首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
S Qian  M Capovilla    V Pirrotta 《The EMBO journal》1993,12(10):3865-3877
The core activity of the Ubx gene enhancer BRE (bx region enhancer) is encoded within a 500 bp module. bx DNA outside this active module increases the level of expression, expands the expression into ventro-lateral ectoderm and partially stabilizes the late expression pattern. The products of the gap genes hb and tll and of the pair-rule gene ftz bind to the 500 bp BRE module and control directly its initial pattern of expression. ftz enhances expression in even-numbered parasegments within the correct spatial domain whose boundaries are set by hb and tll. In addition, en and twi products activate the enhancer, probably directly. en broadens the parasegmental stripe while twi cooperates with ftz to enhance expression in the mesoderm. Binding sites for the five regulators are closely clustered, often overlapping extensively with one another. In vitro, hb blocks the binding of ftz and can also displace ftz protein pre-bound to an overlapping site, suggesting that competitive binding and/or interference by hb sets the initial boundaries of the domain of expression. Our results also suggest that this interaction is short-range and the long distance interactions among different enhancers may depend on each enhancer's ability to complex with the promoter.  相似文献   

2.
3.
V. Pirrotta  C. S. Chan  D. McCabe    S. Qian 《Genetics》1995,141(4):1439-1450
The expression domain of the Ubx gene in Drosophila embryos is bounded by the product of the hb gene, acting as a repressor. We show that all Ubx fragments that bind Hb protein in vitro contain parasegmental enhancers active in the embryo in specific parasegmental patterns. We have found three new embryonic enhancer elements in the upstream region, in addition to the two previously identified. Each produces a pattern initially bounded at PS6 by Hb but sooner or later breaks down this boundary and begins to express in the anterior region. These enhancers do not respond to the long-term maintenance mediated by the Polycomb group of genes. They also cease functioning after germ band extension. Expression in imaginal tissues is due to a set of entirely separate and independent imaginal disc enhancers. These do not contain Hb binding sites and by themselves have no anterior/posterior positional information, although some distinguish between ventral and dorsal discs. A third kind of element, the Polycomb Response Element (PRE), has no enhancer activity but causes long-term maintenance of the expression domain of other enhancers present in the vicinity. The interaction of these elements results in the correct expression of Ubx in imaginal tissues.  相似文献   

4.
5.
G Struhl  K Struhl  P M Macdonald 《Cell》1989,57(7):1259-1273
  相似文献   

6.
J. W. Little  C. A. Byrd    D. L. Brower 《Genetics》1990,124(4):899-908
We have examined the patterns of expression of the homeotic gene Ubx in imaginal discs of Drosophila larvae carrying mutations in the abx, bx and pbx regulatory domains. In haltere discs, all five bx insertion mutations examined led to a general reduction in Ubx expression in the anterior compartment; for a given allele, the strength of the adult cuticle phenotype correlated with the degree of Ubx reduction. Deletions mapping near or overlapping the sites of bx insertions, including three abx alleles and the bx34e-prv(bx-prv) allele, showed greatly reduced Ubx expression in parts of the anterior compartment of the haltere disc; however, anterior patches of strong Ubx expression often remained, in highly variable patterns. As expected, the pbx1 mutation led to reduced Ubx expression in the posterior compartment of the haltere disc; surprisingly, pbx1 also led to altered expression of the en protein near the compartment border in the central region of the disc. In the metathoracic leg, all the bx alleles caused extreme reduction in Ubx expression in the anterior regions, with no allele-specific differences. In contrast, abx and bx-prv alleles resulted in patchy anterior reductions in third leg discs. In the larval central nervous system, abx but not bx alleles affected Ubx expression; the bx-prv deletion gave a wild-type phenotype, but it could not fully complement abx mutations. In the posterior wing disc, the bx-prv allele, and to a much lesser extent the bx34e chromosome from which it arose, led to ectopic expression of Ubx. Unlike other grain-of-function mutations in the BX-C, this phenotype appeared to be partially recessive to wild type. Finally, we asked whether the ppx transformation, which results from early lack of Ubx+ function in the mesothorax and is seen in abx animals, is due to ectopic Scr expression. Some mesothoracic leg and wing discs from abx2 larvae displayed ectopic expression of Scr, which was variable in extent but always confined to the posterior compartment.  相似文献   

7.
8.
A gap gene, hunchback, regulates the spatial expression of Ultrabithorax   总被引:25,自引:0,他引:25  
R A White  R Lehmann 《Cell》1986,47(2):311-321
We have examined the distribution of Ultrabithorax (Ubx) proteins in embryos mutant for the zygotic gap class of segmentation genes. Members of this class include hunchback (hb), knirps (kni), and Krüppel (Kr). All three mutations disrupt segmentation in specific regions of the embryo. Mutations in kni and Kr produce complex alterations in the Ubx expression pattern. In hb mutants Ubx is ectopically expressed both anterior and posterior to its wild-type boundaries. Thus, the hb gene may play an important role in the specification of the boundaries of Ubx expression. Using the Ubx protein distribution as a marker for metameric organization and using Hoechst dye to monitor cell death, we could follow early events that lead to the final gap-segmentation phenotype in the larval cuticle.  相似文献   

9.
A purified Drosophila homeodomain protein represses transcription in vitro   总被引:23,自引:0,他引:23  
M D Biggin  R Tjian 《Cell》1989,58(3):433-440
  相似文献   

10.
Regulation of Hex gene expression by a Smads-dependent signaling pathway   总被引:2,自引:0,他引:2  
The homeobox gene Hex is expressed in multiple cell types during embryogenesis and is required for liver and monocyte development. Hex is expressed in the foregut region of late gastrula avian and mammalian embryos in a pattern that overlaps with expression of bone morphogenetic proteins (BMPs). Here we investigate the relationship between BMP signaling and Hex gene expression. We find that Hex expression in avian anterior lateral endoderm is regulated by autocrine BMP signaling. Characterization of the mouse Hex gene promoter identified a 71-nucleotide BMP-responsive element (BRE) that is required for up-regulation of Hex by an activated BMP signaling pathway. The Hex BRE binds Smad4 and Smad1-Smad4 complexes in vitro, and in transfection assays, it is responsive to Smad1 and Smad4 but not to Smad2 and Smad4 or Smad3 and Smad4. The BRE contains two copies of a GCCGnCGC-like motif that in Drosophila is the binding site for Mad and Madea followed by two CAGAG boxes that are similar to sequences required for transforming growth factor-beta/activin responsiveness of several vertebrate genes. Mutation of the GC elements, but not the two CAGAG boxes, abolishes Smads responsiveness in the intact Hex promoter, whereas mutations in both the GC elements and CAGAG boxes show that they act cooperatively to confer Smads responsiveness to the Hex promoter. The Hex BRE can confer Smads responsiveness to a heterologous promoter, and in this context, both the GC-rich elements and the CAGAG boxes are required for Smads-dependent promoter activity. An element almost identical to the Hex BRE is present within the BMP-responsive Nkx2-5 gene promoter, suggesting that the Hex BRE represents a common response element for genes regulated by BMP signaling in the foregut region of the embryo.  相似文献   

11.
12.
13.
14.
In vivo studies in the mouse have revealed that the muscle promoter of the mouse dystrophin gene can target the right ventricle of the heart only, suggesting the need for other regulatory elements to target the skeletal muscle as well as other compartments of the heart. In this study we report the identification of the mouse dystrophin gene enhancer that is located approximately 8.5 kilobases downstream from the mouse dystrophin gene muscle promoter. The enhancer was tested in myogenic G8, H9-C2, and nonmyogenic 3T3 cell lines and is mostly active in G8 myotubes. Sequence analysis of the mouse dystrophin gene enhancer revealed the presence of four E-boxes numbered E1-E4, a putative mef-2 binding site, and a serum response element. Site-directed mutagenesis studies have shown that E-boxes 1, 2, and 3 as well as the serum response element are required for enhancer activity. Gel shift analysis revealed two binding activities at binding sites E1 and E3 which were specific to myotubes, and supershift assays confirmed that myoD binds at both these sites. Our study also shows that werum response factor binds the serum response element but in myoblasts and fibroblasts only, suggesting that serum response factor may repress enhancer function.  相似文献   

15.
16.
Mutations in the Drosophila gene extradenticle (exd), a homologue of the human proto-oncogene pbx1, cause homeotic transformations by altering the morphological consequences of homeotic selector gene activity. exd has been proposed to act by contributing to the specificity of selector homeodomain proteins for their downstream targets. Here we show that exd is indeed required for the appropriate regulation of at least some of these target genes. Expression patterns of wingless, teashirt and decapentaplegic (dpp) are altered in the embryonic midgut of embryos lacking exd, while the expression of their respective regulators (abd-A, Antp and Ubx) remains normal. Co-regulation of dpp by exd and Ubx was investigated in greater detail by examining the expression of reporter constructs in exd embryos. These experiments not only define dpp regulatory regions responsive to exd, but also distinguish two functions of exd in the regulation of dpp. exd acts with Ubx to activate dpp expression in parasegment 7 (PS7), via a minimal visceral mesoderm enhancer, and exd represses dpp expression anterior to PS7. We show that even when Ubx is ubiquitously expressed at high levels in exd embryos, Ubx is incapable of activating dpp enhancer expression. Thus, exd is an indispensable component in target gene regulation by the homeotic selector proteins.  相似文献   

17.
18.
A negative element involved in vimentin gene expression.   总被引:13,自引:8,他引:5       下载免费PDF全文
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号