首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The signal transduction mechanisms defining the role of cyclic nucleotides in the regulation of pulmonary vascular tone is currently an area of great interest. Normally, signaling mechanisms that elevate cAMP and guanosine-3',5'-cyclic monophosphate (cGMP) maintain the pulmonary vasculature in a relaxed state. Modulation of the large-conductance, calcium- and voltage-activated potassium (BK(Ca)) channel is important in the regulation of pulmonary arterial pressure, and inhibition (closing) of the BK(Ca) channel has been implicated in the development of pulmonary hypertension. Accordingly, studies were done to determine the effect of cAMP-elevating agents on BK(Ca) channel activity using patch-clamp studies in pulmonary arterial smooth muscle cells (PASMC) of the fawn-hooded rat (FHR), a recognized animal model of pulmonary hypertension. Forskolin (10 micro M), a stimulator of adenylate cyclase and an activator of cAMP-dependent protein kinase (PKA), and 8-4-chlorophenylthio (CPT)-cAMP (100 micro M), a membrane-permeable derivative of cAMP, opened BK(Ca) channels in single FHR PASMC. Treatment of FHR PASMC with 300 nM KT5823, a selective inhibitor of cGMP-dependent protein kinase (PKG) activity inhibited the effect of both forskolin and CPT-cAMP. In contrast, blocking PKA activation with 300 nM KT5720 had no effect on forskolin or CPT-cAMP-stimulated BK(Ca) channel activity. These results indicate that cAMP-dependent vasodilators activate BK(Ca) channels in PASMC of FHR via PKG-dependent and PKA-independent signaling pathways, which suggests cross-activation between cyclic nucleotide-dependent protein kinases in pulmonary arterial smooth muscle and therefore, a unique signaling pathway for cAMP-induced pulmonary vasodilation.  相似文献   

3.
The possibility that differences in beta-adrenergic sensitivity among canine trachealis muscles contracted with different contractile agonists are related to differences in the receptor-occupancy characteristics of the contractile agonists was investigated. Relaxation to isoproterenol was compared in muscles contracted with the muscarinic agonists McN-A-343 and acetylcholine (ACh). The apparent dissociation constant (pKB) values for the M1-antagonist, pirenzepine, against ACh (6.96 +/- 0.18) and McN-A-343 (6.84 +/- 0.08) were similar. The pKB values for the M3-antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) against ACh (8.76 +/- 0.13) and McN-A-343 (8.71 +/- 0.10) were also similar, suggesting that these agonists were activating the same subtype of muscarinic receptor, probably M3. However, the contractile response to ACh was associated with a greater receptor reserve than that for McN-A-343. Isoproterenol relaxed muscles contracted with McN-A-343 much more effectively than those contracted with an equieffective concentration of ACh. The results suggest that the relative resistance of ACh-induced contractions to relaxation by isoproterenol may not be an inherent quality of muscarinic receptor stimulation. The large receptor reserve available to ACh may act to buffer the contractile response from the inhibitory effects of beta-adrenergic stimulation. Alternatively, ACh may be able to initiate subcellular mechanisms that are unavailable to agonists of lower efficacy.  相似文献   

4.
Myosin light chain kinase phosphorylation in tracheal smooth muscle   总被引:6,自引:0,他引:6  
Purified myosin light chain kinase from smooth muscle is phosphorylated by cyclic AMP-dependent protein kinase, protein kinase C, and the multifunctional calmodulin-dependent protein kinase II. Because phosphorylation in a specific site (site A) by any one of these kinases desensitizes myosin light chain kinase to activation by Ca2+/calmodulin, kinase phosphorylation could play an important role in regulating smooth muscle contractility. This possibility was investigated in 32P-labeled bovine tracheal smooth muscle. Treatment of tissues with carbachol, KCl, isoproterenol, or phorbol 12,13-dibutyrate increased the extent of kinase phosphorylation. Six primary phosphopeptides (A-F) of myosin light chain kinase were identified. Site A was phosphorylated to an appreciable extent only with carbachol or KCl, agents which contract tracheal smooth muscle. The extent of site A phosphorylation correlated to increases in the concentration of Ca2+/calmodulin required for activation. These results show that cyclic AMP-dependent protein kinase and protein kinase C do not affect smooth muscle contractility by phosphorylating site A in myosin light chain kinase. It is proposed that phosphorylation of myosin light chain kinase in site A in contracting tracheal smooth muscle may play a role in the reported desensitization of contractile elements to activation by Ca2+.  相似文献   

5.
Methacholine (3 μM) and sodium nitroprusside (300 μM) increased cGMP-dependent protein kinase activity ratios (activity without cGMP divided by activity with 2 μM cGMP) in canine tracheal smooth muscle from a control value of 0.47 to 0.55 and 0.71, respectively. This correlates with 3-fold and 6-fold increases in cGMP concentrations in response to methacholine and sodium nitroprusside, respectively. Addition of charcoal to the homogenizing buffer prior to homogenization had no significant effect on the cGMP-dependent protein kinase response to either agent, suggesting that activation of the enzyme was not occurring as a result of cGMP release during homogenization. In order to limit cGMP dissociation from cGMP-dependent protein kinase during the assay procedure, it was necessary to perform assays at a reduced temperature (0°C) and with an abbreviated incubation time (2.5 min). When assayed at 30°C, activated cGMP-dependent protein kinase rapidly lost activity. This inactivation occurred whether the enzyme had been activated exogenously, by exposing a supernatant fraction of canine trachealis to 0.1 μM cGMP, or endogenously, by treating intact canine trachealis with methacholine or sodium nitroprusside. By assaying instead at 0°C, the inactivation of cGMP-dependent protein kinase was minimized. Therefore, the activity ratio obtained by this new modified assay provided an estimate of the endogenous activation state of cGMP-dependent protein kinase. The data indicate that cGMP responses in canine trachealis to both methacholine and sodium nitroprusside are functionally linked to activation of cGMP-dependent protein kinase and are consistent with the hypothesis that cGMP, via cGMP-dependent protein kinase activation, regulates smooth muscle contractility.  相似文献   

6.
7.
Methacholine (3 microM) and sodium nitroprusside (300 microM) increased cGMP-dependent protein kinase activity ratios (activity without cGMP divided by activity with 2 microM cGMP) in canine tracheal smooth muscle from a control value of 0.47 to 0.55 and 0.71, respectively. This correlates with 3-fold and 6-fold increases in cGMP concentrations in response to methacholine and sodium nitroprusside, respectively. Addition of charcoal to the homogenizing buffer prior to homogenization had no significant effect on the cGMP-dependent protein kinase response to either agent, suggesting that activation of the enzyme was not occurring as a result of cGMP release during homogenization. In order to limit cGMP dissociation from cGMP-dependent protein kinase during the assay procedure, it was necessary to perform assays at a reduced temperature (0 degree C) and with an abbreviated incubation time (2.5 min). When assayed at 30 degrees C, activated cGMP-dependent protein kinase rapidly lost activity. This inactivation occurred whether the enzyme had been activated exogenously, by exposing a supernatant fraction of canine trachealis to 0.1 microM cGMP, or endogenously, by treating intact canine trachealis with methacholine or sodium nitroprusside. By assaying instead at 0 degree C, the inactivation of cGMP-dependent protein kinase was minimized. Therefore, the activity ratio obtained by this new modified assay provided an estimate of the endogenous activation state of cGMP-dependent protein kinase. The data indicate that cGMP responses in canine trachealis to both methacholine and sodium nitroprusside are functionally linked to activation of cGMP-dependent protein kinase and are consistent with the hypothesis that cGMP, via cGMP-dependent protein kinase activation, regulates smooth muscle contractility.  相似文献   

8.
The changes in protein phosphorylation associated with bovine tracheal smooth muscle contraction were studied by labeling intact muscle strips with [32P]PO4(3-) and analyzing the phosphoproteins by two-dimensional gel electrophoresis. Among 20 to 30 phosphoproteins resolvable with the two-dimensional electrophoresis system, the phosphorylation of 12 proteins was reproducibly affected by treatment with carbachol, in a time-dependent manner. Five of these proteins have been identified as 20-kDa myosin light chain, caldesmon, synemin, and two isoelectric variants of desmin. The other 7 are low molecular weight (Mr less than 40,000) cytosolic proteins. One cytosolic protein and myosin light chain are quickly but transiently phosphorylated by carbachol, the peak of myosin light chain phosphorylation being at about 1 min after agonist addition. In contrast, both variants of desmin, synemin, caldesmon, and 5 cytosolic proteins are phosphorylated at varying rates and remain phosphorylated for the duration of carbachol action. These "late" phosphorylation changes occur simultaneously with the dephosphorylation of one cytosolic protein. These carbachol-induced phosphorylation changes, like the contractile response, appear to be calcium-dependent. The addition of 12-deoxyphorbol 13-isobutyrate, a protein kinase C activator, causes a dose-dependent, sustained contraction of tracheal smooth muscle which develops more slowly than that induced by carbachol. This contractile response is associated with the same protein phosphorylation changes as those observed after prolonged carbachol treatment. In contrast, forskolin, an adenylate cyclase activator and a potent smooth muscle relaxant, induces the phosphorylation protein 3 and one variant of desmin. These observations strongly suggest that different phosphoproteins may be mediators of tension development and tension maintenance in agonist-induced contraction of tracheal smooth muscle.  相似文献   

9.
Myosin B exhibiting Ca2+ sensitivity in superprecipitation and Mg-ATPase [EC 3.6.1.3] activity was extracted from tracheal smooth muscle. Repeated washing with 2mM KCl and 1 mM NaHCO3 resulted in the loss of these activities. However, on addition of native tropomyosin, the myosin B regained its original properties. Native tropomyosin is the regulatory system in this smooth muscle.  相似文献   

10.
11.
We investigatedthe role of the integrin-associated proteins focal adhesion kinase(FAK) and paxillin as mediators of mechanosensitive signal transductionin tracheal smooth muscle. In muscle strips contracted isometricallywith ACh, we observed higher levels of tyrosine phosphorylation of FAKand paxillin at the optimal muscle length(Lo) than atshorter muscle lengths of 0.5 or 0.75 Lo. Paxillinphosphorylation was also length sensitive in muscles activated byK+ depolarization and adjustedrapidly to changes in muscle length imposed after contractileactivation by either ACh or K+depolarization. Ca2+ depletion didnot affect the length sensitivity of paxillin and FAK phosphorylationin muscles activated with ACh, indicating that the mechanotransductionprocess can be mediated by aCa2+-independent pathway. SinceCa2+-depleted muscles do notgenerate significant active tension, this suggests that themechanotransduction mechanism is sensitive to muscle length rather thantension. We conclude that FAK and paxillin participate in anintegrin-mediated mechanotransduction process in tracheal smoothmuscle. We propose that this pathway may initiate alterations in smoothmuscle cell structure and contractility via the remodeling of actinfilaments and/or via the mechanosensitive regulation ofsignaling molecules involved in contractile protein activation.

  相似文献   

12.
The contractile stimulation of smooth muscle tissues stimulates the recruitment of proteins to membrane adhesion complexes and the initiation of actin polymerization. We hypothesized that integrin-linked kinase (ILK), a beta-integrin-binding scaffolding protein and serine/threonine kinase, and its binding proteins, PINCH, and alpha-parvin may be recruited to membrane adhesion sites during contractile stimulation of tracheal smooth muscle to mediate cytoskeletal processes required for tension development. Immunoprecipitation analysis indicted that ILK, PINCH, and alpha-parvin form a stable cytosolic complex and that the ILK.PINCH.alpha-parvin complex is recruited to integrin adhesion complexes in response to acetylcholine (ACh) stimulation where it associates with paxillin and vinculin. Green fluorescent protein (GFP)-ILK and GFP-PINCH were expressed in tracheal muscle tissues and both endogenous and recombinant ILK and PINCH were recruited to the membrane in response to ACh stimulation. The N-terminal LIM1 domain of PINCH binds to ILK and is required for the targeting of the ILK-PINCH complex to focal adhesion sites in fibroblasts during cell adhesion. We expressed the GFP-PINCH LIM1-2 fragment, consisting only of LIM1-2 domains, in tracheal smooth muscle tissues to competitively inhibit the interaction of ILK with PINCH. The PINCH LIM1-2 fragment inhibited the recruitment of endogenous ILK and PINCH to integrin adhesion sites and prevented their association of ILK with beta-integrins, paxillin, and vinculin. The PINCH LIM1-2 fragment also inhibited tension development, actin polymerization, and activation of the actin nucleation initiator, N-WASp. We conclude that the recruitment of the ILK.PINCH.alpha-parvin complex to membrane adhesion complexes is required to initiate cytoskeletal processes required for tension development in smooth muscle.  相似文献   

13.
Endothelin-1, a potent vasoconstrictor peptide produces concentration dependent contractions in lamb tracheal smooth muscle. These contractions are not inhibited by low doses (up to 20 μM) of trifluoroperazine and W-7, the calmodulin/myosin light chain kinase (MLCK) inhibitors. At higher concentrations (200 μM), a delayed and poor reversal of isometric tensions results. These relaxations are coupled with a partial dephosphorylation of regulatory myosin light chain (MLC). Preincubation of fiber strips in MLCK inhibitors (200 μM) results in a delayed and attenuated contractile response but without a dephosphorylation of MLC. H-7, a putative protein kinase C antagonist (25–100 μM) abolishes endothelin-1 induced contractile effects rapidly (50% relaxation within 1–3 min). Moreover, such relaxations are accompanied by complete dephosphorylation of MLC. Phorbol 12, 13-dibutyrate, an exogenous activator of protein kinase C potentiates the endothelin induced contractions. Inactive phorbol ester, 4α-phorbol ester does not elicit any contractile response in the muscle. The down regulation of protein kinase C, on the other hand suppresses such potentiated contractile responses. These results suggest that endothelin-1 induced contractile tensions in tracheal smooth muscle are mediated by a mechanism that involves an activation of enzyme protein kinase C.  相似文献   

14.
Smooth muscle contraction is initiated by a rise in intracellular calcium, leading to activation of smooth muscle myosin light chain kinase (MLCK) via calcium/calmodulin (CaM). Activated MLCK then phosphorylates the regulatory myosin light chains, triggering cross-bridge cycling and contraction. Here, we show that MLCK is a substrate of AMP-activated protein kinase (AMPK). The phosphorylation site in chicken MLCK was identified by mass spectrometry to be located in the CaM-binding domain at Ser(815). Phosphorylation by AMPK desensitized MLCK by increasing the concentration of CaM required for half-maximal activation. In primary cultures of rat aortic smooth muscle cells, vasoconstrictors activated AMPK in a calcium-dependent manner via CaM-dependent protein kinase kinase-beta, a known upstream kinase of AMPK. Indeed, vasoconstrictor-induced AMPK activation was abrogated by the STO-609 CaM-dependent protein kinase kinase-beta inhibitor. Myosin light chain phosphorylation was increased under these conditions, suggesting that contraction would be potentiated by ablation of AMPK. Indeed, in aortic rings from mice in which alpha1, the major catalytic subunit isoform in arterial smooth muscle, had been deleted, KCl- or phenylephrine-induced contraction was increased. The findings suggest that AMPK attenuates contraction by phosphorylating and inactivating MLCK. This might contribute to reduced ATP turnover in the tonic phase of smooth muscle contraction.  相似文献   

15.
Radiation exposure increases vascular responsiveness, and this change involves endothelial damage, as well as direct effects on vascular smooth muscle. In this study, we tested the hypothesis that myofilament Ca(2+) sensitivity in vascular smooth muscle is increased from single whole body gamma irradiation (6 Gy). We measured contractile responses from intact and permeabilized rat thoracic aortic rings combined with cytosolic Ca(2+) ([Ca(2+)](i)) measurements. The sensitivity to KCl and phenylephrine increased significantly in tissues from animals on the 9th and 30th days postirradiation compared with control. Irradiation also significantly increased Ca(2+) sensitivity in beta-escin permeabilized smooth muscle on the 9th and 30th days postirradiation. Inhibitors of protein kinase C, chelerythrine, and staurosporine, had no effect on the pCa-tension curves in control permeabilized tissues but significantly decreased Ca(2+) sensitivity in permeabilized tissues on the 9th and 30th days postirradiation. Phorbol dibutyrate (PDBu, 10(-7) M) increased Ca(2+) sensitivity in control skinned smooth muscle but was without effect in irradiated vascular rings. Simultaneous measurement of contractile force and [Ca(2+)](i) showed that myofilament Ca(2+) sensitivity defined as the ratio of force change to [Ca(2+)](i) significantly increased following gamma-irradiation. PDBu (10(-6) M) stimulation of intact aorta produced a sustained contraction, while the increase in [Ca(2+)](i) was transient. In irradiated tissues, PDBu-induced contractions were greater than those seen in control tissues but there was no elevation in [Ca(2+)](i). Taken together, these data strongly support the hypothesis that irradiation increases the sensitivity of vascular smooth muscle myofilaments to Ca(2+) and this effect is dependent on activation of protein kinase C.  相似文献   

16.
The cGMP-dependent protein kinase (PKG) is the main mediator of nitric oxide-induced relaxation of smooth muscle. Although this pathway is well established, the cellular action of PKG, nitric oxide, and cGMP is complex and not fully understood. A cross-talk between the cGMP-PKG and other pathways (e.g. cAMP-protein kinase A) seems to exist. We have explored cGMP- and cAMP-dependent relaxation of smooth muscle using PKG-deficient mice (cGKI-/-). In intact ileum strips of wild type mice (cGKI+/+), 8-Br-cGMP inhibited the sustained phase of carbachol contractions by approximately 80%. The initial peak was less inhibited (approximately 30%). This relaxation was associated with a reduction in intracellular [Ca2+] and decreased Ca2+ sensitivity. Contractions of cGKI-/- ileum were not influenced by 8-Br-cGMP. EC50 for 8-Br-cGMP for PKG was estimated to be 10 nm. PKG-independent relaxation by 8-Br-cGMP had an EC50 of 10 microm. Relaxation by cAMP (approximately 50% at 100 microm), Ca2+ sensitivity of force, and force potentiation by GTPgammaS were similar in cGKI+/+ and cGKI-/- tissues. The results show that PKG is the main target for cGMP-induced relaxation in intestinal smooth muscle. cGMP desensitize the contractile system to Ca2+ via PKG. PKG-independent pathways are activated at 1000-fold higher cGMP concentrations. Relaxation by cAMP can occur independently of PKG. Long term deficiency of PKG does not lead to an apparent up-regulation of the cAMP-dependent pathways or changes in Ca2+ sensitivity.  相似文献   

17.
18.
19.
To localize activated protein kinase C (PKC) in smooth muscle cells, an antibody directed to the catalytic site of the enzyme was used to assess PKC distribution by immunofluorescence techniques in gastric smooth muscle cells isolated from Bufo marinus. An antibody to vinculin was used to delineate the cell membrane. High-resolution three-dimensional images of immunofluorescence were obtained from a series of images collected through focus with a digital imaging microscope. Cells were untreated or treated with agents that increase PKC activity (10 microM carbachol for 1 min, 1 microM phorbol 12-myristate 13-acetate (PMA) for 10 min), or have no effect on PKC activity (1 micrometer 4-alpha phorbol, 12,13-didecanoate (4-alpha PMA)). In unstimulated cells, activated PKC and vinculin were located and organized at the cell surface. Cell cytosol labeling for activated PKC was sparse and diffuse and was absent for vinculin. After treatment with carbachol, which stimulates contraction and PKC activity, in addition to the membrane localization, the activated PKC exhibited a pronounced cytosolic fibrillar distribution and an increased total fluorescence intensity relative to vinculin. The distributions of activated PKC observed after PMA but not 4-alpha PMA were similar to those observed with carbachol. Our results indicate that in resting cells there is a pool of activated PKC near the cell membrane, and that after stimulation activated PKC is no longer membrane-confined, but is present throughout the cytosol. Active PKC appears to associate with contractile filaments, supporting a possible role in modulation of contraction.  相似文献   

20.
Both hypercapnia and tracheal irritation are known to constrict the airways in animals. To see whether similar responses occur in humans, we investigated tracheal smooth muscle (TSM) responses to hypercapnia and tracheal irritation with water in 14 paralyzed and anesthetized humans. TSM tone was monitored by measuring the pressure in the saline-filled cuff of the endotracheal tube. Although, tracheal irritation caused TSM constriction in 10 of 14 patients, 4 patients showed no TSM response. Administration of intravenous atropine attenuated the TSM constriction response. Hypercapnia did not cause any change in TSM tone in any of the 14 patients. These results indicate that in paralyzed and anesthetized humans, there exist interindividual differences in the TSM responses to tracheal irritation and that hypercapnia cannot be an effective stimulus for the TSM constriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号