首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
EPg222 protease is a novel extracellular enzyme produced by Penicillium chrysogenum (Pg222) isolated from dry-cured hams that has the potential for use over a broad range of applications in industries that produce dry-cured meat products. The gene encoding EPg222 protease has been identified. Peptide sequences of EPg222 were obtained by de novo sequencing of tryptic peptides using mass spectrometry. The corresponding gene was amplified by PCR using degenerated primers based on a combination of conserved serine protease-encoding sequences and reverse translation of the peptide sequences. EPg222 is encoded as a gene of 1,361 bp interrupted by two introns. The deduced amino acid sequence indicated that the enzyme is synthesized as a preproenzyme with a putative signal sequence of 19 amino acids (aa), a prosequence of 96 aa and a mature protein of 283 aa. A cDNA encoding EPg222 has been cloned and expressed as a functionally active enzyme in Pichia pastoris. The recombinant enzyme exhibits similar activities to the native enzyme against a wide range of protein substrates including muscle myofibrillar protein. The mature sequence contains conserved aa residues characteristic of those forming the catalytic triad of serine proteases (Asp42, His76 and Ser228) but notably the food enzyme exhibits specific aa substitutions in the immunoglobulin-E recognition regions that have been identified in protein homologues that are allergenic.  相似文献   

2.
S M Deane  F T Robb  S M Robb  D R Woods 《Gene》1989,76(2):281-288
The nucleotide sequence of the Vibrio alginolyticus alkaline serine exoprotease A (ProA) gene cloned in Escherichia coli was determined. The exoprotease A gene (proA) consisted of 1602 bp which encoded a protein of 534 amino acids (aa) with an Mr of 55,900. The region upstream from the gene was characterized by a putative promoter consensus region (-10 -35), a ribosome-binding site and ATG start codon. The proA gene encodes a typical 21-aa N-terminal signal sequence which, when fused to alkaline phosphatase by means of transposon TnphoA, was able to mediate transport of the alkaline phosphatase to the periplasm in E. coli. Deletions of up to 106 aa from the C terminus of ProA did not result in the loss of extracellular protease activity. Additional V. alginolyticus genes were not involved in the secretion into the medium of the cloned ProA in E. coli. The amino acid sequence of ProA showed low overall homology to a Serratia marcescens serine exoprotease but significant homology was detected with other subtilisin family exoproteases. The fungal proteinase K, another sodium dodecyl sulfate-resistant protease, had 44% aa homology with ProA.  相似文献   

3.
Protease II gene of Escherichia coli HB101 was cloned and expressed in E. coli JM83. The transformant harboring a hybrid plasmid, pPROII-12, with a 2.4 kbp fragment showed 90-fold higher enzyme activity than the host. The whole nucleotide sequence of the inserted fragment of plasmid pPROII-12 was clarified by the dideoxy chain-terminating method. The sequence that encoded the mature enzyme protein was found to start at an ATG codon, as judged by comparison with amino terminal protein sequencing. The molecular weight of the enzyme was estimated to be 81,858 from the nucleotide sequence. The reactive serine residue of protease II was identified as Ser-532 with tritium DFP. The sequence around the serine residue is coincident with the common sequence of Gly-X-Ser-X-Gly, which has been found in the active site of serine proteases. Except for this region, protease II showed no significant sequence homology with E. coli serine proteases, protease IV and protease La (lon gene), or other known families of serine proteases. However, 25.3% homology was observed between protease II and prolyl endopeptidase from porcine brain. Although the substrate specificities of these two enzymes are quite different, it seems possible to classify protease II as a member of the prolyl endopeptidase family from the structural point of view.  相似文献   

4.
A gene, isp-B, encoding an intracellular serine protease from a newly isolated Bacillus sp. WRD-2 was cloned and characterized. Nucleotide sequence analysis showed an open reading frame of 960 bp encoding a polypeptide comprised of 319 amino acids. The primary structure of the enzyme predicted the structural features characteristic of other intracellular serine proteases, including active sites, Ser, His and Asp, as well as no signal sequence. The predicted amino acid sequence showed more than 60% homology with the intracellular serine proteases from Bacillus species. When expressed in E. coli, the recombinant enzyme (rISP-B) was overproduced in the cytoplasm as soluble and active form. The purified enzyme was completely inhibited by phenylmethylsulfonyl fluoride, EDTA and antipain. The enzyme showed maximum activity at pH 8.0 and 45 degrees C. It was stable atpH from 7.5 to 11.0 and below 50 degrees C.  相似文献   

5.
Viral-encoded proteases cleave precursor polyprotein(s) leading to maturation of infectious virions. Strikingly, human rhinovirus 3C protease shows the trypsin(ogen)-like serine protease fold based on two topologically equivalent six-stranded β-barrels, but displays residue Cys147 as the active site nucleophile. By contrast, papain, which is representative of most cysteine proteases, does not display the trypsin(ogen)-like fold. Remarkably, in human rhinovirus 3C cysteine protease, the catalytic residues Cys147, His40 and Glu71 are positioned as Ser195, His57 and Asp102, respectively, building up the catalytic triad of serine proteases in the chymotrypsin–trypsin–elastase family. However, as compared to trypsin-like serine proteases and their zymogens, residue His40 and the oxyanion hole of human rhinovirus 3C cysteine protease, both key structural components of the active site, are located closer to the protein core. Human rhinovirus 3C cysteine protease cleaves preferentially GlnGly peptide bonds or, less commonly, the GlnSer, GlnAla, GluSer or GluGly pairs. Finally, human rhinovirus 3C cysteine protease and the 3CD cysteine protease–polymerase covalent complex bind the 5′ non-coding region of rhinovirus genomic RNA, an essential function for replication of the viral genome.  相似文献   

6.
A gene encoding a subtilisin-like protease, designated islandisin, from the extremely thermophilic bacterium Fervidobacterium islandicum (DSMZ 5733) was cloned and actively expressed in Escherichia coli. The gene was identified by PCR using degenerated primers based on conserved regions around two of the three catalytic residues (Asp, His, and Ser) of subtilisin-like serine protease-encoding genes. Using inverse PCR regions flanking the catalytic residues, the gene could be cloned. Sequencing revealed an open reading frame of 2,106 bp. The deduced amino acid sequence indicated that the enzyme is synthesized as a proenzyme with a putative signal sequence of 33 amino acids (aa) in length. The mature protein contains the three catalytic residues (Asp177, His215, and Ser391) and has a length of 668 aa. Amino acid sequence comparison and phylogenetic analysis indicated that this enzyme could be classified as a subtilisin-like serine protease in the subgroup of thermitase. The whole gene was amplified by PCR, ligated into pET-15b, and successfully expressed in E. coli BL21(DE3)pLysS. The recombinant islandisin was purified by heat denaturation, followed by hydroxyapatite chromatography. The enzyme is active at a broad range of temperatures (60 to 80 degrees C) and pHs (pH 6 to 8.5) and shows optimal proteolytic activity at 80 degrees C and pH 8.0. Islandisin is resistant to a number of detergents and solvents and shows high thermostability over a long period of time (up to 32 h) at 80 degrees C with a half-life of 4 h at 90 degrees C and 1.5 h at 100 degrees C.  相似文献   

7.
gamma-Seminoprotein (gamma-SM), a glycoprotein from human seminal plasma, was isolated in highly purified form by ion-exchange chromatography on a Mono Q column. The main form, fraction M, was homogeneous by PAGE at pH 8.3 and by SDS-PAGE. The complete amino acid sequence of gamma-SM was determined with the aid of fragments generated by cleavages with cyanogen bromide, clostripain, chymotrypsin and Staphylococcus aureus V8 protease. The fragments were aligned with overlapping sequences. The single polypeptide chain of gamma-SM contains 237 amino acids with a calculated Mr of 26079. A single N-linked carbohydrate side chain is attached to Asn45. The complex structure of this oligosaccharide has been determined recently [van Halbeek H. et al. (1985) Biochem. Biophys. Res. Commun. 131, 507-514]. Sequence comparison with serine proteases shows a high degree of homology, especially with the kallikrein family. The residues in the vicinity of the active site of serine proteases are also highly conserved in gamma-SM, indicating the participation of His41, Asp96 and Ser189 in its active site. gamma-SM hydrolyzed M-casein with a pH optimum at 8.0, but failed to hydrolyze any of the synthetic substrates tested. This proteolytic activity could be inhibited with diisopropylfluorophosphate, phenylmethylsulfonyl fluoride, Zn2+ or Hg2+ ions.  相似文献   

8.
Serine proteases comprise nearly one-third of all known proteases identified to date and play crucial roles in a wide variety of cellular as well as extracellular functions, including the process of blood clotting, protein digestion, cell signaling, inflammation, and protein processing. Their hallmark is that they contain the so-called "classical" catalytic Ser/His/Asp triad. Although the classical serine proteases are the most widespread in nature, there exist a variety of "nonclassical" serine proteases where variations to the catalytic triad are observed. Such variations include the triads Ser/His/Glu, Ser/His/His, and Ser/Glu/Asp, and include the dyads Ser/Lys and Ser/His. Other variations are seen with certain serine and threonine peptidases of the Ntn hydrolase superfamily that carry out catalysis with a single active site residue. This work discusses the structure and function of these novel serine proteases and threonine proteases and how their catalytic machinery differs from the prototypic serine protease class.  相似文献   

9.
To obtain a new serine protease from alkalophilic Bacillus sp. NKS-21, shotgun cloning was carried out. As a result, a new protease gene was obtained. It encoded an intracellular serine protease (ISP-1) in which there was no signal sequence. The molecular weight was 34,624. The protease showed about 50% homology with those of intracellular serine proteases (ISP-1) from Bacillus subtilis, B. polymyxa, and alkalophilic Bacillus sp. No. 221. The amino acid residues that form the catalytic triad, Ser, His and Asp, were completely conserved in comparison with subtilisins (the extracellular proteases from Bacillus). The cloned intracellular protease was expressed in Escherichia coli, and its purification and characterization were carried out. The enzyme showed stability under alkaline condition at pH 10 and tolerance to surfactants. The cloned ISP-1 digested well nucleoproteins, clupein and salmin, for the substrates.The nucleotide sequence data reported in this paper will appear in the GSDB, DDBJ, EMBL, and NCBI nucleotide sequence databases with the accession number D37921.  相似文献   

10.
The complete amino acid sequence of Achromobacter lyticus protease I (EC 3.4.21.50), which specifically hydrolyzes lysyl peptide bonds, has been established. This has been achieved by sequence analysis of the reduced and S-carboxymethylated protease and of peptides obtained by enzymatic digestion with Achromobacter protease I itself and Staphylococcus aureus V8 protease and by chemical cleavage with cyanogen bromide. The protease consists of 268 residues with three disulfide bonds, which have been assigned to Cys6-Cys216, Cys12-Cys80, and Cys36-Cys58. Comparison of the amino acid sequence of Achromobacter protease and other serine proteases of bacterial and mammalian origins has revealed that Achromobacter protease I is a mammalian-type serine protease of which the catalytic triad comprises His57, Asp113, and Ser194. It has also been shown that the protease has 9- and 26-residue extensions of the peptide chain at the N and C termini, respectively, and overall sequence homology is as low as 20% with bovine trypsin. The presence of a disulfide bridge between the N-terminal extension Cys6 and Cys216 close to the putative active site in the C-terminal region is thought to be responsible for the generation of maximal proteolytic function in the pH range 8.5-10.7 and enhanced stability to denaturation.  相似文献   

11.
The serine protease gene from a thermophilic fungus Thermoascus aurantiacus var. levisporus, was cloned, sequenced, and expressed in Pichia pastoris and the recombinant protein was characterized. The full-length cDNA of 2,592 bp contains an ORF of 1,482 bp encoding 494 amino acids. Sequence analysis of the deduced amino acid sequence revealed high homology with subtilisin serine proteases. The putative enzyme contained catalytic domain with active sites formed by three residues of Aspl83, His215, and Ser384. The molecular mass of the recombinant enzyme was estimated to be 59.1 kDa after overexpression in P. pastoris. The activity of recombinant protein was 115.58 U/mg. The protease exhibited its maximal activity at 50°C and pH 8.0 and kept thermostable at 60°C, and retained 60% activity after 60 min at 70° C. The protease activity was found to be inhibited by PMSF, but not by DTT or EDTA. The enzyme has broad substrate specificity such as gelatin, casein and pure milk, and exhibiting highest activity towards casein.  相似文献   

12.
The revised amino acid sequence of rat submaxillary gland tonin, a serine protease, does contain the active site Asp residue. The active site of this kallikrein-related enzyme is thus made up of the same catalytic triad (Asp, Ser, and His) found in all known serine proteases. The important Asp residue has now been localized in a 16 amino acid peptide previously reported as missing in the tonin sequence. The complete amino acid sequence thus contains 235 residues corresponding to a molecular weight of 25,658, more in agreement with previously reported molecular weights. Moreover, the revised structure led (a) to the assignment of Arg, Asn, and Val residues instead of His, Asp, and Gly at positions 63, 165, and 169, respectively; (b) to the assignment of residues occupying an overlapping sequence at positions 165-171, and finally (c) to the localization of two N-glycosylation sites at positions 82 and 165. These results further document the close relationship of tonin to the ever expanding kallikrein family.  相似文献   

13.
Exported proteases of Helicobacter pylori (H. pylori) are potentially involved in pathogen-associated disorders leading to gastric inflammation and neoplasia. By comprehensive sequence screening of the H. pylori proteome for predicted secreted proteases, we retrieved several candidate genes. We detected caseinolytic activities of several such proteases, which are released independently from the H. pylori type IV secretion system encoded by the cag pathogenicity island (cagPAI). Among these, we found the predicted serine protease HtrA (Hp1019), which was previously identified in the bacterial secretome of H. pylori. Importantly, we further found that the H. pylori genes hp1018 and hp1019 represent a single gene likely coding for an exported protein. Here, we directly verified proteolytic activity of HtrA in vitro and identified the HtrA protease in zymograms by mass spectrometry. Overexpressed and purified HtrA exhibited pronounced proteolytic activity, which is inactivated after mutation of Ser205 to alanine in the predicted active center of HtrA. These data demonstrate that H. pylori secretes HtrA as an active protease, which might represent a novel candidate target for therapeutic intervention strategies.  相似文献   

14.
Sequence of the protease of human subgroup E adenovirus type 4   总被引:2,自引:0,他引:2  
A Houde  J M Weber 《Gene》1987,54(1):51-56
A fragment of DNA containing the protease gene and 3' and 5' flanking regions of human adenovirus type 4 (Ad4) has been cloned and sequenced. The gene is located between 59 and 62 map units and codes for a protein of 201 amino acids with a calculated Mr of 22,758. The Ad4 protease has a 72% amino acid homology with the Ad2 protease, the divergence being concentrated in the middle of the molecule. Comparison with other mammalian and bacterial proteases failed to reveal any significant homology and in particular a putative active site. The adenoviral proteases may therefore represent a novel class of enzymes.  相似文献   

15.
Low-molecular-weight urokinase (molecular weight 33100) was separated by analytical and preparative isoelectric focusing into five major subforms with isoelectric points between 8.7 and 9.6. These subforms are very similar in molecular weight, specific activity, amino acid composition and content of amino sugar and their N-terminal sequence constellation is identical. Low-molecular-weight urokinase consists of two polypeptide chains connected by a single disulfide bridge. The N-terminal region of the heavy chain (calculated Mr 30700) exhibits homology within the first 46 residues analyzed, with the known primary structure of other serine proteases. The mini chain (Mr 2426), whose complete sequence was determined, consists of 21 residues which show homology with the primary structure of the C-terminal region of the plasmin heavy chain. Based on sequence data and homology criteria with serine proteases a single-chain urokinase precursor is postulated having a peptide bond constellation between heavy and light chain region compatible with the requirements for serine protease activation.  相似文献   

16.
Molecular cloning and characterization of two rat renal kallikrein genes   总被引:1,自引:0,他引:1  
Y P Chen  J Chao  L Chao 《Biochemistry》1988,27(19):7189-7196
Kallikreins compose a multigene family coding for a subgroup of serine proteases, which are involved in the processing of bioactive peptides. Two rat kallikrein-related genes, RSKG-7 (rat submandibular gland kallikrein gene 7) and RSKG-3, have been cloned and their sequences analyzed. RSKG-7 is approximately 4200 bases in length and consists of five exons and four introns. The 5' end region contains the variant CATAT box and TTTAAA box; the 3' end region contains the polyadenylation signal AATAAA. This gene encodes a putative 28,935-dalton preproenzyme of 261 amino acids (aa). The active enzyme consists of 237 aa and is preceded by a deduced signal peptide of 18 aa and a profragment of 6 aa. RSKG-3 is highly homologous to RSKG-7 in terms of its sequence and structure; it encodes a 28,730-dalton prepropeptide consisting of a signal peptide of 18 aa, a profragment of 6 aa, and an active peptide of 235 aa. Sequence comparisons of RSKG-7, RSKG-3, and other kallikrein-related enzymes reveal the key amino acid residues needed for both serine protease activity (His/Asp/Ser) and kallikrein-like cleavage specificity at basic amino acids. Northern blot analyses using specific oligonucleotide probes demonstrate that, among the 12 tissues studied, RSKG-7 and RSKG-3 are expressed in the rat kidney and submandibular gland. Castration of male rats results in a decrease in submandibular gland RSKG-7 mRNA, which can be restored to the normal level by treatment with thyroxine or testosterone. On the other hand, neither castration nor hormonal manipulation affects RSKG-7 mRNA levels in the kidney.  相似文献   

17.
Trichoderma harzianum parasitizes a large variety of phytopathogenic fungi. Trichoderma harzianum mycoparasitic activity depends on the secretion of complex mixtures of hydrolytic enzymes able to degrade the host cell wall. A gene ( SS10 ) encoding a subtilisin-like protease was cloned from T. harzianum T88, a biocontrol agent effective against soil-borne fungal pathogens. The full-length cDNA was isolated by 5' and 3' rapid amplification of the cDNA ends. The coding region of the gene is 1302 bp long, encoding 433 amino acids of a predicted protein with a molecular mass of 45 kDa and a pI of 6.1. Analysis of the deduced amino acid sequence revealed that this protein had homology to the serine proteases of the subtilisin-like superfamily (subtilases) (EC 3.4.21.) and had a predicted active site made up of the catalytic residues Asp 187, His 218 and Ser 376. Northern experiments demonstrated that SS10 was induced in response to different fungal cell walls. Subtilisin-like protease gene SS10 was expressed in Saccharomyces cerevisiae under control of the GAL1 promoter. The enzyme activity culminates (17.8 U mL−1) 60 h after induction with galactose. The optimal enzyme reaction temperature was 50 °C and the optimal pH was 8. The subtilisin-like protease exerted broad-spectrum antifungal activity against Alternaria alternata, Fusarium oxysporum, Rhizoctonia solani, Sclerotinia sclerotiorum and Cytospora chrysosperma .  相似文献   

18.
K W Jackson  J Tang 《Biochemistry》1982,21(26):6620-6625
The complete amino acid sequence of streptokinase has been determined by automated Edman degradation of its cyanogen bromide and proteolytic fragments. The protein consists of 415 amino acid residues. Sequence microheterogeneity was found at two positions. The NH2-terminal 245 residues of streptokinase are homologous to the sequences of several serine proteases including bovine trypsin and Streptomyces griseus proteases A and B. The sequence alignment suggests that the active-site histidine-57 has changed to a glycine in streptokinase. The other active-site residues, aspartyl-102 and serine-195, are, however, present at the expected positions. Streptokinase also contains internal sequence homology between the NH2-terminal 173 residues and a COOH-terminal 162-residue region between residues 254 and 415. Moderate homology in predicted secondary structures also exists between these two regions. Although streptokinase is not a protease, these observations suggest that it has evolved from a serine protease by gene duplication and fusion. A COOH-terminal region of about 80 residues is apparently deleted from the second half of the duplicated structures. These observations further suggest that the three-dimensional structure of streptokinase likely contains two independently folded domains, each homologous to serine proteases.  相似文献   

19.
绿僵菌分解昆虫外壳蛋白酶MAP-21的纯化与特性   总被引:5,自引:0,他引:5  
以蝉蜕为底物诱导绿僵菌产生分解昆虫外壳蛋白酶 。发酵液经超滤、Ultrogel AcA 54凝胶层析、制备IEF电泳,纯化了一种蛋白酶MAP-21,SDS-PAGE电泳后经银染色呈单带。该酶的Mr为27kD左右,pI为76。它的特异识别氨基酸为Arg,其活性可被PMSF和TLCK抑制,表明其活性中心有Ser和His残基。它还可被胰蛋白酶的典型抑制剂Leupeptin、Antipain及STI等所抑制,而胰凝乳蛋白酶抑制剂TPCK和胰凝乳弹性蛋白酶抑制剂TEI对其活性无影响。专一底物和抑制剂特性试验结果表明MAP-21是类胰蛋白酶。此外,该酶还可被EDTA所抑制,表明金属离子为其活性所必需。另外还研究了MAP-21的最适作用温度和pH,以及温度耐受性等特性。  相似文献   

20.
Two fibrinolytic enzymes (QK-1 and QK-2) purified from the supernatant of Bacillus subtilis QK02 culture broth had molecular masses of 42,000 Da and 28,000 Da, respectively. The first 20 amino acids of the N-terminal sequence are AQSVPYGISQ IKAPALHSQG. The deduced protein sequence and its restriction enzyme map of the enzyme QK-2 are different from those of other proteases. The enzyme QK-2 digested not only fibrin but also a subtilisin substrate, and PMSF inhibited its fibrinolytic and amidolytic activities completely; while QK-1 hydrolyzed fibrin and a plasmin substrate, and PMSF as well as aprotinin inhibited its fibrinolytic activity. These results indicated QK-1 was a plasmin-like serine protease and QK-2 a subtilisin family serine protease. Therefore, these enzymes were designated subtilisin QK. The sequence of a DNA fragment encoding subtilisin QK contained an open reading frame of 1149 base pairs encoding 106 amino acids for signal peptide and 257 amino acids for subtilisin QK, which is highly similar with that of a fibrinolytic enzyme, subtilisin NAT (identities 96.8%). Asp32, His64 and Ser221 in the amino acid sequence deduced from the QK gene are identical to the active site of nattokinase (NK) produced by B. subtilis natto.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号