首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study shows that resealing of opened tight junctions (TJs) is impaired by interaction with oligopeptides homologous to the external domain of chick occludin. The experiments were carried out with confluent A6 cell monolayers grown on collagen supports under stable transepithelial electrical resistance (TER). The monolayers were bathed on the apical side with a 75 mm KCl solution and on the basolateral side by NaCl-Ringer's solution. TJ opening was induced by basolateral Ca2+ removal and was characterized by a marked drop of TER. The reintroduction of Ca2+ triggered junction resealing as indicated by an elevation of TER to control values. Custom-made peptides SNYYGSGLSY (corresponding to the residues 100 to 109) and SNYYGSGLS (residues 100 to 108), homologous to segments of the first external loop of chick occludin molecule, impaired junction resealing when the peptides were included in the apical bathing fluid (concentrations in the range of 0.5 to 1.5 mg/ml). Peptide removal from the apical solution usually triggered a slow recovery of TER, indicating a slow recovery of the TJ seal. Changes in localization of ZO-1, a cytoplasmic protein that underlies the membrane at the TJs, were evaluated immunocytochemically following Ca2+ removal and reintroduction. The presence or absence of the oligopeptides showed no influence on the pattern of change of ZO-1 localization. These observations support the hypothesis that the TJ seal results from the interaction of specific homologous segments of occludin on the surface of adjacent cells. Additionally, our results show that small peptides homologous to segments of the occludin first external loop can be used as specific reagents to manipulate the permeability of tight junctions. Received: 4 December 1998/Revised: 22 January 1999  相似文献   

2.
Elevation in intracellular Ca2+ acting via protein kinase C (PKC) is shown to regulate tight junction resistance in T84 cells, a human colon cancer line and a model Cl secretory epithelial cell. The Ca2+ ionophore A23187, which was used to increase the intracellular Ca2+ concentration, caused a decrease in tight junction resistance in a concentration- and time-dependent manner. Dual Na+/mannitol serosal-to-mucosal flux analysis performed across the T84 monolayers treated with 2 μm A23187 revealed that A23187 increased both fluxes and that in the presence of ionophore there was a linear relationship between the Na+ and mannitol fluxes with a slope of 56.4, indicating that the decrease in transepithelial resistance was due to a decrease in tight junction resistance. Whereas there was no effect of 0.1 μm A23187, 1 or 2 μm produced a 55% decrease in baseline resistance in 1 hr and 10 μm decreased resistance more than 80%. The A23187-induced decrease in tight junction resistance was partially reversible by washing 3 times with a Ringer's-HCO3 solution containing 1% BSA. The A23187 effect on resistance was dependent on intracellular Ca2+; loading the T84 cells with the intracellular Ca2+ chelator BAPTA significantly reduced the decrease in tight junction resistance caused by A23187. This intracellular Ca2+ effect was mediated by protein kinase C and not calmodulin. While the protein kinase C antagonist H-7 totally prevented the action of A23187 on tight junction resistance, the Ca2+/calmodulin inhibitor W13 did not have any effect. Sphingosine, another inhibitor of PKC, partially reduced the A23187-induced decline in tight junction resistance. The PKC agonist PMA mimicked the A23187 effect on resistance, although the effect was delayed up to 1 hr after exposure. In addition, however, PMA also caused an earlier increase in resistance, indicating it had an additional effect in addition to mimicking the effect of elevating Ca2+. The effects of a phospholipase inhibitor (mepacrine) and of inhibitors of arachidonic acid metabolism (indomethacin for the cyclooxygenase pathway, NDGA for the lipoxygenase pathway, and SKF 525A for the epoxygenase pathway) on the A23187 action were also examined. None of these agents altered the A23187-induced decrease in resistance. Monolayers exposed to 2 μm A23187 for 1 hr were stained with fluorescein conjugated phalloidin, revealing that neighboring cells did not part one from another and that A23187 did not have a detectable effect on distribution of F-actin in the perijunctional actomyosin ring. The results indicate that elevation in intracellular Ca2+ decreases tight junction resistance in the T84 monolayer, acting through protein kinase C by a mechanism which does not involve visible changes in the perijunctional actomyosin ring. Received: 14 July 1995/Revised: 25 September 1995  相似文献   

3.
This study focuses, in A6 cell monolayers, on the role of protein kinases in the dynamics of tight junction (TJ) opening and closing. The early events of TJ dynamics were evaluated by the fast Ca++-switch assay (FCSA), which consisted of opening the TJs by removing basolateral Ca++ (Ca++ bl), and closing them by returning Ca++ bl to normal values. Changes in TJ permeability can be reliably gauged through changes of transepithelial electrical conductance (G) determined in the absence of apical Na+. The FCSA allows the evaluation of the effects of drugs and procedures acting upon the mechanism controlling the TJs. The time courses of TJ opening and closing in response to the FCSA followed single-exponential time courses. A rise of apical Ca++ (Ca++ ap) causes a reduction of TJ opening rate in an FCSA or even a partial recuperation of G, an effect that is interpreted as mediated by Ca++ ap entering the open TJs. Protein kinase C (PKC) inhibition by H7 at low concentrations caused a reduction of the rate of junction opening in response to Ca++ bl removal, without affecting junction closing, indicating that PKC in this preparation is a key element in the control of TJ opening dynamics. H7 at 100 μm completely inhibits TJ opening in response to Ca++ bl withdrawal. Subsequent H7 removal caused a prompt inhibition release characterized by a sharp G increase, a process that can be halted again by H7 reintroduction into the bathing solution. Differently from the condition in which Ca++ is absent from the apical solution, in which H7 halts the process of G increase in response to a FCSA, when Ca++ is present in the apical solution, addition of H7 during G increase in an FCSA not only induces a halt of the G increase but causes a marked recuperation of the TJ seal, indicated by a drop of G, suggesting a cooperative effect of Ca++ and H7 on the TJ sealing process. Staurosporine, another PKC inhibitor, differently from H7, slowed both G increase and G decrease in an FCSA. Even at high concentrations (400 nm) staurosporine did not completely block the effect of Ca++ withdrawal. These discrepancies between H7 and staurosporine might result from distinct PKC isoforms participating in different steps of TJ dynamics, which might be differently affected by these inhibitors. Immunolocalizations of TJ proteins, carried out in conditions similar to the electrophysiological experiments, show a very nice correlation between ZO-1 and claudin-1 localizations and G alterations induced by Ca++ removal from the basolateral solution, both in the absence and presence of H7. Received: 18 April 2001/Revised: 16 July 2001  相似文献   

4.
The present study aimed to characterize the role of protein kinase C (PKC) on the dynamics of tight junction (TJ) opening and closing in the frog urinary bladder. The early events of TJ dynamics were evaluated by the fast Ca++ switch assay (FCSA), which consisted in opening the TJs by removing basolateral Ca++ ([Ca++] bl ), and closing them by returning [Ca++] bl to normal values. Changes in TJ permeability can be reliably gauged through changes of transepithelial electrical conductance (G) determined in the absence of apical Na+. The FCSA allows the appraisal of drugs and procedures acting upon the mechanism controlling the TJs. The time courses of TJ opening and closing in an FCSA were shown to follow single exponential time courses. PKC inhibition by H7 (100 μm) caused a reduction of the rate of junction opening in response to removing [Ca++] bl , without affecting junction closing, indicating that PKC is a key element in the control of TJ opening dynamics in this preparation. H7 at 250 μm almost completely inhibits TJ opening in response to basolateral Ca++ withdrawal. Subsequent H7 removal caused a prompt inhibition release characterized by a sharp G increase which, however, once started cannot be stopped by H7 reintroduction, Ca++ being necessary to allow TJ recovery. A step rise of apical Ca++ concentration ([Ca++] ap ) causes a reduction of the rate of TJ opening in a FCSA, an effect that is believed to be mediated by apical Ca++ entering the open TJs. The specific condition of having Ca++ only in the apical solution and the TJs located midway between the Ca++ source (apical solution) and the Ca++-binding sites presumably located at the zonula adhaerens, might configure a situation in which a control feedback loop is set up. A rise of [Ca++] ap during the phase of G increase in an FCSA causes a transient recovery of G followed by a subsequent escape phase where G increases again. Oscillations of G also appear in response to a rise of apical Ca++. Both escape and oscillations result from the properties of the TJ regulatory feedback loop. In conclusion, the present results indicate that PKC plays a key role in TJ opening in response to extracellular Ca++ withdrawal without major effect on the reverse process. In addition, PKC inhibition by H7 not only prevents TJ opening in response to basolateral Ca++ removal but induces a prompt blockade of TJ oscillations induced by apical Ca++, oscillations which reappear again when H7 is removed. Received: 9 May 2000/Revised: 30 August 2000  相似文献   

5.
The kinetics of Na movement across the tight junctions of MDCK cells, grown on coverslips and perfused with HEPES or bicarbonate Ringer at 37°C, were investigated after filling the lateral intercellular spaces (LIS) of the epithelium with SBFO, an Na-sensitive fluorescent dye. Dilution and bi-ionic potential measurements showed that MDCK cell tight junctions, although cation-selective, were poorly permeable to N-methyl-D-glucamine Cl (NMDG) but freely permeable to Li. In previous experiments in which Na was replaced by NMDG, a very slow decrease in LIS Na concentration (time constant = 4.8 min) resulted. In the present study, reduction of perfusate Na from 142 to 14 or 24 mm with Na replaced by Li caused LIS Na concentration to decrease with a time constant of 0.43 min. The time constant for Na increase of the LIS was 0.28 min, significantly shorter than that for Na decrease because of the additional component of transcellular Na influx. Ouabain eliminated the transcellular component and equalized the time constants for Na influx and efflux. These results were incorporated into a mathematical model which enabled calculation of the transcellular and paracellular Na fluxes during fluid reabsorption. Regulation of the Na permeability of individual tight junctions by protein kinase A (PKA) was evaluated by treating the monolayers with the Sp-cAMPS, a cAMP substitute, or Rp-cAMPS, a specific inhibitor of PKA. Stimulation of PKA strikingly increased tight junctional permeability while PKA inhibition diminished junctional Na permeability.We thank Carter Gibson, Gennady Slobodov and Cuong Vo for valuable technical assistance.  相似文献   

6.
A6 cells, a kidney derived epithelial cell line, when cultured either on a collagen-coated substrate or on polycarbonate substrate without collagen form confluent monolayers that are similar in cell density and overall morphology. However, the transepithelial electrical resistance (TER) of monolayers grown on the collagen-coated substrate is ninefold higher than that of monolayers grown without collagen. A comparative freeze-fracture study showed that this large difference in TER is not related to the length or number of tight junction strands but to differences in the specific conductance of individual strands. This conductance was obtained considering the TER, the linear junctional density and the mean number of tight junction strands. We estimated the specific linear conductance of the tight junction strands to be 2.56 × 10−7 S/cm for cells grown on collagen and 30.3 × 10−7 S/cm for the cells grown without collagen. We also examined changes in distribution and phosphorylation states of the zonula occludens associated protein, ZO-1, during monolayer formation. Immunocytochemistry reveals that the distribution of ZO-1 follows a similar time course and pattern independent of the presence or absence of collagen. While the amount of ZO-1 expression is identical in cells grown on both substrates, this protein is phosphorylated to a greater extent during the initial stages of confluence in cells cultured on collagen. We suggest that the phosphorylation levels of ZO-1 in A6 cells at the early stages of monolayer formation may determine the final molecular structure and specific conductance of the tight junctions strands. Received: 18 September 1996/Revised: 17 June 1997  相似文献   

7.
Recent evidence suggests that the formation and permeability of tight junctions are actively regulated by second-messenger-generating systems involving G proteins and protein kinase C (PKC). A possible specific target for these regulatory proteins is the tight junction protein ZO-1. An extensive immunocytochemical study was performed in cultured epithelial monolayers of MDCK and Caco-2 cells to identify which isoforms of G proteins and PKC are present at or near the zonula occludens complex. Antibodies against α-subunits of each one of the four major subfamilies were used for the localization of the G proteins. For the PKC localization, antibodies against eight different isoforms were used. In confluent monolayers, Gα12 and PKC ζ, were the only isoforms of these proteins present at the cell borders. In subconfluent monolayers, Gα12 and PKC ζ were found at the plasma membrane only along the areas of lateral cell-cell contact. These isoforms formed a pattern of distribution very similar to the ZO-1 protein. The present findings indicate that Gα12 and PKC ζ may be part of the zonula occludens complex and may locally regulate formation and permeability of tight junctions. Received: 29 July 1995/Revised: 13 October 1995  相似文献   

8.
Fluxes of Na, Cl and volume were followed across Necturus small intestine under zero voltage clamp. 20 mm l-alanine doubles the net Na and fluid transfer. Although there is a ouabain-sensitive Na pump present in Necturus a major fraction of the net Na flux can be measured for an hour after application of 10−3 m ouabain. Collected fluid transferred by the epithelium is quasi-isotonic over a range of luminal osmolarities from 100 to 250 milliosmolar in alanine saline. The net Na fluxes account for the Na found in this transported fluid. Fluid transfer also shows a large ouabain-insensitive fraction after the addition of alanine. Compartmental analysis of 22Na-loaded epithelium was used to separate cellular and paracellular fluxes. The estimated Na concentration in the cell derived from its Na content is 9–10 mm, in agreement with that determined with microelectrodes. The Na efflux from cell to serosa is stimulated by alanine, but this increase accounts for only a quarter of the simultaneous rises in Na, fluid and current flow across the epithelium. The increase of Na efflux from the cell induced by alanine is apparently insensitive to ouabain although the cell Na content rises to circa 20 mm but no higher even after 20 hr. From the initial rate of rise of Na in the cell on treatment with ouabain the activity of the Na pump can be estimated to be ∼92 pM/cm2· sec, a value much smaller than the transepithelial net flux. The results are not consistent with the standard model in which Na-alanine influx stimulates the Na pump and enhances fluid transport by osmotic coupling in the lateral interspace system. A scheme is proposed based upon that for absorption in Necturus gallbladder by which alanine stimulates an active paracellular fluid transfer driven by motile elements of the junction. Received: 5 August 1996/Revised: 7 February 1997  相似文献   

9.
CACO-2 BBE was used to determine the response of a gastrointestinal epithelium to tumor necrosis factor-α (TNF). Incubation of CACO-2 BBE with TNF did not produce any effect on transepithelial resistance (TER) within the first 6 hr but resulted in a 40–50% reduction in TER and a 30% decrease in I sc (short circuit current) relative to time-matched control at 24 hr. The decrease in TER was sustained up to 1 week following treatment with TNF and was not associated with a significant increase in the transepithelial flux of [14C]-d-mannitol or the penetration of ruthenium red into the lateral intercellular space. Dilution potential and transepithelial 22Na+ flux studies demonstrated that TNF-treatment of CACO-2 BBE cell sheets increased the paracellular permeability of the epithelium to Na+ and Cl. The increased transepithelial permeability did not associate with an increase in the incidence of apoptosis. However, there was a TNF-dependent increase in [3H]-thymidine labeling that was not accompanied by a change in DNA content of the cell sheet. The increase in transepithelial permeability was concluded to be across the tight junction because: (i) 1 mm apical amiloride reduced the basolateral to apical flux of 22Na+, and (ii) dilution potential studies revealed a bidirectionally increased permeability to both Na+ and Cl. These data suggest that the increase in transepithelial permeability across TNF-treated CACO-2 BBE cell sheets arises from an alteration in the charge selectivity of the paracellular conductive pathway that is not accompanied by a change in its size selectivity. Received: 4 March 1997/Revised: 3 November 1997  相似文献   

10.
We studied the expression, distribution, and phosphorylation of the tight junction (TJ) protein occludin in confluent MDCK cell monolayers following three procedures for opening and resealing of TJs. When Ca2+ is transiently removed from the culture medium, the TJs open and the cells separate from each other, but the occludin band around each cell is retained. When Ca2+ is reintroduced, the TJs reseal. When the monolayers are exposed to prolonged Ca2+ starvation the cells maintain contact, but occludin disappears from the cell borders and can be detected only in a cytoplasmic compartment. When Ca2+ is reintroduced, new TJs are assembled and the transepithelial electrical resistance (TER) is reestablished in about 20 hr. Monolayers treated with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) show a different pattern of TJ opening: the cell-cell contact is maintained but the TJ strand network, as seen in freeze-fracture replicas, becomes discontinuous. Occludin is still localized at the cell periphery, but in a pattern of distribution that matches the discontinuous TJ. These TJs do not reseal even 24 hr after removal of the TPA. Western blot analysis showed that the 62–65 kD double band of occludin did not change with these treatments. However, in vivo phosphorylation analysis showed that the TPA treatment reduced the phosphorylation levels of occludin, while the prolonged Ca2+ starvation completely dephosphorylated the two occludin bands. In addition, a highly phosphorylated 71 kD band that immunoprecipitates with occludin is not present when TJ is opened by the Ca2+ removal. Phosphoaminoacid analysis showed that the 62–65 kD occludin bands are phosphorylated on serine and threonine, while the 71 kD band was phosphorylated exclusively on serine. Our results provide further evidence that phosphorylation of occludin is an important step in regulating TJ formation and permeability. Received: 28 December 1998/Revised: 8 April 1999  相似文献   

11.
This study examined whether protein kinase C (PKC) stimulates K+ efflux during regulatory volume decrease (RVD) in Necturus maculosus (mudpuppy) red blood cells (RBCs). The limit of osmotic fragility increased with the general protein kinase inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7, 10 μm), but not with the cyclic nucleotide-dependent kinase antagonists N-(2′-guanidinoethyl)-5-isoquinolinesulfonamide (HA-1004, 10 μm) and N-2-(methylamino)ethyl-5-isoquinoline-sulfonamide (H-8, 5 μm). Consistent with these results, osmotic fragility also increased with the PKC antagonists bisindolylmaleimide I (GF-109203X or bis I, 100 nm), bisindolylmaleimide II (bis II, 100 nm), and chelerythrine (10 μm). The effect of these three antagonists and H-7 was reversed with gramicidin (5 μm in a choline Ringer), indicating PKC was linked to K+ efflux (gramicidin is a cationophore that was used to ensure a high K+ permeability). We also measured cell volume recovery from hypotonic shock (0.5× Ringer) with a Coulter counter and estimated cell volume from the hematocrit. The percent RVD compared to control decreased with H-7 (10 μm), sphingosine (100 nm), chelerythrine (10 μm), bis I (100 nm), and bis II (100 nm), but not with HA-1004 (10 μm) nor H-8 (5 μm). Inhibition of RVD by H-7, chelerythrine, bis I, and bis II was reversed with gramicidin (5 μm). Furthermore, using the patch clamp technique, we found H-7 (10 μm) reduced a whole cell conductance that was activated during cell swelling. In addition, a conductance responsible for K+ efflux during cell swelling was inhibited by bis I (100 nm) and bis II (100 nm). These results indicate that a conductive pathway mediating K+ loss during RVD is regulated, at least in part, by protein kinase C. Received: 20 January 1998/Revised: 2 September 1998  相似文献   

12.
Two mammalian sodium-dependent anion-cotransporters (NaPi-2 for phosphate and NaSi-1 for sulfate) have been expressed in Sf9 insect cells using the baculovirus expression system. A histidine tag was introduced at the C-termini in order to facilitate purification by metal-affinity chromatography. Sf9 cells infected with the histidine-tagged Ni/P i -cotransporter exhibited more than 60-fold higher sodium-dependent transport of phosphate compared to noninfected cells. Expressed Na/P i -cotransport exhibited a K m of P i of 0.21 mm and an apparent K m of sodium of 92 mm. Infected cells expressed a 65 kDa polypeptide as detected by Western blotting and immunoprecipitation. Sf9 cells infected with the histidine-tagged NaSi-1 or untagged NaSi-1 protein expressed sodium-dependent sulfate cotransport up to 60-fold higher compared to noninfected cells. Transport of sulfate was highly dependent on sodium exhibiting a K m of SO2− 4 of about 0.3–0.4 mm and a K m of sodium of 55 mm. By Western blotting and immunoprecipitation expressed NaS i -1 proteins were detected at 55–60 kDa. These studies demonstrate that histidine tagged proximal tubular Na-dependent cotransporters for phosphate and sulfate can be expressed functionally in Sf9 cells and that the kinetic characteristics were not altered by the introduction of a histidine tag at the C-termini. Furthermore, it is demonstrated that after solubilization under denaturing conditions histidine-tagged cotransporter proteins can be purified by metal-chelate affinity chromatography. Received: 24 March 1997/Revised: 8 July 1997  相似文献   

13.
Apical plasma membrane vesicles were isolated from cultures of immortalized thick ascending limb of Henle's loop (TALH) cells and sorbitol uptake was investigated using a rapid filtration technique. In the presence of Mg2+, Ca2+, ATP, and GTP sorbitol equilibrated within three minutes with the intravesicular space; this uptake was reduced by 75% when the incubation temperature was decreased from 37°C to 4°C. A lower level of uptake was also observed in the presence of 100 μm quinidine and when Ca2+ or ATP were omitted from the medium. Membranes preincubated with Mg2+, Ca2+, ATP, and GTP showed, however, a high sorbitol uptake in ATP-free medium. Staurosporine, but only at high concentrations of 200 nm, inhibited sorbitol uptake when present during the transport experiments or during the preincubation with ATP. Similar results were obtained with 1 μm trifluoperazine. Protein kinase C inhibitory peptide was ineffective whereas 20 nm KT 5926, at low concentrations a specific inhibitor of Ca2+/calmodulin-dependent kinase, attenuated the activation. On the basis of these data we suggest that a Ca2+/calmodulin-dependent kinase is a mediator of regulation of sorbitol plasma membrane permeability in renal medullary cells. Received: 31 March 1997/Revised: 11 June 1997  相似文献   

14.
Barbiturates inhibit GLUT-1-mediated glucose transport across the blood-brain barrier, in cultured mammalian cells, and in human erythrocytes. Barbiturates also interact directly with GLUT-1. The hypotheses that this inhibition of glucose transport is (i) selective, preferring barbiturates over halogenated hydrocarbon inhalation anesthetics, and (ii) specific, favoring some GLUT-# isoforms over others were tested. Several oxy- and thio-barbiturates inhibited [3H]-2-deoxyglucose uptake by GLUT-1 expressing murine fibroblasts with IC50s of 0.2–2.9 mm. Inhibition of GLUT-1 by barbiturates correlates with their overall lipid solubility and pharmacology, and requires hydrophobic side chains on the core barbiturate structure. In contrast, several halogenated hydrocarbons and ethanol (all ≤10 mm) do not significantly inhibit glucose transport. The interaction of these three classes of anesthetics with purified GLUT-1 was evaluated by quenching of intrinsic protein fluorescence and displayed similar specificities and characteristics. The ability of barbiturates to inhibit other facilitative glucose transporters was determined in cell types expressing predominantly one isoform. Pentobarbital inhibits [3H]-2-deoxyglucose and [14C]-3-O-methyl-glucose uptake in cells expressing GLUT-1, GLUT-2, and GLUT-3 with IC50s of ∼1 mm. In contrast, GLUT-4 expressed in insulin-stimulated rat adipocytes was much less sensitive than the other isoforms to inhibition by pentobarbital (IC50 of >10 mm). Thus, barbiturates selectively inhibit glucose transport by some, but not all, facilitative glucose transporter isoforms. Received: 10 November 1998/Revised: 3 February 1999  相似文献   

15.
It has previously been shown that osmotic cell shrinkage activates a nonselective cation (NSC) channel in M-1 mouse cortical collecting duct cells [54] and in a variety of other cell types [20]. In the present study we further characterized the shrinkage-activated NSC channel in M-1 cells and its mechanism of activation using whole-cell current recordings. Osmotic cell shrinkage induced by addition of 100 mm sucrose to the bath solution caused a 20-fold increase in whole-cell inward currents from −10.8 ± 1.5 pA to −211 ± 10.2 pA (n= 103). A similar response was observed when cell shrinkage was elicited using a hypo-osmotic pipette solution. This indicates that cell shrinkage and not extracellular osmolarity per se is the signal for current activation. Cation substitution experiments revealed that the activated channels discriminate poorly between monovalent cations with a selectivity sequence NH4 (1.2) ≥ Na+ (1) ≈ K+ (0.9) ≈ Li+ (0.9). In contrast there was no measurable permeability for Ca2+ or Ba2+ and the cation-to-anion permeability ratio was about 14. The DPC-derivatives flufenamic acid, 4-methyl-DPC and DCDPC were the most effective blockers followed by LOE 908, while amiloride and bumetanide were ineffective. The putative channel activator maitotoxin had no effect. Current activation was dependent upon the presence of intracellular ATP and Mg2+ and was inhibited by staurosporine (1 μm) and calphostin C (1 μm). Moreover, cytochalasin D (10 μm) and taxol (2 μm) reduced the current response to cell shrinkage. These findings suggest that the activation mechanism of the shrinkage-activated NSC channel involves protein kinase mediated phosphorylation steps and cytoskeletal elements. Received: 3 May 2000/Revised: 6 July 2000  相似文献   

16.
Previous results demonstrated that capsaicin induces the reversible tight junctions (TJ) opening via cofilin activation. The present study investigated the mechanisms underlying the reversible TJ opening and compared the effect to the irreversible opening induced by actin inhibitors. Capsaicin treatment induced the F-actin alteration unique to capsaicin compared to actin-interacting agents such as latrunculin A, which opens TJ irreversibly. Along with TJ opening, capsaicin decreased the level of F-actin at bicellular junctions but increased it at tricellular junctions accompanied with its concentration on the apical side of the lateral membrane. No change in TJ protein localization was observed upon exposure to capsaicin, but the amount of occludin was decreased significantly. In addition, cosedimentation analyses suggested a decrease in the interactions forming TJ, thereby weakening TJ tightness. Introduction of cofilin, LIMK and occludin into the cell monolayers confirmed their contribution to the transepithelial electrical resistance decrease. Finally, exposure of monolayers to capsaicin augmented the paracellular passage of both charged and uncharged compounds, as well as of insulin, indicating that capsaicin can be employed to modulate epithelial permeability. Our results demonstrate that capsaicin induces TJ opening through a unique mechanism, and suggest that it is a new type of paracellular permeability enhancer.  相似文献   

17.
Whole-cell membrane currents were recorded from olfactory receptor neurons from the neotenic salamander Necturus maculosus. Cyclic nucleotides, released intracellularly by flash photolysis of NPE-caged cAMP or NPE-caged cGMP, activated a transient chloride current. The chloride current could be elicited at constant voltage in the absence of extracellular Ca2+ as well as in the presence of 3 mm intracellular Ca2+, suggesting that the current did not require either voltage or Ca2+ transients for activation. The current could be elicited in the presence of the protein kinase inhibitors H-7 and H-89, and in the absence of intracellular ATP, indicating that activation was independent of protein kinase A activity. These results suggest that Necturus olfactory receptor neurons contain a novel chloride ion channel that may be directly gated by cyclic nucleotides. Received: 12 November 1996/Revised: 4 April 1997  相似文献   

18.
SCFAs increase the volume of many different cell types rarely exposed to significant concentrations of these weak electrolytes. SCFAs swell isolated cells from colonic carcinoma cell lines, but the mechanism(s) of volume regulation in normal colonocytes, which are generally exposed to >100 mm SCFAs, has not been well characterized. Aims: To determine the effect of SCFAs on volume regulation in proximal and distal rabbit colonocytes. Methods: Isolated colonocytes were plated on coverslips and placed in a perfusion apparatus that permitted fluid changes. Cells were continuously monitored by video-microscopy; volume was estimated by measured changes in the radius of individual cells. Results: Distal colonocytes (DC) consistently had a slightly greater basal volume than proximal colonocytes (PC): [14.2 pl/fl:9.8 pl/fl] In HEPES-buffered solutions, an isotonic change to a 90 mm NaCl/50 mm Na propionate solution elicited a significant increase in cell volume within 10 min, but no noticeable regulatory volume decrease over 30 min: V/Vo in DC: 1.29 ± .09; in PC: 1.25 ± .05. In HCO3-buffered solutions, 50 mm PROP caused significantly greater cell swelling; in DC: 1.74 ± .21; in PC: 1.52 ± .08. In DC both amiloride and EIPA blocked the SCFA-induced increase in cell volume. A hypotonic challenge confirmed that these cells were capable of swelling. In contrast, amiloride did not significantly inhibit SCFA-induced swelling in PC: control, 1.25 ± .05; amiloride, 1.36 ± .10. Cell volume increased in PC perfused with an isosmotic 50 mm propionate, Na-free solution: 1.22 ± .04. Conclusions: (i) SCFAs induce significant cell swelling, but no regulatory volume decrease, in isolated colonocytes; (ii) HCO3 augments SCFA-induced cell swelling; (iii) volume increase in DC is dependent on Na-H exchange, but in PC appears to be Na-independent. Significance: There are fundamental differences in how proximal and distal colon respond to isosmotic volume challenge of SCFAs. Received: 1 September 1995/Revised: 9 November 1995  相似文献   

19.
Patch-clamp experiments on isolated nuclei revealed the existence of ionic channels on the nuclear envelope, but their exact localization and function are still unknown. Recent studies have demonstrated that ATP and calcium ions play an important role in nucleocytoplasmic protein traffic. ATP is essential to allow big molecules in and out of the nucleus. However, a cytoplasmic rise of calcium ions above 300 nm decreases both ATP-dependent transport and passive diffusion through the nuclear envelope. The use of isolated nuclei placed in a saline solution provides the possibility for testing only the compounds added in the bath or in the recording pipette. In the present study, we show that ATP is responsible for an increase of nuclear ionic permeability on isolated nuclei. This result not only confirms data previously reported in in situ nuclei, but also suggests that ATP is directly involved in the modulation of passive ionic permeability. In these particular experimental conditions, calcium ions decrease the channel current starting from a concentration of 1 μm. The parallelism in the modulation action of ATP and Ca++ between nuclear pores and ionic channels present on the nuclear envelope contributes to the support of the idea that an ionic pathway is associated with the pore complex. Received: 5 September 1996/Revised: 13 January 1997  相似文献   

20.
A Ca2+-activated Cl conductance in rat submandibular acinar cells was identified and characterized using whole-cell patch-clamp technique. When the cells were dialyzed with Cs-glutamate-rich pipette solutions containing 2 mm ATP and 1 μm free Ca2+ and bathed in N-methyl-d-glucamine chloride (NMDG-Cl) or Choline-Cl-rich solutions, they mainly exhibited slowly activating currents. Dialysis of the cells with pipette solutions containing 300 nm or less than 1 nm free Ca2+ strongly reduced the Cl currents, indicating the currents were Ca2+-dependent. Relaxation analysis of the ``on' currents of slowly activating currents suggested that the channels were voltage-dependent. The anion permeability sequence of the Cl channels was: NO 3 (2.00) > I (1.85) ≥ Br (1.69) > Cl (1.00) > bicarbonate (0.77) ≥ acetate (0.70) > propionate (0.41) ≫ glutamate (0.09). When the ATP concentration in the pipette solutions was increased from 0 to 10 mm, the Ca2+-dependency of the Cl current amplitude shifted to lower free Ca2+ concentrations by about two orders of magnitude. Cells dialyzed with a pipette solution (pCa = 6) containing ATP-γS (2 mm) exhibited currents of similar magnitude to those observed with the solution containing ATP (2 mm). The addition of the calmodulin inhibitors trifluoperazine (100 μm) or calmidazolium (25 μm) to the bath solution and the inclusion of KN-62 (1 μm), a specific inhibitor of calmodulin kinase, or staurosporin (10 nm), an inhibitor of protein kinase C to the pipette solution had little, if any, effect on the Ca2+-activated Cl currents. This suggests that Ca2+/Calmodulin or calmodulin kinase II and protein kinase C are not involved in Ca2+-activated Cl currents. The outward Cl currents at +69 mV were inhibited by NPPB (100 μm), IAA-94 (100 μm), DIDS (0.03–1 mm), 9-AC (300 μm and 1 mm) and DPC (1 mm), whereas the inward currents at −101 mV were not. These results demonstrate the presence of a bicarbonate- and weak acid-permeable Cl conductance controlled by cytosolic Ca2+ and ATP levels in rat submandibular acinar cells. Received: 9 January 1996/Revised: 20 May 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号