首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Antisense BAG-1 sensitizes HeLa cells to apoptosis by multiple pathways   总被引:11,自引:0,他引:11  
To study the mechanism of action of BAG-1 in drug-induced apoptosis, we constructed an antisense BAG-1 vector and established a stably transfected cell line from BAG-1-over-expressing HeLa cells. Reduced BAG-1 protein was confirmed by Western blot. Treatment of the antisense BAG-1-transfected cells with the anti-cancer drugs staurosporine, paclitaxel, all-trans retinoic acid (ATRA), and N-(4-hydroxyphenyl) retinamide (4-HPR) resulted in significantly enhanced apoptosis and reduced cell viability relative to vector-transfected cells. While the expression of p53 was increased, the level of Bcl-2 and Bax was decreased. Cells underexpressing BAG-1 had reduced cytosolic cytochrome c level. Treatment with staurosporine and paclitaxel resulted in increased cytochrome c release from mitochondria, whereas there was no change induced by treatment with ATRA and 4-HPR. Our experiments suggest that BAG-1 inhibits anti-cancer drug-induced apoptosis through apoptosis regulation pathways that may involve the mitochondrial Bcl-2/Bax ratio, p53, and differential anti-cancer drug-mediated cytochrome c release.  相似文献   

3.
4.
5.
Kutuk O  Basaga H 《Free radical research》2003,37(12):1267-1276
The classical pathway of nuclear factor-kappa B (NF-kappaB) activation by several inducers mainly involves the phosphorylation of IkappaBalpha by a signalsome complex composed of IkappaBalpha kinases (IKKalpha and IKKbeta). However, in some cell types hydrogen peroxide (H2O2) has been shown to activate an alternative pathway that does not involve the classical signalsome activation process. In this study, we demonstrate that H2O2 induced NF-kappaB activation in HeLa cells through phosphorylation and degradation of IkappaB proteins as shown by immunblot analysis. Our studies reveal that a commonly used non-steroid anti-inflammatory drug, acetylsalicylic acid (aspirin) prevents H2O2-induced NF-kappaB activation in a dose-dependent manner through inhibition of phosphorylation and degradation of IkappaBalpha and IkappaBbeta. Differential staining and DNA fragmentation analysis also show that aspirin preloading of HeLa cells also prevents H2O2-induced apoptosis in a dose-dependent manner with maximum efficiency at 10 mM concentration. Additionally, aspirin effectively prevents caspase-3 and caspase-9 (cysteinyl aspartate-specific proteases) activation by H2O2. These results suggest that NF-kappaB activation is involved in H2O2-induced apoptosis and aspirin may inhibit both processes simultaneously.  相似文献   

6.
Hypertonicity-induced cation channels (HICCs) are an effective mechanism of regulatory volume increase (RVI), which is a restoration process of cell volume after osmotic cell shrinkage, in HeLa cells. Since a reduction of cell size is a hallmark of programmed cell death, we tested whether a blockage of HICCs sensitizes HeLa cells to shrinkage-induced apoptosis by using proliferation assays, apoptosis assays, and patch-clamp recordings. Under control conditions, increasing osmolality up to 600 mosmol/kg-H2O had no detectable effect on either cell proliferation or apoptosis. With HICCs blocked by flufenamate and Gd3+, however, a significant reduction of proliferation and a stimulation of apoptosis were observed. Both effects exhibited virtually identical sensitivity profiles to osmotic stress as well as to flufenamate and Gd3+. Moreover, the observed concentration dependency of flufenamate and Gd3+ on proliferation and apoptosis was in excellent accordance with that on HICC inhibition. These results suggest that persistent cell shrinkage may function as a specific signal in the induction of apoptosis. In addition, they provide further evidence for the interplay of proliferation vs. apoptosis and the actual role that mechanisms of cell volume regulation do play in these processes.  相似文献   

7.
8.
Jang SI  Kim YJ  Kim HJ  Lee JC  Kim HY  Kim YC  Yun YG  Yu HH  You YO 《Life sciences》2006,78(25):2937-2943
Scoparone is a major component of the shoot of Artemisia capillaris (Compositae), which has been used for the treatment of hepatitis and biliary tract infection in oriental countries. In this study, the effects of scoparone on the expression of interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1) and activation of nuclear factor-kappaB (NF-kappaB) were examined in U937 human monocytes activated with phorbol 12-myristate 13-acetate (PMA). Scoparone (5-100 microM) had no cytotoxic effect in unstimulated cells and concentration-dependently reversed PMA-induced toxicity in the cells stimulated with PMA. Scoparone concentration-dependently reduced the release of IL-8 and MCP-1 protein and expression of IL-8 and MCP-1 mRNA levels induced by PMA. Moreover, scoparone inhibited the levels of NF-kappaB-DNA complex and NF-kappaB activity in the cells stimulated with PMA in a concentration-dependent manner. Scoparone dose-dependently inhibited the phosphorylation of IkappaBalpha and nuclear translocation of NF-kappaB1 p50, RelA p65, and c-Rel p75. These data suggest that scoparone may inhibit the expression of chemokines (IL-8 and MCP-1) in PMA-stimulated U937 cells and a potential mechanism of scoparone may be inhibition of NF-kappaB activation, which is linked to inhibition of NF-kappaB subunits (NF-kappaB1 p50, RelA p65, and c-Rel p75) translocation via suppression of IkappaBalpha phosphorylation.  相似文献   

9.
Overexpression of VDUP1 mRNA sensitizes HeLa cells to paraquat   总被引:2,自引:0,他引:2  
5-Bromodeoxyuridine (BrdU) induces or suppresses senescence-associated genes in any types of mammalian cells. From a cDNA library upregulated by BrdU in HeLa cells, we identified the gene encoding VDUP1 as a senescence-associated gene in normal human fibroblasts. To address a role of VDUP1 in senescence, we established HeLa cell clones, V7 and V27, which express its mRNA in a doxycycline-dependent manner. Although their growth in liquid culture was moderately retarded, colony formation on semi-solid medium was strongly inhibited by overexpression of the mRNA. We also examined susceptibility of these clones to various reagents. Consequently, colony formation in liquid culture was strongly inhibited by paraquat in these clones. Their superoxide dismutase activity was normal.  相似文献   

10.
11.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to induce apoptosis of cancer cells. Sensitization of cancer cells to TRAIL, particularly TRAIL-resistant cancer cells, could improve the effectiveness of TRAIL as an anticancer agent. The adenovirus type 5 E1A that associates with anticancer activities including sensitization to apoptosis induced by tumor necrosis factor is currently being tested in clinical trials. In this study, we investigated the sensitivity to TRAIL in the E1A transfectants ip1-E1A2 and 231-E1A cells and the parental TRAIL-resistant human ovarian cancer SKOV3.ip1 and TRAIL-sensitive human breast cancer MDA-MB-231 cells. The results indicated that the percentage of TRAIL-induced apoptotic cells was significantly higher in the E1A transfectants of both cell lines than it was in the parental cell lines. To further investigate the cellular mechanism of this effect, we found that E1A enhances TRAIL-induced activation of caspase-8, caspase-9, and caspase-3. Inhibition of caspase-3 activity by a specific inhibitor, Z-DEVD-fmk, abolished TRAIL-induced apoptosis. In addition, E1A enhanced TRAIL expression in ip1-E1A2 cells, but not in 231-E1A cells, and the anti-TRAIL neutralizing antibody N2B2 blocked the E1A-mediated bystander effect in vitro. Taken together, these results suggest that E1A sensitizes both TRAIL-sensitive and TRAIL-resistant cancer cells to TRAIL-induced apoptosis, which occurs through the enhancement of caspase activation; activation of caspase-3 is required for TRAIL-induced apoptosis; and E1A-induced TRAIL expression is involved in the E1A-mediated bystander effect. Combination of E1A and TRAIL could be an effective treatment for cancer.  相似文献   

12.
Garat C  Arend WP 《Cytokine》2003,23(1-2):31-40
Interleukin-1 (IL-1) plays a pivotal role in the pathogenesis of inflammatory bowel disease (IBD). IL-1 action is regulated in part by its naturally occurring inhibitor, the IL-1 receptor antagonist (IL-1Ra). Four splice variants of IL-1Ra gene product have been described, one secreted (sIL-1Ra) and three intracellular (icIL-1Ra1, 2, 3). Although sIL-1Ra and icIL-1Ra1 bind to type I IL-1 receptor with equal affinity, icIL-1Ra1 may carry out unique functions inside cells. The goal of this study was to determine the role of icIL-1Ra1 in regulation of cytokine-induced IL-6 and IL-8 production in Caco-2 intestinal epithelial cells. icIL-1Ra1 inhibited IL-1-induced IL-6 and IL-8 production. IL-1 activated all three mitogen-activated protein (MAP) kinase family members: p38 MAP kinase, extracellular-regulated kinases (ERK), and c-Jun amino-terminal kinases (JNK). Specific inhibitors of each MAP kinase pathway decreased IL-1-induced IL-6 and IL-8 production. Overexpression of icIL-1Ra1 inhibited p38 MAP kinase phosphorylation, but had no effect on ERK and JNK phosphorylation. In addition, icIL-1Ra1 inhibited nuclear translocation of NF-kappaB after IL-1 stimulation. In conclusion, these data indicate that icIL-1Ra1, acting in the cytoplasm of Caco-2 cells, decreased IL-1-induced IL-6 and IL-8 production. This intracellular anti-inflammatory activity of icIL-1Ra1 was mediated through inhibition of p38 MAP kinase and NF-kappaB signal transduction pathways.  相似文献   

13.
14.
Allergic diseases, including asthma, represent a major threat to human health. Over the three last decades, their incidence has risen in western countries. Aspirin treatment has been shown to improve allergic diseases, especially asthma, and the decreased use of aspirin has been hypothesized to contribute to the increase in childhood asthma. Because salicylate compounds suppress a number of enzymatic activities, and signaling through IL-4R participates in the development of allergic responses, we tested the effect of salicylates on IL-4 signal transduction. We found that treatment of cell lines and primary cells with aspirin and salicylates, but not acetaminophen, inhibited the activation of STAT6 by IL-4 and IL-13. This effect correlated with the inhibition of IL-4-induced CD23 expression. Although salicylates inhibited the in vivo activation of Janus kinases, their kinase activity was not affected in vitro by salicylates, suggesting that other kinases were involved in IL-4-induced STAT6 activation. Furthermore, we found that an Src kinase was involved in STAT6 activation because 1) Src kinase activity was induced by IL-4, 2) Src kinase activity, but not Janus kinase, was inhibited by salicylates in vitro, 3) cells expressing viral Src had constitutive STAT6 phosphorylation, and 4) cells lacking Src showed low STAT6 phosphorylation in response to IL-4. Because STAT6 activation by IL-4 and IL-13 participates in the development of allergic diseases, our results provide a mechanism to explain the beneficial effects of aspirin and salicylate treatment of these diseases.  相似文献   

15.
Adipocyte apoptosis is an important regulator of adipocyte number in fat depots. We have previously shown that an inhibition of protein synthesis sensitizes human adipocytes for apoptosis. In vivo, dramatic changes in the fat cell's protein expression should be anticipated under special conditions such as calorie restriction. Here, we studied the underlying mechanism by which human preadipocytes and adipocytes are sensitized for death receptor induced apoptosis in vitro.The protein synthesis blocker cycloheximide (CHX) sensitized human fat cells for CD95-induced apoptosis in a caspase-dependent manner. Treatment with CHX differentially changed expression of pro- and anti-apoptotic proteins. Most noticeably, FLICE-like inhibitory protein (FLIP) expression rapidly decreased during CHX treatment. Reduction of FLIP levels resulted in undetectable amounts of FLIP at the CD95 death-inducing signaling complex (DISC) upon CD95 stimulation, thereby enhancing recruitment and activation at caspase-8. Down-regulation of FLIP by shRNA sensitized preadipocytes for CD95-induced apoptosis. In mice, adipose tissue mRNA levels of Flip were down-regulated upon fasting.In conclusion, we identify FLIP as an important regulator of apoptosis sensitivity in fat cells. Modulating adipocyte homeostasis by apoptosis might provide a new therapeutic concept to get rid of excess adipose tissue, and FLIP might be a possible target molecule.  相似文献   

16.
17.
Bacterial lipopolysaccharide (LPS) initiates multiple signaling events in vascular endothelial cells that can result in activation and/or cell death. LPS-induced activation of endothelial cells elicits a wide array of vascular endothelial responses, many of which are dependent on NF-kappaB activation. Several of the signaling molecules that mediate LPS-induced NF-kappaB activation, including Tlr-4, MyD88, and IRAK-1, have been similarly reported to mediate LPS pro-apoptotic signaling. Recently, a new signaling molecule, TIRAP, has been identified that mediates LPS-induced NF-kappaB signaling in monocytes and macrophages. Using a TIRAP dominant negative construct, we have identified a role for TIRAP in mediating LPS-induced NF-kappaB activation and apoptosis in human endothelial cells. These data identify TIRAP as a dual functioning signaling molecule and suggest the presence of a MyD88-independent LPS signaling pathway in human endothelial cells.  相似文献   

18.
19.
20.
The maintenance of intestinal mucosal integrity depends on a balance between cell renewal and cell death, including apoptosis. The natural polyamines, putrescine, spermidine, and spermine, are essential for mucosal growth, and decreasing polyamine levels cause G(1) phase growth arrest in intestinal epithelial (IEC-6) cells. The present study was done to determine changes in susceptibility of IEC-6 cells to apoptosis after depletion of cellular polyamines and to further elucidate the role of nuclear factor-kappaB (NF-kappaB) in this process. Although depletion of polyamines by alpha-difluoromethylornithine (DFMO) did not directly induce apoptosis, the susceptibility of polyamine-deficient cells to staurosporine (STS)-induced apoptosis increased significantly as measured by changes in morphological features and internucleosomal DNA fragmentation. In contrast, polyamine depletion by DFMO promoted resistance to apoptotic cell death induced by the combination of tumor necrosis factor-alpha (TNF-alpha) and cycloheximide. Depletion of cellular polyamines also increased the basal level of NF-kappaB proteins, induced NF-kappaB nuclear translocation, and activated the sequence-specific DNA binding activity. Inhibition of NF-kappaB binding activity by sulfasalazine or MG-132 not only prevented the increased susceptibility to STS-induced apoptosis but also blocked the resistance to cell death induced by TNF-alpha in combination with cycloheximide in polyamine-deficient cells. These results indicate that 1) polyamine depletion sensitizes intestinal epithelial cells to STS-induced apoptosis but promotes the resistance to TNF-alpha-induced cell death, 2) polyamine depletion induces NF-kappaB activation, and 3) disruption of NF-kappaB function is associated with altered susceptibility to apoptosis induced by STS or TNF-alpha. These findings suggest that increased NF-kappaB activity after polyamine depletion has a proapoptotic or antiapoptotic effect on intestinal epithelial cells determined by the nature of the death stimulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号