首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The carboxy-terminal alpha-helix of a nuclear receptor ligand-binding domain (LBD), helix 12, contains a critical, ligand-modulated interface for the interaction with coactivator proteins. In this study, using the example of the vitamin D receptor (VDR) and the partial antagonist ZK159222, the role of helix 12 (residues 417-427) for both antagonistic and agonistic receptor actions was investigated. Amino acid residue G423 was demonstrated to be critical for partial agonism of ZK159222, but not for the activity of the natural VDR agonist, 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)). The amount of partial agonism of ZK159222 increased when helix 12 was truncated by the last four amino acid residues (Delta424-27) and augmented even more, when in addition helix 12 of VDR's dimerization partner, retinoid X receptor (RXR), was truncated. In contrast, the low agonism of a structural derivative of ZK159222, ZK168281, was not affected comparably, whereas other close structural relatives of ZK159222 even demonstrated the same agonistic activity as that of 1alpha,25(OH)(2)D(3). The amount of agonism of ZK159222 and ZK168281 at different variations of helix 12 correlated well with VDR's ability to complex with coactivator proteins and inversely correlated with the strength of the compound's antagonistic action on 1alpha,25(OH)(2)D(3) signalling. Molecular dynamics simulations of the LBD complexed with the two antagonists could explain their different action by demonstrating a more drastic displacement of helix 12 through ZK168281 than through ZK159222. Moreover, the modelling could indicate a kink of helix 12 at amino acid residue G423, which provides the last four amino acid residues of helix 12 with a modulatory role for the partial agonism of some VDR antagonists, such as ZK159222. In conclusion, partial agonism of a VDR antagonist is lower the more it disturbs helix 12 in taking the optimal position for coactivator interaction.  相似文献   

2.
More than 2,000 synthetic analogues of the biological active form of vitamin D, 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)), are presently known. Basically, all of them interfere with the molecular switch of nuclear 1alpha,25(OH)(2)D(3) signaling, which is the complex of the vitamin D receptor (VDR), the retinoid X receptor (RXR), and a 1alpha,25(OH)(2)D(3) response element (VDRE). Central element of this molecular switch is the ligand-binding domain (LBD) of the VDR, which can be stabilized by a 1alpha,25(OH)(2)D(3) analogue either in its agonistic, antagonistic, or non-agonistic conformation. The positioning of helix 12 of the LBD is of most critical importance for these conformations. In each of the three conformations, the VDR performs different protein-protein interactions, which then result in a characteristic functional profile. Most 1alpha,25(OH)(2)D(3) analogues have been identified as agonists, a few are antagonists (e.g., ZK159222 and TEI-9647), and only Gemini and some of its derivatives act under restricted conditions as non-agonists. The functional profile of some 1alpha,25(OH)(2)D(3) analogues, such as EB1089 and Gemini, can be modulated by protein and DNA interaction partners of the VDR. This provides them with some selectivity for DNA-dependent and -independent signaling pathways and VDRE structures.  相似文献   

3.
4.
5.
We reported that (23S)-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone (TEI-9647) antagonizes vitamin D receptor (VDR)-mediated genomic actions of 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] in human cells but is agonistic in rodent cells. Human and rat VDR ligand-binding domains are similar, but differences in the C-terminal region are important for ligand binding and transactivation and might determine the agonistic/antagonistic effects of TEI-9647. We tested TEI-9647 on 1alpha,25(OH)(2)D(3) transactivation using SaOS-2 cells (human osteosarcoma) or ROS 24/1 cells (rat osteosarcoma) cotransfected with human or rodent VDR and a reporter. In both cell lines, TEI-9647 was antagonistic with wild-type human (h)VDR, but agonistic with overexpressed wild-type rat (r)VDR. VDR chimeras substituting the hVDR C-terminal region (activation function 2 domain) with corresponding rVDR residues diminished antagonism and increased agonism of TEI-9647. However, substitution of 25 C-terminal rVDR residues with corresponding hVDR residues diminished agonism and increased antagonism of TEI-9647. hVDR mutants (C403S, C410N) demonstrated that Cys403 and/or 410 was necessary for TEI-9647 antagonism of 1alpha,25(OH)(2)D(3) transactivation. These results suggest that species specificity of VDR, especially in the C-terminal region, determines the agonistic/antagonistic effects of TEI-9647 that determine, in part, VDR interactions with coactivators and emphasize the critical interaction between TEI-9647 and the two C-terminal hVDR Cys residues to mediate the antagonistic effect of TEI-9647.  相似文献   

6.
1alpha,25(OH)(2)D(3) regulates rat growth plate chondrocytes via nuclear vitamin D receptor (1,25-nVDR) and membrane VDR (1,25-mVDR) mechanisms. To assess the relationship between the receptors, we examined the membrane response to 1alpha,25(OH)(2)D(3) in costochondral cartilage cells from wild type VDR(+/+) and VDR(-/-) mice, the latter lacking the 1,25-nVDR and exhibiting type II rickets and alopecia. Methods were developed for isolation and culture of cells from the resting zone (RC) and growth zone (GC, prehypertrophic and upper hypertrophic zones) of the costochondral cartilages from wild type and homozygous knockout mice. 1alpha,25(OH)(2)D(3) had no effect on [(3)H]-thymidine incorporation in VDR(-/-) GC cells, but it increased [(3)H]-thymidine incorporation in VDR(+/+) cells. Proteoglycan production was increased in cultures of both VDR(-/-) and VDR(+/+) cells, based on [(35)S]-sulfate incorporation. These effects were partially blocked by chelerythrine, which is a specific inhibitor of protein kinase C (PKC), indicating that PKC-signaling was involved. 1alpha,25(OH)(2)D(3) caused a 10-fold increase in PKC specific activity in VDR(-/-), and VDR(+/+) GC cells as early as 1 min, supporting this hypothesis. In contrast, 1alpha,25(OH)(2)D(3) had no effect on PKC activity in RC cells isolated from VDR(-/-) or VDR(+/+) mice and neither 1beta,25(OH)(2)D(3) nor 24R,25(OH)(2)D(3) affected PKC in GC cells from these mice. Phospholipase C (PLC) activity was also increased within 1 min in GC chondrocyte cultures treated with 1alpha,25(OH)(2)D(3). As noted previously for rat growth plate chondrocytes, 1alpha,25(OH)(2)D(3) mediated its increases in PKC and PLC activities in the VDR(-/-) GC cells through activation of phospholipase A(2) (PLA(2)). These responses to 1alpha,25(OH)(2)D(3) were blocked by antibodies to 1,25-MARRS, which is a [(3)H]-1,25(OH)(2)D(3) binding protein identified in chick enterocytes. 24R,25(OH)(2)D(3) regulated PKC in VDR(-/-) and VDR(+/+) RC cells. Wild type RC cells responded to 24R,25(OH)(2)D(3) with an increase in PKC, whereas treatment of RC cells from mice lacking a functional 1,25-nVDR caused a time-dependent decrease in PKC between 6 and 9 min. 24R,25(OH)(2)D(3) dependent PKC was mediated by phospholipase D, but not by PLC, as noted previously for rat RC cells treated with 24R,25(OH)(2)D(3). These results provide definitive evidence that there are two distinct receptors to 1alpha,25(OH)(2)D(3). 1alpha,25(OH)(2)D(3)-dependent regulation of DNA synthesis in GC cells requires the 1,25-nVDR, although other physiological responses to the vitamin D metabolite, such as proteoglycan sulfation, involve regulation via the 1,25-mVDR.  相似文献   

7.
8.
9.
10.
We have recently reported that 23(S)-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone (TEI-9647) efficiently blocks the differentiation of HL-60 cells induced by 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) (Miura, D., Manabe, K., Ozono, K., Saito, M., Gao, Q., Norman, A. W., and Ishizuka, S. (1999) J. Biol. Chem. 274, 16392-16399). To clarify the molecular mechanisms of this antagonism, we examined whether TEI-9647 antagonizes the genomic effects of 1alpha,25(OH)(2)D(3). 10(-7) to 10(-9) M TEI-9647 inhibited the transactivation effect of 10(-8) M 1alpha,25(OH)(2)D(3) in a dose-dependent manner, while TEI-9647 alone did not activate the reporter activity driven by SV40 promoter containing two vitamin D response elements in Saos-2 cells. The antagonistic effect of TEI-9647 was also observed using the rat 24-hydroxylase gene promoter, but the effect was weaker in HeLa and COS-7 cells than in Saos-2 cells. TEI-9647 also exhibited antagonism in an assay system where the VDR fused to the GAL4 DNA-binding domain and the reporter plasmid containing the GAL4 binding site were used in Saos-2 cells, but did not in HeLa cells. TEI-9647 reduced the interaction between VDR and RXRalpha according to the results obtained from the mammalian two-hybrid system in Saos-2 cells, but did not in HeLa cells. The two-hybrid system also revealed that the interaction between VDR and SRC-1 was reduced by TEI-9647 in Saos-2 cells. These results demonstrate that the novel 1alpha,25(OH)(2)D(3) analogue, TEI-9647, is the first synthetic ligand for the VDR that efficiently antagonizes the action of 1alpha, 25(OH)(2)D(3), although the extent of its antagonism depends on cell type.  相似文献   

11.
Carlberg C  Quack M  Herdick M  Bury Y  Polly P  Toell A 《Steroids》2001,66(3-5):213-221
The vitamin D(3) receptor (VDR) acts primarily as a heterodimer with the retinoid X receptor (RXR) on different types of 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) response elements (VDREs). Therefore, DNA-bound VDR-RXR heterodimers can be considered as the molecular switches of 1alpha,25(OH)(2)D(3) signalling. Functional conformations of the VDR within these molecular switches appear to be of central importance for describing the biologic actions of 1alpha,25(OH)(2)D(3) and its analogues. Moreover, VDR conformations provide a molecular basis for understanding the potential selective profile of VDR agonists, which is critical for a therapeutic application. This review discusses VDR conformations and their selective stabilization by 1alpha,25(OH)(2)D(3) and its analogues, such as EB1089 and Gemini, as a monomer in solution or as a heterodimer with RXR bound to different VDREs and complexed with coactivator or corepressor proteins.  相似文献   

12.
13.
1alpha,25-Dihydroxyvitamin D(3)-3-bromoacetate (1, 25(OH)(2)D(3)-3-BE), an affinity labeling analog of 1alpha, 25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), displayed stronger antiproliferative activities than 1,25(OH)(2)D(3) at 10(-10)-10(-6) M dose levels in cultured human keratinocytes (CHK). Additionally, preincubation of the cells with 10(-6) M 1,25(OH)(2)D(3), followed by treatment with various doses of 1,25(OH)(2)D(3)-3-BE, resulted in a significantly stronger antiproliferative activity by the mixture than individual reagents at every dose level. To search for a mechanism of this observation, we determined that [(14)C]1, 25(OH)(2)D(3)-3-BE covalently labeled human recombinant 1alpha, 25-dihydroxyvitamin D(3) receptor (reVDR) swiftly (<1 min) with a 1:1 stoichiometry and induced conformational changes (in VDR) that are different from 1,25(OH)(2)D(3), by limited tryptic digestion. Furthermore, a protein band, corresponding to reVDR, was specifically labeled by [(14)C]1,25(OH)(2)D(3)-3-BE in CHK extract, indicating that VDR is the main target of [(14)C]1, 25(OH)(2)D(3)-3-BE. The above-mentioned observations suggest that a rapid covalent labeling of VDR in CHK might alter the interaction between the holo-VDR and 1,25(OH)(2)D(3)-controlled genes. Furthermore, we observed that 1,25(OH)(2)D(3)-3-BE significantly decreased the binding of VDR to human osteocalcin vitamin D responsive element (hOCVDRE), as well as the dissociation rate of VDR from hOCVDRE, compared with 1,25(OH)(2)D(3) in COS-1 cells, transiently transfected with a VDR construct. Additionally, 1, 25(OH)(2)D(3)-3-BE was found to be more potent in inducing 1alpha, 25-dihydroxyvitamin D(3)-24-hydroxylase (24-OHase) promoter activity and mRNA expression in keratinocytes. The accumulation of 24-OHase message was also prolonged by the analog. Collectively these results indicated that rapid covalent labeling of VDR in keratinocytes (by 1, 25(OH)(2)D(3)-3-BE) might result in the conversion of apo-VDR to a holo-form, with a conformation that is different from that of the 1, 25(OH)(2)D(3)-VDR complex. This resulted in an enhanced stability of the 1,25(OH)(2)D(3)-3-BE/VDR-VDRE complex and contributed to the amplified antiproliferative effect of 1,25(OH)(2)D(3)-3-BE in keratinocytes.  相似文献   

14.
1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)), the active metabolite of vitamin D, mediates many of its effects through the intranuclear vitamin D receptor (VDR, NR1I1), that belongs to the large superfamily of nuclear receptors. Vitamin D receptor can directly regulate gene expression by binding to vitamin D response elements (VDREs) located in promoter or enhancer regions of various genes. Although numerous synthetic analogs of 1alpha,25(OH)(2)D(3) have been analysed for VDR binding and transactivation of VDRE-driven gene expression, the biologic activity of many naturally occurring metabolites has not yet been analyzed in detail. We therefore studied the transactivation properties of 1alpha,24R, 25-trihydroxyvitamin D(3) (1alpha,24R,25(OH)(3)D(3)), 1alpha, 25-dihydroxy-3-epi-vitamin D(3) (1alpha,25(OH)(2)-3-epi-D(3)), 1alpha,23S,25-trihydroxyvitamin D(3) (1alpha,23S,25(OH)(3)D(3)), and 1alpha-hydroxy-23-carboxy-24,25,26,27-tetranorvitamin D(3) (1alpha(OH)-24,25,26,27-tetranor-23-COOH-D(3); calcitroic acid) using the human G-361 melanoma cell line. Cells were cotransfected with a VDR expression plasmid and luciferase reporter gene constructs driven by two copies of the VDRE of either the mouse osteopontin promoter or the 1alpha,25(OH)(2)D(3) 24-hydroxylase (CYP24) promoter. Treatment with 1alpha,25(OH)(2)D(3) or the metabolites 1alpha,24R,25(OH)(3)D(3), 1alpha,25(OH)(2)-3-epi-D(3), and 1alpha,23S,25(OH)(3)D(3) resulted in transactivation of both constructs in a time- and dose-dependent manner, and a postitive regulatory effect was observed even for calcitroic acid in the presence of overexpressed VDR. The metabolites that were active in the reporter gene assay also induced expression of CYP24 mRNA in the human keratinocyte cell line HaCaT, although with less potency than the parent hormone. A ligand-binding assay based on nuclear extracts from COS-1 cells overexpressing human VDR demonstrated that the metabolites, although active in the reporter gene assay, were much less effective in displacing [(3)H]-labeled 1alpha,25(OH)(2)D(3) from VDR than the parent hormone. Thus, we report that several natural metabolites of 1alpha,25(OH)(2)D(3) retain significant biologic activity mediated through VDR despite their apparent low affinity for VDR.  相似文献   

15.
16.
17.
18.
The RXR forms a heterodimer with the VDR to activate genes that are regulated by 1,25(OH)(2)D(3). In the absence of RXR's ligand, 9-cis-RA, RXR appears to be a silent partner to VDR. The effect of 9-cis-RA on VDR/RXR heterodimer formation and 1, 25(OH)(2)D(3)-mediated gene expression in vivo remains unclear. We examined the effect of exogenous 9-cis-RA or 9-cis-RA precursors, 9, 13-di-cis-RA and 9-cis-RCHO, on 1,25(OH)(2)D(3)-mediated induction rat renal 24-hydroxylase. The rats were treated as follows: (1) vehicle; (2) 1,25(OH)(2)D(3); (3) 1,25(OH)(2)D(3) + 9-cis-RA; (4) 1, 25(OH)(2)D(3) + 9,13-di-cis-RA; (5) 1,25(OH)(2)D(3) + 9-cis-RCHO; (6) 9-cis-RA; (7) 9,13-di-cis-RA; and (8) 9-cis-RCHO. 1, 25(OH)(2)D(3) was administered IP 18 h prior to sacrifice. The retinoids were administered every 4 h, starting 28 h prior to sacrifice. The last retinoid dose was administered 4 h prior to sacrifice. Treatment with 1,25(OH)(2)D(3) alone increased 24-hydroxylase from 35 +/- 6 (controls) to 258 +/- 44 pmol/min/g tissue. When 1,25(OH)(2)D(3) was administered with 9-cis-RA, 9, 13-di-cis-RA, or 9-cis-RCHO, 24-hydroxylases were 568 +/- 56, 524 +/- 56, and 463 +/- 62 pmol/min/g tissue, respectively. Furthermore, codosing of 1,25(OH)(2)D(3) and 9-cis-retinoids resulted in higher circulating concentrations of 9-cis-RA and 9,13-di-cis-RA when compared to rats dosed with 9-cis-retinoids alone. This was shown to be due to 1,25(OH)(2)D(3) increasing the half-life of 9,13-di-cis-RA by three to four times. These results show that 9-cis-RA can act synergistically with 1,25(OH)(2)D(3) in the regulation of 24-hydroxylase in vivo. Additionally, 1,25(OH)(2)D(3) regulates 9, 13-di-cis-RA metabolism in vivo.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号