective target and ASM inhibition may be a possible therapeutic approach for ALS.  相似文献   

16.

Background

Local network connectivity disruptions in Alzheimer''s disease patients have been found using graph analysis in BOLD fMRI. Other studies using MEG and cortical thickness measures, however, show more global long distance connectivity changes, both in functional and structural imaging data. The form and role of functional connectivity changes thus remains ambiguous. The current study shows more conclusive data on connectivity changes in early AD using graph analysis on resting-state condition fMRI data.

Methodology/Principal Findings

18 mild AD patients and 21 healthy age-matched control subjects without memory complaints were investigated in resting-state condition with MRI at 1.5 Tesla. Functional coupling between brain regions was calculated on the basis of pair-wise synchronizations between regional time-series. Local (cluster coefficient) and global (path length) network measures were quantitatively defined. Compared to controls, the characteristic path length of AD functional networks is closer to the theoretical values of random networks, while no significant differences were found in cluster coefficient. The whole-brain average synchronization does not differ between Alzheimer and healthy control groups. Post-hoc analysis of the regional synchronization reveals increased AD synchronization involving the frontal cortices and generalized decreases located at the parietal and occipital regions. This effectively translates in a global reduction of functional long-distance links between frontal and caudal brain regions.

Conclusions/Significance

We present evidence of AD-induced changes in global brain functional connectivity specifically affecting long-distance connectivity. This finding is highly relevant for it supports the anterior-posterior disconnection theory and its role in AD. Our results can be interpreted as reflecting the randomization of the brain functional networks in AD, further suggesting a loss of global information integration in disease.  相似文献   

17.
Amyotrophic lateral sclerosis 6 (ALS6) is an autosomal recessive disorder caused by heterozygous mutation in the Fused in Sarcoma (FUS) gene. ALS6 is a neurodegenerative disorder, which affects the upper and lower motor neurons in the brain and spinal cord, resulting in fatal paralysis. ALS6 is caused by the genetic mutation in the proline/tyrosine-nuclear localization signals of the Fused in sarcoma Protein (FUS). FUS gene also known as TLS (Translocated in liposarcoma), which encodes a protein called RNA-binding protein-Fus (FUS), has a molecular weight of 75?kDa. In this analysis, we applied computational approach to filter the most deleterious and neurodegenerative disease of ALS6-associated mutation on FUS protein. We found H517Q as most deleterious and disease associated using PolyPhen 2.0, I-Mutant 3.0, SIFT, SNPs&GO, PhD-SNP, Pmut, and Mutpred tools. Molecular dynamics simulation (MDS) approach was conducted to investigate conformational changes in the mutant protein structure with respect to its native conformation. MDS results showed the flexibility loss in mutant (H517Q) FUS protein. Due to mutation, FUS protein became more rigid in nature and might alter the structural and functional behavior of protein and play a major role in inducing ALS6. The results obtained from this investigation would help in the field of pharmacogenomics to develop a potent drug target against FUS-associated neurodegenerative diseases.  相似文献   

18.
Yamashita Y  Tani J 《PloS one》2012,7(5):e37843
Goal-directed human behavior is enabled by hierarchically-organized neural systems that process executive commands associated with higher brain areas in response to sensory and motor signals from lower brain areas. Psychiatric diseases and psychotic conditions are postulated to involve disturbances in these hierarchical network interactions, but the mechanism for how aberrant disease signals are generated in networks, and a systems-level framework linking disease signals to specific psychiatric symptoms remains undetermined. In this study, we show that neural networks containing schizophrenia-like deficits can spontaneously generate uncompensated error signals with properties that explain psychiatric disease symptoms, including fictive perception, altered sense of self, and unpredictable behavior. To distinguish dysfunction at the behavioral versus network level, we monitored the interactive behavior of a humanoid robot driven by the network. Mild perturbations in network connectivity resulted in the spontaneous appearance of uncompensated prediction errors and altered interactions within the network without external changes in behavior, correlating to the fictive sensations and agency experienced by episodic disease patients. In contrast, more severe deficits resulted in unstable network dynamics resulting in overt changes in behavior similar to those observed in chronic disease patients. These findings demonstrate that prediction error disequilibrium may represent an intrinsic property of schizophrenic brain networks reporting the severity and variability of disease symptoms. Moreover, these results support a systems-level model for psychiatric disease that features the spontaneous generation of maladaptive signals in hierarchical neural networks.  相似文献   

19.
We present an efficient approach to discriminate between typical and atypical brains from macroscopic neural dynamics recorded as magnetoencephalograms (MEG). Our approach is based on the fact that spontaneous brain activity can be accurately described with stochastic dynamics, as a multivariate Ornstein-Uhlenbeck process (mOUP). By fitting the data to a mOUP we obtain: 1) the functional connectivity matrix, corresponding to the drift operator, and 2) the traces of background stochastic activity (noise) driving the brain. We applied this method to investigate functional connectivity and background noise in juvenile patients (n = 9) with Asperger’s syndrome, a form of autism spectrum disorder (ASD), and compared them to age-matched juvenile control subjects (n = 10). Our analysis reveals significant alterations in both functional brain connectivity and background noise in ASD patients. The dominant connectivity change in ASD relative to control shows enhanced functional excitation from occipital to frontal areas along a parasagittal axis. Background noise in ASD patients is spatially correlated over wide areas, as opposed to control, where areas driven by correlated noise form smaller patches. An analysis of the spatial complexity reveals that it is significantly lower in ASD subjects. Although the detailed physiological mechanisms underlying these alterations cannot be determined from macroscopic brain recordings, we speculate that enhanced occipital-frontal excitation may result from changes in white matter density in ASD, as suggested in previous studies. We also venture that long-range spatial correlations in the background noise may result from less specificity (or more promiscuity) of thalamo-cortical projections. All the calculations involved in our analysis are highly efficient and outperform other algorithms to discriminate typical and atypical brains with a comparable level of accuracy. Altogether our results demonstrate a promising potential of our approach as an efficient biomarker for altered brain dynamics associated with a cognitive phenotype.  相似文献   

20.
Yan C  He Y 《PloS one》2011,6(8):e23460
Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on undirected connections between regions in which the directions of information flow are not taken into account. How the brain regions causally influence each other and how the directed network of human brain is topologically organized remain largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA) and graph theoretical approaches to a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86) to explore connectivity patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic, subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus) and several driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior cingulate gyrus, medial prefrontal cortex and inferior parietal lobule). Further split-half analyses indicated that our results were highly reproducible between two independent subgroups. The current study demonstrated the directions of spontaneous information flow and causal influences in the directed brain networks, thus providing new insights into our understanding of human brain functional connectome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号