首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T Volk  O Cohen  B Geiger 《Cell》1987,50(6):987-994
Cultured cells from either chicken lens or liver plated on solid substrates form flat epithelial sheets with adherens-type junctions between them. In lens cells these junctions contain A-CAM, while the same type of intercellular junctions in liver cells contain another cell adhesion molecule, L-CAM. Coculturing of lens and liver cells in the same dish resulted in the formation of mixed (heterotypic) adherens junctions. Double immunofluorescent labeling for both A-CAM and L-CAM indicated that the mixed junctions contained both molecules, each of which was present on one of the two partner cells. Moreover, the formation of the heterotypic junctions could be effectively inhibited by both anti-A-CAM and anti-L-CAM antibodies. It has thus been proposed that A-CAM and L-CAM share significant functional homology and may be involved in heterophilic interactions leading to the establishment of molecularly and cellularly asymmetrical adherens-type junctions.  相似文献   

2.
The cells that constitute the membranous labyrinth in the vertebrate inner ear are all derived from a single embryonic source, namely, the otocyst. The mature inner ear epithelia contain different regions with highly differentiated cells, displaying a highly specialized cytoarchitecture. The present study was designed to determine the presence of adherens-type intercellular junctions in this tissue and study the expression of cell adhesion molecules (CAMs) associated with these junctions, namely, A-CAM and L-CAM, in the developing avian inner ear epithelia. The results presented here show that throughout the early otocyst, A-CAM is coexpressed with L-CAM. The formation of asymmetries between sensory and nonsensory areas in the epithelium is accompanied by the modulation of CAMs expression and the assembly of intercellular junctional complexes. A-CAM and L-CAM display reciprocal expression patterns, the former being expressed mostly in the mosaic sensory epithelium, while L-CAM becomes conspicuous in the nonsensory areas but its expression in the sensory region is markedly reduced. Adherens-type junctions and numerous desmosomes are found in the junctional complexes of early otocyst cells. The former persist to maturity of the various inner ear epithelia, whereas desmosomes disappear from junctional complexes of hair cells but remain in the intercellular junctional complexes of all other cell types in the membranous labyrinth. Thus, adherens type intercellular junctions comprise the only defined cytoskeleton-bound junction in mature hair cells. A-CAM-positive cells are also found in the region of the acoustic ganglion in early developmental stages but not in the mature neural elements.  相似文献   

3.
《The Journal of cell biology》1986,103(4):1451-1464
Intercellular adherens junctions between cultured lens epithelial cells are highly Ca2+-dependent and are readily dissociated upon chelation of extracellular Ca2+ ions. Addition of Ca2+ to EGTA-treated cells results in the recovery of cell-cell junctions including the reorganization of adherens junction-specific cell adhesion molecule (A-CAM), vinculin, and actin (Volk, T., and B. Geiger, 1986, J. Cell Biol., 103:000-000). Incubation of cells during the recovery phase with Fab' fragments of anti-A-CAM specifically inhibited the re-formation of cell-cell adherens junctions. This inhibition was accompanied by remarkable changes in microfilament organization manifested by an apparent deterioration of stress fibers and the appearance of fragmented actin bundles throughout the cytoplasm. Incubation of EGTA-dissociated cells with intact divalent anti-A-CAM antibodies in normal medium had no apparent inhibitory effect on junction formation and did not affect the assembly of actin microfilament bundles. Moreover, adherens junctions formed in the presence of the divalent antibodies became essentially Ca2+-independent, suggesting that cell-cell adhesion between them was primarily mediated by the antibodies. These studies suggest that A-CAM participates in intercellular adhesion in adherens-type junctions and point to its involvement in microfilament bundle assembly.  相似文献   

4.
The recently described adherens junction-specific 135-kD protein (Volk, T., and B. Geiger, 1984, EMBO (Eur. Mol. Biol. Organ.) J., 3:2249-2260) was localized along cardiac muscle intercalated discs by immunogold labeling of ultrathin frozen sections. Analysis of this labeling indicated that the 135-kD protein, adherens junction-specific cell adhesion molecule (A-CAM), is tightly associated with the plasma membrane unlike vinculin labeling, which was present along the membrane-bound plaques of the fascia adherens. In cultured chick lens cells, A-CAM was associated with Ca2+-dependent junctions that were cleaved upon a decrease of extracellular Ca2+ concentrations to less than or equal to 0.5 mM. In the chelator-separated junction, A-CAM became exposed to exogenously added antibodies or to proteolytic enzymes. Upon addition of trypsin to EGTA-treated cells, A-CAM was cleaved into three major cell-bound antigenic peptides with apparent molecular masses of 78, 60, and 46 kD, suggesting that the extracellular domain of A-CAM has a size greater than or equal to kD. Incubation of electrophoretic gels with 125I-concanavalin A (Con A) indicated that one of the major Con A-binding proteins in chicken lens membranes is a integral of 135-kD glycoprotein that was partially purified on Con A-Sepharose column and identified as A-CAM by immunoblotting. Detergent partitioning assay using Triton X-114 biphasic system was carried out to determine whether A-CAM displays properties of an integral membrane protein. This assay indicated that the intact A-CAM molecule was recovered in the buffer phase but its cell-associated tryptic peptides, which presumably lost a great part of the A-CAM extracellular extension, readily partitioned into the detergent phase. The results obtained in this and in the following paper (Volk, T., and B. Geiger, 1986, J. Cell Biol., 103:1451-1464) strongly suggest that A-CAM is a Ca2+-dependent adherens junction-specific membrane glycoprotein that is involved in intercellular adhesion in these sites.  相似文献   

5.
We examined the roles of the extracellular domains of a gap junction protein and a cell adhesion molecule in gap junction and adherens junction formation by altering cell interactions with antibody Fab fragments. Using immunoblotting and immunocytochemistry we demonstrated that Novikoff cells contained the gap junction protein, connexin43 (Cx43), and the cell adhesion molecule, A-CAM (N-cadherin). Cells were dissociated in EDTA, allowed to recover, and reaggregated for 60 min in media containing Fab fragments prepared from a number of antibodies. We observed no cell-cell dye transfer 4 min after microinjection in 90% of the cell pairs treated with Fab fragments of antibodies for the first or second extracellular domain of Cx43, the second extracellular domain of connexin32 (Cx32) or A-CAM. Cell-cell dye transfer was detected within 30 s in cell pairs treated with control Fab fragments (pre-immune serum, antibodies to the rat major histocompatibility complex or the amino or carboxyl termii of Cx43). We observed no gap junctions by freeze-fracture EM and no adherens junctions by thin section EM between cells treated with the Fab fragments that blocked cell-cell dye transfer. Gap junctions were found on approximately 50% of the cells in control samples using freeze-fracture EM. We demonstrated with reaggregated Novikoff cells that: (a) functional interactions of the extracellular domains of the connexins were necessary for the formation of gap junction channels; (b) cell interactions mediated by A-CAM were required for gap junction assembly; and (c) Fab fragments of antibodies for A-CAM or connexin extracellular domains blocked adherens junction formation.  相似文献   

6.
Morphological and biochemical analyses have identified a set of proteins which together form a structure known as the adherens junction. Elegant experiments in tissue culture support the idea that adherens junctions play a key role in cell-cell adhesion and in organizing cells into epithelia. During normal embryonic development, cells quickly organize epithelia; these epithelial cells participate in many of the key morphogenetic movements of gastrulation. This prompted the hypothesis that adherens junctions ought to be critical for normal embryonic development. Drosophila Armadillo, the homologue of vertebrate beta-catenin, is a core component of the adherens junction protein complex and has been hypothesized to be essential for adherens junction function in vivo. We have used an intermediate mutant allele of armadillo, armadilloXP33, to test these hypotheses in Drosophila embryos. Adherens junctions cannot assemble in the absence of Armadillo, leading to dramatic defects in cell-cell adhesion. The epithelial cells of the embryo lose adhesion to each other, round up, and apparently become mesenchymal. Mutant cells also lose their normal cell polarity. These disruptions in the integrity of epithelia block the appropriate morphogenetic movements of gastrulation. These results provide the first demonstration of the effect of loss of adherens junctions on Drosophila embryonic development.  相似文献   

7.
Maintaining proper cell-cell adhesion in the intestine is essential for tissue homeostasis and barrier function. This adhesion is thought to be mediated by cell adhesion structures, including tight junctions, adherens junctions, and desmosomes, which concentrate in the apical junctional region. While clear roles for adherens and tight junctions have been established in simple epithelia, the function of desmosomes has not been addressed. In stratified epithelia, desmosomes impart mechanical strength to tissues by organizing and anchoring the keratin filament network. In this paper, we report that the desmosomal protein desmoplakin (DP) is not essential for cell adhesion in the intestinal epithelium. Surprisingly, when DP is lacking, keratin filament localization is also unperturbed, although keratin filaments no longer anchor at desmosomes. Unexpectedly, DP is important for proper microvillus structure. Our study highlights the tissue-specific functions of desmosomes and reveals that the canonical functions for these structures are not conserved in simple epithelium.  相似文献   

8.
The integrity of epithelia depends largely on specialised adhesive structures, the adherens junctions. Several of the components required for building these structures are highly conserved between vertebrates and insects (e.g. E-cadherin and α- and β-catenin), while others have so far been found only in invertebrates (e.g. crumbs). Two recent papers(1,2) show that the Drosophila E-cadherin is encoded by the gene shotgun. Phenotypic analyses of shotgun as well as armadillo (β-catenin) and crumbs mutants provide new insights into the mechanisms by which adherens junctions are built and, further, show that the requirement for E-cadherin largely depends on the morphogenetic activity of an epithelium.  相似文献   

9.
《The Journal of cell biology》1994,127(6):2061-2069
beta-Catenin is involved in the formation of adherens junctions of mammalian epithelia. It interacts with the cell adhesion molecule E- cadherin and also with the tumor suppressor gene product APC, and the Drosophila homologue of beta-catenin, armadillo, mediates morphogenetic signals. We demonstrate here that E-cadherin and APC directly compete for binding to the internal, armadillo-like repeats of beta-catenin; the NH2-terminal domain of beta-catenin mediates the interaction of the alternative E-cadherin and APC complexes to the cytoskeleton by binding to alpha-catenin. Plakoglobin (gamma-catenin), which is structurally related to beta-catenin, mediates identical interactions. We thus show that the APC tumor suppressor gene product forms strikingly similar associations as found in cell junctions and suggest that beta-catenin and plakoglobin are central regulators of cell adhesion, cytoskeletal interaction, and tumor suppression.  相似文献   

10.
The liver cell adhesion molecule (L-CAM) and N-cadherin or adherens junction-specific CAM (A-CAM) are structurally related cell surface glycoproteins that mediate calcium-dependent adhesion in different tissues. We have isolated and characterized a full-length cDNA clone for chicken N-cadherin and used this clone to transfect S180 mouse sarcoma cells that do not normally express N-cadherin. The transfected cells (S180cadN cells) expressed N-cadherin on their surfaces and resembled S180 cells transfected with L-CAM (S180L cells) in that at confluence they formed an epithelioid sheet and displayed a large increase in the number of adherens and gap junctions. In addition, N-cadherin in S180cadN cells, like L-CAM in S180L cells, accumulated at cellular boundaries where it was colocalized with cortical actin. In S180L cells and S180cadN cells, L-CAM and N-cadherin were seen at sites of adherens junctions but were not restricted to these areas. Adhesion mediated by either CAM was inhibited by treatment with cytochalasin D that disrupted the actin network of the transfected cells. Despite their known structural similarities, there was no evidence of interaction between L-CAM and N-cadherin. Doubly transfected cells (S180L/cadN) also formed epithelioid sheets. In these cells, both N-cadherin and L-CAM colocalized at areas of cell contact and the presence of antibodies to both CAMs was required to disrupt the sheets of cells. Studies using divalent antibodies to localize each CAM at the cell surface or to perturb their distributions indicated that in the same cell there were no interactions between L-CAM and N-cadherin molecules. These data suggest that the Ca(++)-dependent CAMs are likely to play a critical role in the maintenance of epithelial structures and support a model for the segregation of CAM mediated binding. They also provide further support for the so-called precedence hypothesis that proposes that expression and homophilic binding of CAMs are necessary for formation of junctional structures in epithelia.  相似文献   

11.
Tissue distribution and cell type-specific expression of p120ctn isoforms.   总被引:3,自引:0,他引:3  
Cadherin-based molecular complexes play a major role in cell-cell adhesion. At the adherens junctions the intracellular domain of cadherins specifically interacts with beta-catenin and p120ctn, members of the Armadillo repeat protein family. Differential splicing and utilization of the alternative translation initiation codons lead to many p120ctn isoforms. Two major p120ctn isoforms are expressed in mouse tissues. In this study we used indirect immunofluorescence to demonstrate significant tissue specificity in expression of the p120ctn isoforms. The short isoform is abundant at cell-cell adhesion junctions in epidermis, palatal, and tongue epithelia, in the ducts of excretory glands, bronchiolar epithelium, and in mucosal epithelia of esophagus, forestomach, and small intestine. In contrast, the long isoform, containing an amino terminus highly conserved within the p120ctn subfamily, is expressed at vascular-endothelial cell junctions in blood vessels, at cell-cell junctions in the serosal epithelium lining the internal organs, in choroid plexus of brain, in the pigment epithelium of retina, and in structures such as the outer limiting membrane of retina and intercalated discs of cardiomyocytes. The tissue- and cell type-specific expression of p120ctn isoforms suggests a role for the long p120ctn isoform in cell structures responsible for stable tissue integrity, compared to the role of the short isoform in cell-cell adhesion in the external epithelia with rapid turnover.  相似文献   

12.
Anchoring junctions are cell adhesion apparatus present in all epithelia and endothelia. They are found at the cell-cell interface (adherens junction (AJ) and desmosome) and cell-matrix interface (focal contact and hemidesmosome). In this review, we focus our discussion on AJ in particular the dynamic changes and regulation of this junction type in normal epithelia using testis as a model. There are extensive restructuring of AJ (e.g., ectoplasmic specialization, ES, a testis-specific AJ) at the Sertoli-Sertoli cell interface (basal ES) and Sertoli-elongating spermatid interface (apical ES) during the seminiferous epithelial cycle of spermatogenesis to facilitate the migration of developing germ cells across the seminiferous epithelium. Furthermore, recent findings have shown that ES also confers cell orientation and polarity in the seminiferous epithelium, illustrating that some of the functions initially ascribed to tight junctions (TJ), such as conferring cell polarity, are also part of the inherent properties of the AJ (e.g., apical ES) in the testis. The biology and regulation based on recent studies in the testis are of interest to cell biologists in the field, in particular their regulation, which perhaps is applicable to tumorigenesis.  相似文献   

13.
Anchoring junctions are cell adhesion apparatus present in all epithelia and endothelia. They are found at the cell-cell interface (adherens junction (AJ) and desmosome) and cell-matrix interface (focal contact and hemidesmosome). In this review, we focus our discussion on AJ in particular the dynamic changes and regulation of this junction type in normal epithelia using testis as a model. There are extensive restructuring of AJ (e.g., ectoplasmic specialization, ES, a testis-specific AJ) at the Sertoli-Sertoli cell interface (basal ES) and Sertoli-elongating spermatid interface (apical ES) during the seminiferous epithelial cycle of spermatogenesis to facilitate the migration of developing germ cells across the seminiferous epithelium. Furthermore, recent findings have shown that ES also confers cell orientation and polarity in the seminiferous epithelium, illustrating that some of the functions initially ascribed to tight junctions (TJ), such as conferring cell polarity, are also part of the inherent properties of the AJ (e.g., apical ES) in the testis. The biology and regulation based on recent studies in the testis are of interest to cell biologists in the field, in particular their regulation, which perhaps is applicable to tumorigenesis.  相似文献   

14.
Transformation of cultured chick lens epithelial cells with a temperature-sensitive mutant of Rous sarcoma virus (tsRSV) leads to radical changes in cell shape and interactions. When cultured at the restrictive temperature (42 degrees C), the transformed cells largely retained epithelial morphology and intercellular adherens junctions (AJ), whereas on switch to the permissive temperature (37 degrees C) they rapidly became fibroblastoid, their AJ deteriorated, and cell adhesion molecules (A-CAM) (N-cadherin) largely disappeared from intercellular contact sites. The microfilament system that was primarily associated with these junctions was markedly rearranged on shift to 37 degrees C and remained associated mainly with cell-substrate focal contacts. These apparent changes in intercellular AJ were not accompanied by significant alterations in the cellular content of several junction-associated molecules, including A-CAM, vinculin, and talin. Immunolabeling with phosphotyrosine-specific antibodies indicated that both cell-substrate and intercellular AJ were the major cellular targets for the pp60v-src tyrosine-specific protein kinase. It was further shown that intercellular AJ components serve as substrates to tyrosine kinases also in nontransformed lens cells, because the addition of a combination of vanadate and H2O2--which are potent inhibitors of protein tyrosine phosphatases--leads to a remarkable accumulation of immunoreactive phosphotyrosine-containing proteins in these junctions. This finding suggests that intercellular junctions are major sites of action of protein tyrosine kinases and that protein tyrosine phosphatases play a major role in the regulation of phosphotyrosine levels in AJ of both normal and RSV-transformed cells.  相似文献   

15.
The cadherin-binding catenin p120ctn was originally identified as an Src-tyrosine kinase substrate. More recently, p120ctn has been shown in some cell types to be associated with catenin/cadherin complexes of adherens junctions. To address the question whether p120ctn is restricted to certain cell types or whether it is a general cellular component we investigated tissue distribution of p120ctn by immunohistochemistry and immunoblotting in the rat. We found p120ctn to be widely distributed in several tissues where it is mainly restricted to the plasma membrane. In various epithelia p120ctn was found in association with different adherens junctions such as the zonula adherens and puncta adherentia. In addition, p120ctn was localized along infoldings of the basal cell membrane, most prominently in renal proximal and distal tubules. pl20ctn was not restricted to epithelia. It was also found at intercalated discs of cardiomyocytes. In the nervous system, immunostaining was particularly prominent in areas rich in synapses suggesting that pl20ctn is a component of synaptic adherens junctions as well. By immunoblotting, four different isoforms of pl20ctn could be detected displaying similar electrophoretic mobilities as the isoforms 1A, 1B, 2A, and 2B reported from mice. Whereas all epithelia assayed contained at least two isoforms, testis, heart, brain, and retina contained a single 110-kDa band that corresponds to isoform 1B in mice.  相似文献   

16.
Melanoma cell adhesion molecule (MCAM), an adhesion molecule belonging to the Ig superfamily, is an endothelial marker and is expressed in different epithelia. MCAM is expressed as two isoforms differing by their cytoplasmic domain: MCAM-l and MCAM-s (long and short). In order to identify the respective role of each MCAM isoform, we analyzed MCAM isoform targeting in polarized epithelial Madin-Darby canine kidney (MDCK) cells using MCAM-GFP chimeras. Confocal microscopy revealed that MCAM-s and MCAM-l were addressed to the apical and basolateral membranes, respectively. Transfection of MCAM-l mutants established that a single dileucine motif (41-42) of the cytoplasmic domain was required for MCAM-l basolateral targeting in MDCK cells. Although double labelling experiments showed that MCAM-l is not a component of adherens junctions and focal adhesions, its expression on basolateral membranes suggests that MCAM-l is involved in epithelium insuring.  相似文献   

17.
We describe two truncated forms of A-CAM (N-cadherin) and present evidence suggesting that both forms are proteolytically derived from the intact A-CAM molecule. The first is a membrane-bound fragment of A-CAM displaying an apparent molecular weight of 78 kDa. This polypeptide, containing the C-terminal portion of the protein, may be generated in cultured chicken lens cells, either by a short treatment with trypsin-EGTA, or by endogenous proteinase(s) during incubation in low Ca2+ medium. Immunofluorescent labeling of normal and EGTA-treated cells indicated that the 78-kDa fragment is uniformly distributed over the cell surface. Moreover, staining of developing chick embryos with pairs of antibodies which distinguish the 78-kDa fragment from intact A-CAM indicated that, at early stages of sclerotome dissociation in developing somites, a truncated derivative of the molecule is generated. The second truncated form of A-CAM is a 97-kDa polypeptide which is constitutively released by cultured lens cells into the culture medium in the presence of normal medium. We present evidence that the 97-kDa molecule is proteolytically derived from A-CAM by the action of an endogenous proteinase. We discuss possible mechanisms leading to the formation of these two truncated derivatives and their possible involvement in the physiological modulation of A-CAM-mediated interactions.  相似文献   

18.
Yoon M  Spear PG 《Journal of virology》2002,76(14):7203-7208
Nectin-1, a cell adhesion molecule belonging to the immunoglobulin superfamily, can bind to virion glycoprotein D (gD) to mediate entry of herpes simplex viruses (HSV) and pseudorabies virus (PRV). Nectin-1 colocalizes with E-cadherin at adherens junctions in epithelial cells. The disruption of cell junctions can result in the redistribution of nectin-1. To determine whether disruption of junctions by calcium depletion influenced the susceptibility of epithelial cells to viral entry, Madin-Darby canine kidney cells expressing endogenous nectin-1 or transfected human nectin-1 were tested for the ability to bind soluble forms of viral gD and to be infected by HSV and PRV, before and after calcium depletion. Confocal microscopy revealed that binding of HSV and PRV gD was localized to adherens junctions in cells maintained in normal medium but was distributed, along with nectin-1, over the entire cell surface after calcium depletion. Both the binding of gD and the fraction of cells that could be infected by HSV-1 and PRV were enhanced by calcium depletion. Taken together, these results provide evidence that nectin-1 confined to adherens junctions in epithelial cells is not very accessible to virus, whereas dissociation of cell junctions releases nectin-1 to serve more efficiently as an entry receptor.  相似文献   

19.
Cell-adhesion molecule uvomorulin during kidney development   总被引:22,自引:0,他引:22  
We studied the expression of a cell adhesion molecule during morphogenesis of the embryonic kidney. The 120-kDa glycoprotein, called uvomorulin, is known to be present on a number of epithelia. During the development of the kidney, a mesenchyme is converted into an epithelium when it is properly induced. The uninduced mesenchyme did not express uvomorulin, as judged by immunofluorescence and immunoblotting using previously characterized antibodies. Uvomorulin does not appear in the mesenchyme as a direct consequence of induction. Rather it becomes detectable approximately 12 hr after completion of induction, at 30-36 hr in vitro when the cells adhere to each other. Distinct differences in uvomorulin expression were seen in the different parts of the nephron. In the mesenchymally derived epithelia (glomeruli, tubules), uvomorulin could be detected only in the tubules, whereas the epithelium of the glomeruli remained negative at all stages of development. Our embryonic studies show that these differences arise very early, as soon as the different parts of the nephron can be distinguished morphologically. It is likely that uvomorulin plays a role in the initial adhesion of the differentiating tubule cells. However, we failed to disrupt histogenesis by applying antibodies to the organ cultures of developing tubules although the antibodies penetrated the tissues well and bound to the differentiating cells.  相似文献   

20.
Cellular junctions are critical for intercellular communication and for the assembly of cells into tissues. Cell junctions often consist of tight junctions, which form a permeability barrier and prevent the diffusion of lipids and proteins between cell compartments, and adherens junctions, which control the adhesion of cells and link cortical actin filaments to attachment sites on the plasma membrane. Proper tight junction formation and cell polarity require the function of membrane-associated guanylate kinases (MAGUKs) that contain the PDZ protein-protein interaction domain. In contrast, less is known about how adherens junctions are assembled. Here we describe how the PDZ-containing protein DLG-1 is required for the proper formation and function of adherens junctions in Caenorhabditis elegans. DLG-1 is a MAGUK protein that is most similar in sequence to mammalian SAP97, which is found at both synapses of the CNS, as well as at cell junctions of epithelia. DLG-1 is localized to adherens junctions, and DLG-1 localization is mediated by an amino-terminal domain shared with SAP97 but not found in other MAGUK family members. DLG-1 recruits other proteins and signaling molecules to adherens junctions, while embryos that lack DLG-1 fail to recruit the proteins AJM-1 and CPI-1 to adherens junctions. DLG-1 is required for the proper organization of the actin cytoskeleton and for the morphological elongation of embryos. In contrast to other proteins that have been observed to affect adherens junction assembly and function, DLG-1 is not required to maintain cell polarity. Our results suggest a new function for MAGUK proteins distinct from their role in cell polarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号