首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Understanding the time course of how listeners reconstruct a missing fundamental component in an auditory stimulus remains elusive. We report MEG evidence that the missing fundamental component of a complex auditory stimulus is recovered in auditory cortex within 100 ms post stimulus onset.

Methodology

Two outside tones of four-tone complex stimuli were held constant (1200 Hz and 2400 Hz), while two inside tones were systematically modulated (between 1300 Hz and 2300 Hz), such that the restored fundamental (also knows as “virtual pitch”) changed from 100 Hz to 600 Hz. Constructing the auditory stimuli in this manner controls for a number of spectral properties known to modulate the neuromagnetic signal. The tone complex stimuli only diverged on the value of the missing fundamental component.

Principal Findings

We compared the M100 latencies of these tone complexes to the M100 latencies elicited by their respective pure tone (spectral pitch) counterparts. The M100 latencies for the tone complexes matched their pure sinusoid counterparts, while also replicating the M100 temporal latency response curve found in previous studies.

Conclusions

Our findings suggest that listeners are reconstructing the inferred pitch by roughly 100 ms after stimulus onset and are consistent with previous electrophysiological research suggesting that the inferential pitch is perceived in early auditory cortex.  相似文献   

2.
Kanske P  Kotz SA 《PloS one》2012,7(1):e30086

Background

The study of emotional speech perception and emotional prosody necessitates stimuli with reliable affective norms. However, ratings may be affected by the participants'' current emotional state as increased anxiety and depression have been shown to yield altered neural responding to emotional stimuli. Therefore, the present study had two aims, first to provide a database of emotional speech stimuli and second to probe the influence of depression and anxiety on the affective ratings.

Methodology/Principal Findings

We selected 120 words from the Leipzig Affective Norms for German database (LANG), which includes visual ratings of positive, negative, and neutral word stimuli. These words were spoken by a male and a female native speaker of German with the respective emotional prosody, creating a total set of 240 auditory emotional stimuli. The recordings were rated again by an independent sample of subjects for valence and arousal, yielding groups of highly arousing negative or positive stimuli and neutral stimuli low in arousal. These ratings were correlated with participants'' emotional state measured with the Depression Anxiety Stress Scales (DASS). Higher depression scores were related to more negative valence of negative and positive, but not neutral words. Anxiety scores correlated with increased arousal and more negative valence of negative words.

Conclusions/Significance

These results underscore the importance of representatively distributed depression and anxiety scores in participants of affective rating studies. The LANG-audition database, which provides well-controlled, short-duration auditory word stimuli for the experimental investigation of emotional speech is available in Supporting Information S1.  相似文献   

3.

Background

It is well established that hippocampal activity is positively related to effective associative memory formation. However, in biological systems often optimal levels of activity are contrasted by both sub- and supra-optimal levels. Sub-optimal levels of hippocampal activity are commonly attributed to unsuccessful memory formation, whereas the supra-optimal levels of hippocampal activity related to unsuccessful memory formation have been rarely studied. It is still unclear under what circumstances such supra-optimal levels of hippocampal activity occur. To clarify this issue, we aimed at creating a condition, in which supra-optimal hippocampal activity is associated with encoding failure. We assumed that such supra-optimal activity occurs when task-relevant information is embedded in task-irrelevant, distracting information, which can be considered as noise.

Methodology/Principal Findings

In the present fMRI study, we probed neural correlates of associative memory formation in a full-factorial design with associative memory (subsequently remembered versus forgotten) and noise (induced by high versus low distraction) as factors. Results showed that encoding failure was associated with supra-optimal activity in the high-distraction condition and with sub-optimal activity in the low distraction condition. Thus, we revealed evidence for a bell-shape function relating hippocampal activity with associative encoding success.

Conclusions/Significance

Our findings indicate that intermediate levels of hippocampal activity are optimal while both too low and too high levels appear detrimental for associative memory formation. Supra-optimal levels of hippocampal activity seem to occur when task-irrelevant information is added to task-relevant signal. If such task-irrelevant noise is reduced adequately, hippocampal activity is lower and thus optimal for associative memory formation.  相似文献   

4.
Koelsch S  Sammler D 《PloS one》2008,3(7):e2650

Background

Music-syntactic irregularities often co-occur with the processing of physical irregularities. In this study we constructed chord-sequences such that perceived differences in the cognitive processing between regular and irregular chords could not be due to the sensory processing of acoustic factors like pitch repetition or pitch commonality (the major component of ‘sensory dissonance’).

Methodology/Principal Findings

Two groups of subjects (musicians and nonmusicians) were investigated with electroencephalography (EEG). Irregular chords elicited an early right anterior negativity (ERAN) in the event-related brain potentials (ERPs). The ERAN had a latency of around 180 ms after the onset of the music-syntactically irregular chords, and had maximum amplitude values over right anterior electrode sites.

Conclusions/Significance

Because irregular chords were hardly detectable based on acoustical factors (such as pitch repetition and sensory dissonance), this ERAN effect reflects for the most part cognitive (not sensory) components of regularity-based, music-syntactic processing. Our study represents a methodological advance compared to previous ERP-studies investigating the neural processing of music-syntactically irregular chords.  相似文献   

5.

Background

Tinnitus is an auditory sensation characterized by the perception of sound or noise in the absence of any external sound source. Based on neurobiological research, it is generally accepted that most forms of tinnitus are attributable to maladaptive plasticity due to damage to auditory system. Changes have been observed in auditory structures such as the inferior colliculus, the thalamus and the auditory cortex as well as in non-auditory brain areas. However, the observed changes show great variability, hence lacking a conclusive picture. One of the reasons might be the selection of inhomogeneous groups in data analysis.

Methodology

The aim of the present study was to delineate the differences between the neural networks involved in narrow band noise and pure tone tinnitus conducting LORETA based source analysis of resting state EEG.

Conclusions

Results demonstrated that narrow band noise tinnitus patients differ from pure tone tinnitus patients in the lateral frontopolar (BA 10), PCC and the parahippocampal area for delta, beta and gamma frequency bands, respectively. The parahippocampal-PCC current density differences might be load dependent, as noise-like tinnitus constitutes multiple frequencies in contrast to pure tone tinnitus. The lateral frontopolar differences might be related to pitch specific memory retrieval.  相似文献   

6.
Xue G  Mei L  Chen C  Lu ZL  Poldrack RA  Dong Q 《PloS one》2010,5(10):e13204

Background

The left midfusiform and adjacent regions have been implicated in processing and memorizing familiar words, yet its role in memorizing novel characters has not been well understood.

Methodology/Principal Findings

Using functional MRI, the present study examined the hypothesis that the left midfusiform is also involved in memorizing novel characters and spaced learning could enhance the memory by enhancing the left midfusiform activity during learning. Nineteen native Chinese readers were scanned while memorizing the visual form of 120 Korean characters that were novel to the subjects. Each character was repeated four times during learning. Repetition suppression was manipulated by using two different repetition schedules: massed learning and spaced learning, pseudo-randomly mixed within the same scanning session. Under the massed learning condition, the four repetitions were consecutive (with a jittered inter-repetition interval to improve the design efficiency). Under the spaced learning condition, the four repetitions were interleaved with a minimal inter-repetition lag of 6 stimuli. Spaced learning significantly improved participants'' performance during the recognition memory test administered one hour after the scan. Stronger left midfusiform and inferior temporal gyrus activities during learning (summed across four repetitions) were associated with better memory of the characters, based on both within- and cross-subjects analyses. Compared to massed learning, spaced learning significantly reduced neural repetition suppression and increased the overall activities in these regions, which were associated with better memory for novel characters.

Conclusions/Significance

These results demonstrated a strong link between cortical activity in the left midfusiform and memory for novel characters, and thus challenge the visual word form area (VWFA) hypothesis. Our results also shed light on the neural mechanisms of the spacing effect in memorizing novel characters.  相似文献   

7.

Background

Using the Kaufman Assessment Battery for Children (K-ABC) Conant et al. (1999) observed that visual and auditory working memory (WM) span were independent in both younger and older children from DR Congo, but related in older American children and in Lao children [1]. The present study evaluated whether visual and auditory WM span were independent in Ugandan and Senegalese children.

Method

In a linear regression analysis we used visual (Spatial Memory, Hand Movements) and auditory (Number Recall) WM along with education and physical development (weight/height) as predictors. The predicted variable in this analysis was Word Order, which is a verbal memory task that has both visual and auditory memory components.

Results

Both the younger (<8.5 yrs) and older (>8.5 yrs) Ugandan children had auditory memory span (Number Recall) that was strongly predictive of Word Order performance. For both the younger and older groups of Senegalese children, only visual WM span (Spatial Memory) was strongly predictive of Word Order. Number Recall was not significantly predictive of Word Order in either age group.

Conclusions

It is possible that greater literacy from more schooling for the Ugandan age groups mediated their greater degree of interdependence between auditory and verbal WM. Our findings support those of Conant et al., who observed in their cross-cultural comparisons that stronger education seemed to enhance the dominance of the phonological-auditory processing loop for WM.  相似文献   

8.
Mochida T  Gomi H  Kashino M 《PloS one》2010,5(11):e13866

Background

There has been plentiful evidence of kinesthetically induced rapid compensation for unanticipated perturbation in speech articulatory movements. However, the role of auditory information in stabilizing articulation has been little studied except for the control of voice fundamental frequency, voice amplitude and vowel formant frequencies. Although the influence of auditory information on the articulatory control process is evident in unintended speech errors caused by delayed auditory feedback, the direct and immediate effect of auditory alteration on the movements of articulators has not been clarified.

Methodology/Principal Findings

This work examined whether temporal changes in the auditory feedback of bilabial plosives immediately affects the subsequent lip movement. We conducted experiments with an auditory feedback alteration system that enabled us to replace or block speech sounds in real time. Participants were asked to produce the syllable /pa/ repeatedly at a constant rate. During the repetition, normal auditory feedback was interrupted, and one of three pre-recorded syllables /pa/, /Φa/, or /pi/, spoken by the same participant, was presented once at a different timing from the anticipated production onset, while no feedback was presented for subsequent repetitions. Comparisons of the labial distance trajectories under altered and normal feedback conditions indicated that the movement quickened during the short period immediately after the alteration onset, when /pa/ was presented 50 ms before the expected timing. Such change was not significant under other feedback conditions we tested.

Conclusions/Significance

The earlier articulation rapidly induced by the progressive auditory input suggests that a compensatory mechanism helps to maintain a constant speech rate by detecting errors between the internally predicted and actually provided auditory information associated with self movement. The timing- and context-dependent effects of feedback alteration suggest that the sensory error detection works in a temporally asymmetric window where acoustic features of the syllable to be produced may be coded.  相似文献   

9.
Liu H  Wang EQ  Metman LV  Larson CR 《PloS one》2012,7(3):e33629

Background

One of the most common symptoms of speech deficits in individuals with Parkinson''s disease (PD) is significantly reduced vocal loudness and pitch range. The present study investigated whether abnormal vocalizations in individuals with PD are related to sensory processing of voice auditory feedback. Perturbations in loudness or pitch of voice auditory feedback are known to elicit short latency, compensatory responses in voice amplitude or fundamental frequency.

Methodology/Principal Findings

Twelve individuals with Parkinson''s disease and 13 age- and sex- matched healthy control subjects sustained a vowel sound (/α/) and received unexpected, brief (200 ms) perturbations in voice loudness (±3 or 6 dB) or pitch (±100 cents) auditory feedback. Results showed that, while all subjects produced compensatory responses in their voice amplitude or fundamental frequency, individuals with PD exhibited larger response magnitudes than the control subjects. Furthermore, for loudness-shifted feedback, upward stimuli resulted in shorter response latencies than downward stimuli in the control subjects but not in individuals with PD.

Conclusions/Significance

The larger response magnitudes in individuals with PD compared with the control subjects suggest that processing of voice auditory feedback is abnormal in PD. Although the precise mechanisms of the voice feedback processing are unknown, results of this study suggest that abnormal voice control in individuals with PD may be related to dysfunctional mechanisms of error detection or correction in sensory feedback processing.  相似文献   

10.
Liu P  Chen Z  Jones JA  Huang D  Liu H 《PloS one》2011,6(7):e22791

Background

Auditory feedback has been demonstrated to play an important role in the control of voice fundamental frequency (F0), but the mechanisms underlying the processing of auditory feedback remain poorly understood. It has been well documented that young adults can use auditory feedback to stabilize their voice F0 by making compensatory responses to perturbations they hear in their vocal pitch feedback. However, little is known about the effects of aging on the processing of audio-vocal feedback during vocalization.

Methodology/Principal Findings

In the present study, we recruited adults who were between 19 and 75 years of age and divided them into five age groups. Using a pitch-shift paradigm, the pitch of their vocal feedback was unexpectedly shifted ±50 or ±100 cents during sustained vocalization of the vowel sound/u/. Compensatory vocal F0 response magnitudes and latencies to pitch feedback perturbations were examined. A significant effect of age was found such that response magnitudes increased with increasing age until maximal values were reached for adults 51–60 years of age and then decreased for adults 61–75 years of age. Adults 51–60 years of age were also more sensitive to the direction and magnitude of the pitch feedback perturbations compared to younger adults.

Conclusion

These findings demonstrate that the pitch-shift reflex systematically changes across the adult lifespan. Understanding aging-related changes to the role of auditory feedback is critically important for our theoretical understanding of speech production and the clinical applications of that knowledge.  相似文献   

11.

Background

Self-harm entails high costs to individuals and society in terms of suicide risk, morbidity and healthcare expenditure. Repetition of self-harm confers yet higher risk of suicide and risk assessment of self-harm patients forms a key component of the health care management of self-harm patients. To date, there has been no systematic review published which synthesises the extensive evidence on risk factors for repetition.

Objective

This review is intended to identify risk factors for prospective repetition of self-harm after an index self-harm presentation, irrespective of suicidal intent.

Data sources

PubMed, PsychInfo and Scirus were used to search for relevant publications. We included cohort studies which examining factors associated with prospective repetition among those presenting with self-harm to emergency departments. Journal articles, abstracts, letters and theses in any language published up to June 2012 were considered. Studies were quality-assessed and synthesised in narrative form.

Results

A total of 129 studies, including 329,001 participants, met our inclusion criteria. Some factors were studied extensively and were found to have a consistent association with repetition. These included previous self-harm, personality disorder, hopelessness, history of psychiatric treatment, schizophrenia, alcohol abuse/dependence, drug abuse/dependence, and living alone. However, the sensitivity values of these measures varied greatly across studies. Psychological risk factors and protective factors have been relatively under-researched but show emerging associations with repetition. Composite risk scales tended to have high sensitivity but poor specificity.

Conclusions

Many risk factors for repetition of self-harm match risk factors for initiation of self-harm, but the most consistent evidence for increased risk of repetition comes from long-standing psychosocial vulnerabilities, rather than characteristics of an index episode. The current review will enhance prediction of self-harm and assist in the efficient allocation of intervention resources.  相似文献   

12.

Introduction

Patients with schizophrenia elicit cognitive decline from the early phase of the illness. Mismatch negativity (MMN) has been shown to be associated with cognitive function. We investigated the current source density of duration mismatch negativity (dMMN), by using low-resolution brain electromagnetic tomography (LORETA), and neuropsychological performance in subjects with early schizophrenia.

Methods

Data were obtained from 20 patients meeting DSM-IV criteria for schizophrenia or schizophreniform disorder, and 20 healthy control (HC) subjects. An auditory odd-ball paradigm was used to measure dMMN. Neuropsychological performance was evaluated by the brief assessment of cognition in schizophrenia Japanese version (BACS-J).

Results

Patients showed smaller dMMN amplitudes than those in the HC subjects. LORETA current density for dMMN was significantly lower in patients compared to HC subjects, especially in the temporal lobes. dMMN current density in the frontal lobe was positively correlated with working memory performance in patients.

Conclusions

This is the first study to identify brain regions showing smaller dMMN current density in early schizophrenia. Further, poor working memory was associated with decreased dMMN current density in patients. These results are likely to help understand the neural basis for cognitive impairment of schizophrenia.  相似文献   

13.

Background

Decoding of frequency-modulated (FM) sounds is essential for phoneme identification. This study investigates selectivity to FM direction in the human auditory system.

Methodology/Principal Findings

Magnetoencephalography was recorded in 10 adults during a two-tone adaptation paradigm with a 200-ms interstimulus-interval. Stimuli were pairs of either same or different frequency modulation direction. To control that FM repetition effects cannot be accounted for by their on- and offset properties, we additionally assessed responses to pairs of unmodulated tones with either same or different frequency composition. For the FM sweeps, N1m event-related magnetic field components were found at 103 and 130 ms after onset of the first (S1) and second stimulus (S2), respectively. This was followed by a sustained component starting at about 200 ms after S2. The sustained response was significantly stronger for stimulation with the same compared to different FM direction. This effect was not observed for the non-modulated control stimuli.

Conclusions/Significance

Low-level processing of FM sounds was characterized by repetition enhancement to stimulus pairs with same versus different FM directions. This effect was FM-specific; it did not occur for unmodulated tones. The present findings may reflect specific interactions between frequency separation and temporal distance in the processing of consecutive FM sweeps.  相似文献   

14.

Background

Prosody, the melody and intonation of speech, involves the rhythm, rate, pitch and voice quality to relay linguistic and emotional information from one individual to another. A significant component of human social communication depends upon interpreting and responding to another person''s prosodic tone as well as one''s own ability to produce prosodic speech. However there has been little work on whether the perception and production of prosody share common neural processes, and if so, how these might correlate with individual differences in social ability.

Methods

The aim of the present study was to determine the degree to which perception and production of prosody rely on shared neural systems. Using fMRI, neural activity during perception and production of a meaningless phrase in different prosodic intonations was measured. Regions of overlap for production and perception of prosody were found in premotor regions, in particular the left inferior frontal gyrus (IFG). Activity in these regions was further found to correlate with how high an individual scored on two different measures of affective empathy as well as a measure on prosodic production ability.

Conclusions

These data indicate, for the first time, that areas that are important for prosody production may also be utilized for prosody perception, as well as other aspects of social communication and social understanding, such as aspects of empathy and prosodic ability.  相似文献   

15.

Background and Aims

Outcrossing animal-pollinated plants, particularly non-rewarding species, often experience pollinator limitation to reproduction. Pollinator visitation is affected by various factors, and it is hypothesized that reproduction in non-rewarding plants would benefit from low spatial flower abundance and asynchronous flowering. In order to test this hypothesis, the influence of spatial pattern and flowering phenology on male and female reproductive success (RS) was investigated in a non-rewarding orchid, Cypripedium japonicum, in central China over two flowering seasons.

Methods

The probabilities of intrafloral self-pollination and geitonogamy caused by pollinator behaviours were estimated from field observations. Pollinator limitation was evaluated by hand-pollination experiments. RS was surveyed in different spatial flower dispersal patterns and local flower densities. The effects of flowering phenological traits on RS were assessed by univariate and multivariate regression analyses.

Key Results

Hand-pollination experiments revealed that fruit production was strongly pollen limited throughout the entire reproductive season – over two seasons, 74·3 % of individuals set fruit following hand pollination, but only 5·2–7·7 % did so under natural conditions. Intrafloral self-pollination and geitonogamy within the potential clones might be rare. Both male and female fitness were substantially lower in clustered plants than in those growing singly. An increase in local conspecific flower density significantly and negatively influenced male RS, but had no effect on female RS. Phenotypic selection analysis indicated that individuals flowering earlier have the greatest probability of RS. Over 85 % of sampled flowering individuals had a flowering synchrony value >0·7; however, highly synchronous flowering was not advantageous for RS, as indicated by the negative directional selection differentials and gradients, and by the positive quadratic selection gradients.

Conclusions

These results support the hypothesis that, as a consequence of density-dependent selection, low spatio-temporal flower abundance is advantageous for attracting pollinators and for reproduction in natural populations of non-rewarding C. japonicum.Key words: Cypripedium japonicum, pollen limitation, spatial dispersal pattern, flowering synchrony, reproductive success, selection differential, selection gradient, deceptive flower  相似文献   

16.

Background

Human hearing develops progressively during the last trimester of gestation. Near-term fetuses can discriminate acoustic features, such as frequencies and spectra, and process complex auditory streams. Fetal and neonatal studies show that they can remember frequently recurring sounds. However, existing data can only show retention intervals up to several days after birth.

Methodology/Principal Findings

Here we show that auditory memories can last at least six weeks. Experimental fetuses were given precisely controlled exposure to a descending piano melody twice daily during the 35th, 36th, and 37th weeks of gestation. Six weeks later we assessed the cardiac responses of 25 exposed infants and 25 naive control infants, while in quiet sleep, to the descending melody and to an ascending control piano melody. The melodies had precisely inverse contours, but similar spectra, identical duration, tempo and rhythm, thus, almost identical amplitude envelopes. All infants displayed a significant heart rate change. In exposed infants, the descending melody evoked a cardiac deceleration that was twice larger than the decelerations elicited by the ascending melody and by both melodies in control infants.

Conclusions/Significance

Thus, 3-weeks of prenatal exposure to a specific melodic contour affects infants ‘auditory processing’ or perception, i.e., impacts the autonomic nervous system at least six weeks later, when infants are 1-month old. Our results extend the retention interval over which a prenatally acquired memory of a specific sound stream can be observed from 3–4 days to six weeks. The long-term memory for the descending melody is interpreted in terms of enduring neurophysiological tuning and its significance for the developmental psychobiology of attention and perception, including early speech perception, is discussed.  相似文献   

17.

Background

Recent research has addressed the suppression of cortical sensory responses to altered auditory feedback that occurs at utterance onset regarding speech. However, there is reason to assume that the mechanisms underlying sensorimotor processing at mid-utterance are different than those involved in sensorimotor control at utterance onset. The present study attempted to examine the dynamics of event-related potentials (ERPs) to different acoustic versions of auditory feedback at mid-utterance.

Methodology/Principal findings

Subjects produced a vowel sound while hearing their pitch-shifted voice (100 cents), a sum of their vocalization and pure tones, or a sum of their vocalization and white noise at mid-utterance via headphones. Subjects also passively listened to playback of what they heard during active vocalization. Cortical ERPs were recorded in response to different acoustic versions of feedback changes during both active vocalization and passive listening. The results showed that, relative to passive listening, active vocalization yielded enhanced P2 responses to the 100 cents pitch shifts, whereas suppression effects of P2 responses were observed when voice auditory feedback was distorted by pure tones or white noise.

Conclusion/Significance

The present findings, for the first time, demonstrate a dynamic modulation of cortical activity as a function of the quality of acoustic feedback at mid-utterance, suggesting that auditory cortical responses can be enhanced or suppressed to distinguish self-produced speech from externally-produced sounds.  相似文献   

18.

Background

Based on the relationship between working memory and error detection, we investigated the capacity of adult dyslexic readers'' working memory to change as a result of training, and the impact of training on the error detection mechanism.

Methodology

27 dyslexics and 34 controls, all university students, participated in the study. ERP methodology and behavioral measures were employed prior to, immediately after, and 6 months after training. The CogniFit Personal Coach Program, which consists of 24 sessions of direct training of working memory skills, was used.

Findings

Both groups of readers gained from the training program but the dyslexic readers gained significantly more. In the dyslexic group, digit span increased from 9.84±3.15 to 10.79±3.03. Working memory training significantly increased the number of words per minute read correctly by 14.73%. Adult brain activity changed as a result of training, evidenced by an increase in both working memory capacity and the amplitude of the Error-related Negativity (ERN) component (24.71%). When ERN amplitudes increased, the percentage of errors on the Sternberg tests decreased.

Conclusions

We suggest that by expanding the working memory capacity, larger units of information are retained in the system, enabling more effective error detection. The crucial functioning of the central-executive as a sub-component of the working memory is also discussed.  相似文献   

19.
Wang XD  Gu F  He K  Chen LH  Chen L 《PloS one》2012,7(1):e30027

Background

Extraction of linguistically relevant auditory features is critical for speech comprehension in complex auditory environments, in which the relationships between acoustic stimuli are often abstract and constant while the stimuli per se are varying. These relationships are referred to as the abstract auditory rule in speech and have been investigated for their underlying neural mechanisms at an attentive stage. However, the issue of whether or not there is a sensory intelligence that enables one to automatically encode abstract auditory rules in speech at a preattentive stage has not yet been thoroughly addressed.

Methodology/Principal Findings

We chose Chinese lexical tones for the current study because they help to define word meaning and hence facilitate the fabrication of an abstract auditory rule in a speech sound stream. We continuously presented native Chinese speakers with Chinese vowels differing in formant, intensity, and level of pitch to construct a complex and varying auditory stream. In this stream, most of the sounds shared flat lexical tones to form an embedded abstract auditory rule. Occasionally the rule was randomly violated by those with a rising or falling lexical tone. The results showed that the violation of the abstract auditory rule of lexical tones evoked a robust preattentive auditory response, as revealed by whole-head electrical recordings of the mismatch negativity (MMN), though none of the subjects acquired explicit knowledge of the rule or became aware of the violation.

Conclusions/Significance

Our results demonstrate that there is an auditory sensory intelligence in the perception of Chinese lexical tones. The existence of this intelligence suggests that the humans can automatically extract abstract auditory rules in speech at a preattentive stage to ensure speech communication in complex and noisy auditory environments without drawing on conscious resources.  相似文献   

20.

Background

Semantic memory has generated much research. As such, the majority of investigations have focused on the English language, and much less on other languages, such as Hebrew. Furthermore, little research has been done on search processes within the semantic network, even though they are abundant within cognitive semantic phenomena.

Methodology/Principal Findings

We examine a unique dataset of free association norms to a set of target words and make use of correlation and network theory methodologies to investigate the global and local features of the Hebrew lexicon. The global features of the lexicon are investigated through the use of association correlations – correlations between target words, based on their association responses similarity; the local features of the lexicon are investigated through the use of association dependencies – the influence words have in the network on other words.

Conclusions/Significance

Our investigation uncovered Small-World Network features of the Hebrew lexicon, specifically a high clustering coefficient and a scale-free distribution, and provides means to examine how words group together into semantically related ‘free categories’. Our novel approach enables us to identify how words facilitate or inhibit the spread of activation within the network, and how these words influence each other. We discuss how these properties relate to classical research on spreading activation and suggest that these properties influence cognitive semantic search processes. A semantic search task, the Remote Association Test is discussed in light of our findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号