首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stability of protein-encapsulating DRV (dried-rehydrated vesicle) liposomes is evaluated after freeze-drying vesicles in presence (or not) of trehalose. Two proteins, bovine serum albumin (BSA) and tissue-type plasminogen activator (t-PA), are used, and protein-encapsulating liposomes with different lipid compositions are prepared by DRV technique. Encapsulation efficiencies are calculated, after measuring BSA with a fluorescence technique and t-PA's amidolytic activity toward a chromogenic substrate.

Experimental results show that encapsulation of BSA in vesicles ranges between 35 and 53% of the protein and is only slightly affected by lipid composition. For t-PA, entrapment efficiencies are lower, ranging between 2 and 16%, while lipid composition has substantial effect on entrapment (cholesterol inclusion is very important). After freeze-drying, some lipid compositions remain stable, retaining most of initially entrapped proteins, while others do not, but they may be stabilized by trehalose. In the case of BSA, liposome behavior cannot be explained based on lipid membrane rigidity (more rigid?=?more stable). This may be connected with previously demonstrated interactions of BSA with membranes. Oppositely, t-PA behavior is more predictable, meaning that the lipid composition selected for the specific therapeutic application determines the need for cryoprotectant addition before freeze-drying t-PA containing DRV liposomes, perhaps due to the fact that under conditions applying minimum or no interactions between t-PA and lipid membranes occur.

Thereby, interactions between proteins and membranes determine not only the encapsulation efficiency but also the need for cryopreservation of liposomal protein formulations.  相似文献   

2.
Arsenic trioxide liposomes: encapsulation efficiency and in vitro stability   总被引:2,自引:0,他引:2  
The use of arsenic-containing compounds in cancer therapy is currently being re-considered, after the recent approval of arsenic trioxide (Trisenox) for the treatment of relapsed promyelocytic leukemia (PML). In an attempt to prepare a carrier system to minimize the toxicity of this drug, the aim of this study is to prepare and characterize liposomes encapsulating arsenic trioxide (ATO). For this, we prepared different types of liposomes entrapping ATO: large multilamellar (MLV), sonicated (SUV) and dried reconstituted vesicles (DRV). The techniques used were: thin film hydration, sonication and the DRV method, respectively. Two lipid compositions were studied for each liposome type, EggPC/Chol (1:1) and DSPC/Chol (1:1). After liposome preparation, drug encapsulation was evaluated by measuring arsenic in liposomes. For this, energy-dispersive X-ray fluorescence spectroscopy or atomic absorption was used. In addition, the retention of the drug in the liposomes was evaluated after incubating the liposomes in buffer at 37 degrees C. The experimental results reveal that encapsulation of ATO in liposomes ranges between 0.003 and 0.506 mol/ mol of lipid, and is highest in the DRV vesicles and lowest in the small unilamellar vesicles, as anticipated. Considering the in vitro stability of ATO-encapsulating liposomes: 1) For the PC/Chol liposomes (DRV and MLV), after 24 hours of incubation, more than 70% (or 90% in some cases) of the initially encapsulated amount of ATO was released. 2) The liposomes composed of DSPC/Chol could retain substantially higher amounts of ATO, especially the DRV liposomes (54% retained after 24 h). 3) In the case of PC/Chol, temperature of incubation has no effect on the ATO release after 24 hours, but affects the rate of ATO release in the MLV liposomes, while for the DSPC/Chol liposomes there is a slight increase (statistically insignificant) of ATO release at higher temperature.  相似文献   

3.
The use of arsenic‐containing compounds in cancer therapy is currently being re‐considered, after the recent approval of arsenic trioxide (Trisenox®) for the treatment of relapsed promyelocytic leukemia (PML). In an attempt to prepare a carrier system to minimize the toxicity of this drug, the aim of this study is to prepare and characterize liposomes encapsulating arsenic trioxide (ATO). For this, we prepared different types of liposomes entrapping ATO: large multilamellar (MLV), sonicated (SUV) and dried reconstituted vesicles (DRV). The techniques used were: thin film hydration, sonication and the DRV method, respectively. Two lipid compositions were studied for each liposome type, EggPC/Chol (1:1) and DSPC/Chol (1:1). After liposome preparation, drug encapsulation was evaluated by measuring arsenic in liposomes. For this, energy‐dispersive X‐ray fluorescence spectroscopy or atomic absorption was used. In addition, the retention of the drug in the liposomes was evaluated after incubating the liposomes in buffer at 37°C. The experimental results reveal that encapsulation of ATO in liposomes ranges between 0.003 and 0.506 mol/ mol of lipid, and is highest in the DRV vesicles and lowest in the small unilamellar vesicles, as anticipated. Considering the in vitro stability of ATO‐encapsulating liposomes: 1) For the PC/Chol liposomes (DRV and MLV), after 24 hours of incubation, more than 70% (or 90% in some cases) of the initially encapsulated amount of ATO was released. 2) The liposomes composed of DSPC/Chol could retain substantially higher amounts of ATO, especially the DRV liposomes (54% retained after 24 h). 3) In the case of PC/Chol, temperature of incubation has no effect on the ATO release after 24 hours, but affects the rate of ATO release in the MLV liposomes, while for the DSPC/Chol liposomes there is a slight increase (statistically insignificant) of ATO release at higher temperature.  相似文献   

4.
Holovati JL  Acker JP 《Cryobiology》2007,55(2):98-107
Trehalose, a non-reducing glucose disaccharide found at high concentrations in many species of anhydrobiotic organisms, shows significant promise in protecting cellular viability and structural integrity during freezing and desiccation. As mammalian cell membranes are impermeable to trehalose, extensive efforts have been taken to introduce trehalose into mammalian cells. In this study, we report on the characterization of trehalose-containing liposomes, with focus on the entrapment of trehalose inside liposomes, as the first step in establishing liposomes as a delivery system in the biopreservation field. Liposomes were synthesized by hydrating a phospholipid/cholesterol lipid bilayer with 200-400 mM trehalose buffer and repeatedly extruding the lipid suspension to form unilamellar vesicles. The trehalose content of the liposomal lysate was determined spectrophotometrically using a commercial kit Megazyme and confirmed with HPLC measurements. The number of liposomes was calculated from the phosphate content of the liposomal preparation and an estimated number of lipid molecules in a 401+/-8 nm liposome. Based on an intraliposomal trehalose content, the calculated liposomal encapsulation efficiency of 200 mM trehalose liposomes was of 92+/-0.7%. This value was in agreement with the 300 and 400 mM trehalose liposomes (91.1+/-8.2% and 102.1+/-9.4%, respectively). The Megazyme method for trehalose measurement is an inexpensive and sensitive technique that does not require specialized instrumentation or extensive technical expertise. Therefore, it can be used to enhance current efforts in the development of alternative strategies for the cryo- and lyoprotection of mammalian cells.  相似文献   

5.
We investigated the influence of dehydration-rehydration vesicles (DRV) phospholipid composition and the addition of other components on human recombinant epidermal growth factor (hrEGF) encapsulation efficiency and its release from liposomes. Encapsulation of EGF into DRV composed of phosphatidylcholine with different unsaturation levels was around 20-35%. The best result was obtained with dipalmitoyl phosphatidylcholine: cholesterol (DPPC:Ch) liposomes (35%) corresponding to the lowest hrEGF release during one month of storage. Even with this phospholipid composition, modification of the DRV procedure by including an extrusion step did not improve hrEGF encapsulation efficiency, rendering less stable particles. The inclusion of recombinant P64k from Neisseria meningitidis (rP64k), as such or conjugated to hrEGF, decreased the encapsulation efficiency of the latter protein into DRV or freeze and thaw multilamellar vesicles (FATMLV). The hrEGF release from liposomes could be related to the interaction between this polypeptide and the bilayer, as evidenced by increased carboxyfluorescein release from hrEGF-DRV; less susceptibility to fluorescence quenching by acrylamide in the presence of liposomes; and a measurable decrease of phospholipid phase transition Delta enthalpy (DeltaH). DRV comprising saturated phospholipids (DPPC:Ch or distearoyl phosphatidylcholine [DSPC]:Ch) and containing the conjugate EGF-P64k induced a more efficient immune response against hrEGF than unsaturated phospholipid and alum in terms of total IgG, IgG(2a), and IgG(2b) subclasses and the ability of antibody to inhibit the interaction of the EGF receptor with hrEGF.  相似文献   

6.
In this study, medium-chain fatty acid (MCFA) liposomes were prepared by the film ultrasonic dispersion, modified ethanol injection, and reverse-phase evaporate methods. The results indicated that the liposomes prepared by the thin-film ultrasonic dispersion method had a high entrapment efficiency of 82.7% and a good distribution in size diameters. The MCFA liposomes were freeze-dried and the optimal preparation conditions of freeze-drying were as follows: The cryoprotectants were mannitol and sucrose (1:1 w/w), the hydrated medium was distilled water, and the freeze-drying time was 48 hours. Under these conditions, the freeze-dried MCFA liposomes had a perfect appearance, a small particle size, and high encapsulation efficiency. The mean diameters were 251.1 and 265.3?nm, and the encapsulation efficiencies were 80.5 and 79.2% for freshly prepared and reconstituted liposomes, respectively.  相似文献   

7.
《ImmunoMethods》1994,4(3):210-216
Successful use of liposomes as immunological adjuvants in vaccines requires simple, easy to scale up technology capable of high-yield antigen entrapment. Recent work from this laboratory has led to the development of techniques that can generate liposomes of various sizes containing soluble antigens such as proteins or particulate antigens such as whole, live, or attenuated bacteria or viruses. Entrapment of proteins is carried out by the dehydration-rehydration procedure, which entails freeze-drying of a mixture of "empty" small unilamellar vesicles and free antigens. Upon rehydration, the large multilamellar vesicles that are formed incorporate up to 80% of the antigen used. When such liposomes are microfluidized in the presence of nonentrapped material, their size is reduced to about 100 nm in diameter, with much of the originally entrapped antigen still associated with the vesicles. A similar technique applied to the entrapment of particulate antigens (e.g., Bacillus subtilis spores) consists of freeze-drying giant vesicles (4-5 μm in diameter) in the presence of spores. On rehydration and sucrose gradient fractionation of the suspension, up to 27% of the spores used are associated with generated giant liposomes of similar mean size.  相似文献   

8.
Vaccine entrapment in liposomes.   总被引:2,自引:0,他引:2  
The use of liposomes as carriers of peptide, protein, and DNA vaccines requires simple, easy-to-scale-up technology capable of high-yield vaccine entrapment. Work from this laboratory has led to the development of techniques that can generate liposomes of various sizes, containing soluble antigens such as proteins and particulate antigens (e.g., killed or attenuated bacteria or viruses), as well as antigen-encoding DNA vaccines. Entrapment of vaccines is carried out by the dehydration-rehydration procedure which entails freeze-drying of a mixture of "empty" small unilamellar vesicles and free vaccines. On rehydration, the large multilamellar vesicles formed incorporate up to 90% or more of the vaccine used. When such liposomes are microfluidized in the presence of nonentrapped material, their size is reduced to about 100 nm in diameter, with much of the originally entrapped vaccine still associated with the vesicles. A similar technique applied for the entrapment of particulate antigens (e.g., Bacillus subtilis spores) consists of freeze-drying giant vesicles (4-5 microm in diameter) in the presence of spores. On rehydration and sucrose gradient fractionation of the suspension, up to 30% or more of the spores used are associated with generated giant liposomes of similar mean size.  相似文献   

9.
Electrostatic interaction is an important secondary force affecting the structure, stability, and function of lipid vesicles (liposomes). For this study, a negatively charged lipid with carboxylic acid was mixed with phospholipid to produce anionic vesicles. The electrostatics of the carboxylated anionic vesicle (ca. 200 nm diameter) was determined and correlated with entrapment capacity of the vesicles. Correlative analysis revealed the zeta potential of the vesicles as a factor quantitatively affecting the entrapment capacity for a water-soluble marker, in which the entrapment capacity reached its maximum level in less than −30 mV of zeta potential. Transmission electron microscopy (TEM) revealed that the vesicles with high entrapment capacity are composed of a unilamellar membrane. This finding is expected to be useful for efficient encapsulation of water-soluble pharmaceuticals within vesicles.  相似文献   

10.
Factors affecting the stability of dry liposomes   总被引:10,自引:0,他引:10  
Previous studies have shown that liposomes can be preserved in the dry state in the presence of certain sugars, of which trehalose is particularly effective. There have been some discrepancies in results obtained by the various laboratories in which this phenomenon has been studied, both with respect to the efficacy of the sugars tested and the degree to which the dry vesicles can be stabilized. We show here that several factors that affect the stability of the dry liposomes may be responsible for the discrepancies between measurements by different laboratories. These factors include: (1) Size: small, sonicated vesicles are comparatively very unstable, and retain no more than 70% of trapped solute after drying, even in extremely high concentrations of sugars. Very large vesicles are similarly unstable. (2) Charge: a small amount of negatively charged lipid in the bilayer significantly increases stability. (3) Stabilizing sugar: the comparative efficacy of the sugar used varies with the size of the vesicles. (4) Dry-mass ratio. It is the dry-mass ratio between the stabilizing sugar and lipid that is important in the preservation during freeze-drying, not the concentration of either lipid or sugar in bulk solution.  相似文献   

11.
As a prerequisite for the use of liposomes for delivery of biologically active agents, techniques are required for the efficient and rapid entrapment of such agents in liposomes. Here we review the variety of procedures available for trapping hydrophilic and hydrophobic compounds. Considerations which are addressed include factors influencing the choice of a particular liposomal system and techniques for the passive entrapment of drugs in multilamellar vesicles and unilamellar vesicles. Attention is also paid to active trapping procedures relying on the presence of (negatively) charged lipid or transmembrane ion gradients. Such gradients are particularly useful for concentrating lipophilic cationic drugs inside liposomes, allowing trapping efficiencies approaching 100%.  相似文献   

12.
To investigate the encapsulation of Print 3G, a peptidic agent that could reduce the angiogenic development of breast tumors, pegylated liposomes used as intravenous vectors were studied and characterized. Recently, the path of liposomes has been explored with success to improve the pharmacological properties of peptidic drugs and to stabilize them. In this study, loaded unilamellar vesicles composed of SPC:CHOL:mPEG2000-DSPE (47:47:6) were prepared by the hydration of lipid film technique. An HPLC method was developed and validated for the determination of Print 3G to calculate its encapsulation efficiency. Observed Print 3G adsorption on different materials employed during liposome preparation (such as glass beads, tubing, and connections for extrusion) led to the modification of the manufacturing method. The freeze-thawing technique was used to enhance the amount of Print 3G encapsulated into blank liposomes prepared using the hydration of lipid film procedure. Many factors may influence peptide entrapment, namely the number of freeze-thawing cycles, the lipid concentration, the peptide concentration, and the mixing time. Consequently, a design of experiments was performed to obtain the best encapsulation efficiency while minimizing the number of experiments. The lipid concentration and the number of freeze-thawing cycles were identified as the positive factors influencing the encapsulation. As a result of the optimization, an optimum was found and encapsulation efficiencies were improved from around 30% to 63%. Liposome integrity was evaluated by photon correlation spectroscopy and freeze-fracture electron microscopy to ensure that the selected formulation possesses the required properties to be a potential candidate for further in vitro and in vivo experiments.  相似文献   

13.
Studies from this laboratory (Mayer et al. (1986) Biochim. Biophys. Acta 857, 123-126) have shown that doxorubicin can be accumulated into liposomal systems in response to transmembrane pH gradients (inside acidic). Here, detailed characterizations of the drug uptake and retention properties of these systems are performed. It is shown that for egg phosphatidylcholine (EPC) vesicles (mean diameter of 170 nm) exhibiting transmembrane pH gradients (inside acidic) doxorubicin can be sequestered into the interior aqueous compartment to achieve drug trapping efficiencies in excess of 98% and drug-to-lipid ratios of 0.36:1 (mol/mol). Drug-to-lipid ratios as high as 1.7:1 (mol/mol) can be obtained under appropriate conditions. Lower drug-to-lipid ratios are required to achieve trapping efficiencies in excess of 98% for smaller (less than or equal to 100 nm) systems. Doxorubicin trapping efficiencies and uptake capacities are related ito maintenance of the transmembrane pH gradient during encapsulation as well as the interaction between doxorubicin and entrapped citrate. This citrate-doxorubicin interaction increases drug uptake levels above those predicted by the Henderson-Hasselbach relationship. Increased drug-to-lipid ratios and trapping efficiencies are observed for higher interior buffering capacities. Retention of a large transmembrane pH gradient (greater than 2 units) after entrapment reduces the rate of drug leakage from the liposomes. For example, EPC/cholesterol (55:45, mol/mol) liposomal doxorubicin systems can be achieved which released less than 5% of encapsulated doxorubicin (drug-to-lipid molar ratio = 0.33:1) over 24 h at 37 degrees C. This pH gradient-dependent encapsulation technique is extremely versatile, and well characterized liposomal doxorubicin preparations can be generated to exhibit a wide range of properties such as vesicle size, lipid composition, drug-to-lipid ratio and drug release kinetics. This entrapment procedure therefore appears well suited for use in therapeutic applications. Finally, a rapid colorimetric test for determining the amount of unencapsulated doxorubicin in liposomal systems is described.  相似文献   

14.
Upon cold and drought stress, sucrose and trehalose protect membrane structures from fusion and leakage. Similarly, these sugars protect membrane proteins from inactivation during dehydration. We studied the interactions between sugars and phospholipid membranes in giant unilamellar vesicles with the fluorescent lipid analog 3,3′-dioctadecyloxacarbocyanine perchlorate incorporated. Using fluorescence correlation spectroscopy, it was found that sucrose decreased the lateral mobility of phospholipids in the fully rehydrated, liquid crystalline membrane more than other sugars did, including trehalose. To describe the nature of the difference in the interaction of phospholipids with sucrose and trehalose, atomistic molecular dynamics studies were performed. Simulations up to 100 ns showed that sucrose interacted with more phospholipid headgroups simultaneously than trehalose, resulting in a larger decrease of the lateral mobility. Using coarse-grained molecular dynamics, we show that this increase in interactions can lead to a relatively large decrease in lateral phospholipid mobility.  相似文献   

15.
In order to obtain more information on membrane phenomena occurring at the cell surface of rabbit thymocytes we have performed experiments aimed at altering the lipid composition of the plasma membrane. Thymocytes were incubated at 37°C with phospholipid vesicles of different compositions. Vesicle-cell interaction was followed by measuring the degree of fluorescence polarization and the uptake of vesicle-entrapped carboxyfluorescein. Neutral and negatively charged liposomes prepared from egg phosphatidylcholine are currently used in investigations of vesicle-cell interaction. In this report we show that these liposomes do not interact with rabbit thymocytes as is evident from unaltered lipid fluidity measured in whole cells and in isolated plasma membranes. This was confirmed by experiments with vesicle-entrapped carboxyfluorescein showing hardly any uptake of the fluorophor from neutral and negatively charged egg phosphatidylcholine liposomes. Using both techniques substantial interaction was found with positively charged egg phosphatidylcholine liposomes and with liposomes prepared from soybean lecithin which is composed of a variety of phospholipids. The results of these experiments were supported by lipid analysis of cells treated with soybean lecithin liposomes. Increase in phosphatidylcholine contents of mixed phospholipid vesicles was further shown to result in decreased vesicle-cell interaction. From measurements of the quantity of carboxyfluorescein inside cells and the total amount of cell-associated carboxyfluorescein it is concluded that adsorption plays a prominent role in interaction between liposomes and rabbit lymphocytes. The grade of maturation of lymphocytes was also found to affect vesicle-cell interaction. The more mature thymocytes took up more vesicle-entrapped carboxyfluorescein from soybean liposomes than immature thymocytes. Mesenteric lymph node cells exhibited a still stronger interaction. The role of vesicle and cell surface charge and membrane fluidity of both vesicles and cells in interaction between liposomes and rabbit thymocytes is discussed.  相似文献   

16.
A systematic study is presented of the effects of trehalose on the physical properties of extruded DPPC-cholesterol unilamellar vesicles. Particular emphasis is placed on examining how the interactions present in the hydrated state translate into those in the dehydrated state. Observations from HSDSC and DSC are used to examine the phase behavior of hydrated and dehydrated vesicles, respectively. The concentration of trehalose inside and outside the vesicles is manipulated, and is shown to affect the relative stability of the membranes. Our results show for the first time that a combination of high inner and low outer trehalose concentration is able to decrease the gel-to-liquid crystalline phase temperature (T(m)), while any other combination will not. Upon dehydration, the T(m) of all lipid mixtures increases. The extent of the increase depends on the trehalose distribution across the bilayer. The T(m) changes in the same direction with trehalose concentration for both freeze-dried and fully hydrated samples, suggesting that the trehalose distribution across the vesicle membrane, as well as the trehalose-phospholipid interaction, is maintained upon lyophilization. The results presented in this work may aid in the formulation of systems to be used in the lyophilization of liposomes for drug delivery applications.  相似文献   

17.
In a previous report [Z. T?r?k, G. Satpathy, M. Banerjee, R. Bali, E. Little, R. Novaes, H. Van Ly, D. Dwyre, A. Kheirolomoom, F. Tablin, J.H. Crowe, N.M. Tsvetkova, Preservation of trehalose loaded red blood cells by lyophilization, Cell Preservation Technol. 3 (2005) 96-111.], we presented a method for preserving human red blood cells (RBCs) by loading them with trehalose and then freeze-drying. We have now improved that method, based on the discovery that addition of phospholipid vesicles to the lyophilization buffer substantially reduces hemolysis of freeze-dried RBCs after rehydration. The surviving cells synthesize 2,3-DPG, have low levels of methemoglobin, and have preserved morphology. Among the lipid species we studied, unsaturated PCs were found to be most effective in suppressing hemoglobin leakage. RBC-vesicle interactions depend on vesicle size and structure; unilamellar liposomes with average diameter of less than 300 nm were more effective in reducing the hemolysis than multilamellar vesicles. Trehalose loaded RBCs demonstrated high survival and low levels of methemoglobin during 10 weeks of storage at 4 degrees C in the dry state when lyophilized in the presence of liposomes.  相似文献   

18.
Summary Phospholipid vesicles (liposomes) were subjected to dehydration-hydration cycles in the presence of 6-carboxyfluorescein or salmon sperm DNA. We found that the vesicles fused into multilamellar structures during dehydration with solutes trapped between the lamellae. Upon rehydration the lamellae swelled and formed large vesicular structures containing solute. This model can be used to study encapsulation of macromolecules by lipid membranes to form protocellular structures under prebiotic conditions.  相似文献   

19.
We have studied the biocompatibility properties of polymerizable phosphatidylcholine bilayer membranes, in the form of liposomes, with a view toward the eventual utilization of such polymerized lipid assemblies in drug carrier systems or as surface coatings for biomaterials. The SH-based polymerizable lipid 1,2-bis[1,2-(lipoyl)dodecanoyl]-sn-glycero-3-phosphocholine (dilipoyl lipid, DLL) and the methacryl-based lipid 1,2-bis[(methacryloyloxy)dodecanoyl]-sn-glycero-3-phosphocholine (dipolymerizable lipid, DPL) were studied in comparison to ‘conventional’ zwitterionic or charged phospholipids. We examined binding of serum proteins to liposomes and effects of liposomes on fibrin clot formation and on platelet aggregation. All types of liposomes tested bound complex mixtures of serum proteins with IgG being the most abundant bound component. DPL vesicles and anionic vesicles bound substantially more protein than other vesicle types. Polymerized DPL vesicles uniquely bound a protein of about 53 kDa which was not bound to other types of phosphatidylcholine liposomes. Likewise polymerized DPL vesicles, but not other types of phosphatidylcholine vesicles, caused a marked alteration in coagulation as measured by activated partial thromboplastin time (APTT) and prothrombin time (PT) tests; this effect was shown to be due to binding and depletion of clothing factor V by the DPL polymerized vesicles. Polymerized DPL liposomes and DLL liposomes in polymerized or nonpolymerized form, were without substantial effect on platelet aggregation. However, DPL nonpolymerized vesicles, while not causing aggregation, did impair ADP-induced aggregation of platelets. These studies suggest that SH based polymerizable lipids of the DLL type may be very suitable for in vivo use in the contexts of drug delivery systems or biomaterials development. Methacryloyl-based lipids of the DPL type seem to display interactions with the hemostatic process which militate against their in vivo utilization.  相似文献   

20.
Almost from the time of their rediscovery in the 60's and the demonstration of their entrapment potential, liposomal vesicles have drawn attention of researchers as potential carriers of various bioactive molecules that could be used for therapeutic applications in humans and animals. Several commercial liposome-based drugs have already been discovered, registered and introduced with great success on the pharmaceutical market. However, further studies, focusing on the elaboration of more efficient and stable amphiphile-based vesicular (or non-viral) drug carriers are still under investigation. In this review we present the achievements of our group in this field. We have discovered that natural amphiphilic dihydroxyphenols and their semisynthetic derivatives are promising additives to liposomal lipid compositions. The presence of these compounds in lipid composition enhances liposomal drug encapsulation, reduces the amount of the lipid carrier necessary for efficient entrapment of anthracycline drugs by a factor of two, stabilizes liposomal formulation of the drug (both in suspension and in a lyophilized powder), does not influence liposomal fate in the blood circulation system and benefits from other biological activities of their resorcinolic lipid modifiers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号