首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The interactions of diethylpyrocarbonate (DEP) with the various forms of cytochrome b5 were studied to gain a better understanding of the factors that influence the extent of modification of the axial histidines of cytochrome b5. Very low concentrations of DEP were able to decrease the heme binding capacity of apocytochrome b5. Moreover, it was shown that two additional histidines, presumed to be the axial ligands (His 39 and 63), were modified in the apo but not the holo form of a given preparation of cytochrome b5. Trypsin-solubilized bovine cytochrome b5 was resistant to the effects of DEP. A 200-fold molar excess of DEP displaced only 15% of the heme in the trypsin-solubilized protein in contrast to an 84% displacement of the heme in the detergent-solubilized protein. However, detergent-solubilized cytochrome b5 which had been incorporated into phospholipid vesicles exhibited the same reactivity with DEP as did the trypsin-solubilized protein. This is attributed to the fact that the two resistant preparations of cytochrome b5 are monomeric in their respective environments while detergent-solubilized cytochrome b5 is known to exist as an octamer in aqueous solutions. Our studies suggest that dissociation of the octamer to the monomer results in a conformational change that decreases the reactivity of the axial ligands of the hydrophilic heme-containing domain of cytochrome b5. Examination of the cytochrome b5 molecule by computer graphics indicates that a tunnel leads from the surface of the molecule to axial histidine 63 and that axial histidine 39 is buried.  相似文献   

2.
3.
The sequence and blocking group of the amino-terminal 15 amino acids of rabbit trypsin-solubilized cytochrome b5 were determined by liquid secondary ion mass spectrometry (LSIMS) and tandem mass spectrometry (MS/MS). The molecular weights of peptides generated from aStaphylococcus aureus V8 protease digest of this protein were determined by LSIMS analysis and the two peptides containing the blocked amino-terminus were sequenced by tandem mass spectrometry to yield the sequence; N-acetyl-Ala-Ala-Glu-Ser-Asp-Lys-Asp-Val-Lys-Tyr-Tyr-Thr-Leu-Glu-Glu. Comparison of this sequence with a recently reported cDNA sequence (Dariushet al., 1988) indicates that Gln at position 3 is selectively deamidated, although no other discrepancies were found. Intact rabbit and bovine trypsin-solubilized cytochrome b5 were also analyzed by LSIMS on a high-field mass spectrometer equipped with a diode array detector. Mass measurement of the unresolved protonated molecular ion peak tops gave average molecular weights of 9462.2±2 and 9502.3±2 for bovine and rabbit trypsin-solubilized cytochrome b5, respectively. In both cases, these molecular weights correspond to a cytochrome b5 fragment consisting of amino acids Asp(7)-Arg(88). The average molecular weight for the rabbit amino-terminal-blocked form of trypsin-solubilized cytochrome b5 was found to be 10,144.5±2, which was consistent with the molecular weight predicted for the extended N-acetylated form (residues 1–88) of Mr 10,146.1.  相似文献   

4.
Lee KH  Kuczera K 《Biopolymers》2003,69(2):260-269
Two forms of cytochrome b(5) have been identified, associated with the outer membrane of liver mitochondria (OM cyt b(5)) and with the membrane of the endoplasmic reticulum (microsomal, Mc cyt b(5)). These proteins have very similar structures, but differ significantly in physical properties, with the OM cyt b(5) exhibiting a more negative reduction potential, higher stability, and stronger interactions with the heme. We perform molecular dynamics simulations to probe the structures and fluctuations of the two proteins in solution, to help explain the observed physical differences. We find that the structures of the two proteins, highly similar in the crystal, differ in position of a surface loop involving residues 49-51 in solution. Hydrophobic residues Ala-18, Ile-32, Leu-36, and Leu-47 tend to cluster together on the surface of rat OM cyt b(5), blocking water access to the protein interior. In bovine Mc cyt b(5), two of these positions, Ser-18 and Arg-47, are occupied by hydrophilic residues. This leads to breaking the hydrophobic cluster and allowing the protein to occupy a more open conformation. A measure of this structural transition is the opening of a cleft on the protein surface, which is 5 A wider in the OM cyt b(5) simulation compared to the Mc form. The OM protein also appears to have a more compact hydrophobic core in its beta-sheet region. These effects may be used to explain observed stability differences between the two proteins.  相似文献   

5.
6.
7.
The water-soluble domain of rat microsomal cytochrome b(5) is a convenient protein with which to inspect the connection between amino acid sequence and thermodynamic properties. In the absence of its single heme cofactor, cytochrome b(5) contains a partially folded stretch of 30 residues. This region is recognized as prone to disorder by programs that analyze primary structures for such intrinsic features. The cytochrome was subjected to amino acid replacements in the folded core (I12A), in the portion that refolds only when in contact with the heme group (N57P), and in both (F35H/H39A/L46Y). Despite the difficulties associated with measuring thermodynamic quantities for the heme-bound species, it was possible to rationalize the energetic consequences of both types of replacements and test a simple equation relating apoprotein and holoprotein stability. In addition, a phenomenological relationship between the change in T(m) (the temperature at the midpoint of the thermal transition) and the change in thermodynamic stability determined by chemical denaturation was observed that could be used to extend the interpretation of incomplete holoprotein stability data. Structural information was obtained by nuclear magnetic resonance spectroscopy toward an atomic-level analysis of the effects.  相似文献   

8.
9.
R D Guiles  V J Basus  I D Kuntz  L Waskell 《Biochemistry》1992,31(46):11365-11375
15N and 1H resonance assignments for backbone and side-chain resonances of both equilibrium forms of rat ferrocytochrome b5 have been obtained, using 15N-1H heteronuclear correlation methods employing globally 15N-labeled protein. Unlike other cytochrome b5 species assigned to date (Guiles et al., 1990) the rat cytochrome exists as an equilibrium distribution of conformers in nearly equal abundance (Lee et al., 1990). The ratio of conformers present in all other species variants is approximately 1:9. More than 40% of all residues of the rat protein exhibit NMR-detectable heterogeneity due to the 180 degrees rotation of the heme about the alpha, gamma-meso axis. NOESY and HOHAHA relayed 15N-1H double-DEPT heteronuclear correlation methods were an indispensible tool for the deconvolution of a system with this level of heterogeneity. Differences in the resonance assignments between the two equilibrium conformers were found to be as great as differences between species variants we have previously reported. On the basis of the magnitude and extent of the observed chemical shift differences and specific NOESY connectivities observed in the two isomers, we believe the two equilibrium conformers differ not only by a simple back-to-front flip of the heme but also by an additional rotation about an axis normal to the heme plane as has been previously suggested by Pochapsky et al. (1990). A short segment of the protein at the N-terminus could not be assigned, presumably due to rapid exchange of solvent-accessible amide protons in this disordered segment of the protein. Assignments for 93 of the 98 residues of this 12-kDa protein have been obtained.  相似文献   

10.
The rate and mechanism of autoxidation of soluble ferrocytochrome b5, prepared from liver microsomal suspensions, appear to reflect an intrinsic property of membrane-bound cytochrome b5. The first-order rate constant for autoxidation of trypsin-cleaved ferrocytochrome b5, prepared by reduction with dithionite, was 2.00 X 10(-3) +/- 0.19 X 10(-3) S-1 (mean +/- S.E.M., n =8) when measured at 30 degrees C in 10 mM-phosphate buffer, pH 7.4. At 37 degrees C in aerated 10 mM-phosphate buffer (pH 7.4)/0.15 M-KCl, the rate constant was 5.6 X 10(-3) S-1. The autoxidation reaction was faster at lower pH values and at high ionic strengths. Unlike ferromyoglobin, the autoxidation reaction of which is maximal at low O2 concentrations, autoxidation of ferrocytochrome b5 showed a simple O2-dependence with an apparent Km for O2 of 2.28 X 10(-4) M (approx. 20kPa or 150mmHg)9 During autoxidation, 0.25 mol of O2 was consumed per mol of cytochrome oxidized. Cyanide, nucleophilic anions, EDTA and catalase each had little or no effect on autoxidation rates. Adrenaline significantly enhanced autoxidation rates, causing a tenfold increase at 0.6 mM. Ferrocytochrome b5 reduced an excess of cytochrome c in a biphasic manner. An initial rapid phase, independent of O2 concentration, was unaffected by superoxide dismutase. A subsequent slower phase, which continued for up to 60 min, was retarded at low O2 concentrations and inhibited by 65% by superoxide dismutase at a concentration of 3 mug/ml. It is concluded that autoxidation is responsible for a significant proportion of electron flow between cytochrome b5 and O2 in liver endoplasmic membranes, this reaction being capable of generating superoxide anions. A biological role for the reaction is discussed.  相似文献   

11.
12.
In vitro, cytochrome b5 modulates the rate of cytochrome P450-dependent mono-oxygenation reactions. However, the role of this enzyme in determining drug pharmacokinetics in vivo and the consequential effects on drug absorption distribution, metabolism, excretion, and toxicity are unclear. In order to resolve this issue, we have carried out the conditional deletion of microsomal cytochrome b5 in the liver to create the hepatic microsomal cytochrome b5 null mouse. These mice develop and breed normally and have no overt phenotype. In vitro studies using a range of substrates for different P450 enzymes showed that in hepatic microsomal cytochrome b5 null NADH-mediated metabolism was essentially abolished for most substrates, and the NADPH-dependent metabolism of many substrates was reduced by 50-90%. This reduction in metabolism was also reflected in the in vivo elimination profiles of several drugs, including midazolam, metoprolol, and tolbutamide. In the case of chlorzoxazone, elimination was essentially unchanged. For some drugs, the pharmacokinetics were also markedly altered; for example, when administered orally, the maximum plasma concentration for midazolam was increased by 2.5-fold, and the clearance decreased by 3.6-fold in hepatic microsomal cytochrome b5 null mice. These data indicate that microsomal cytochrome b5 can play a major role in the in vivo metabolism of certain drugs and chemicals but in a P450- and substrate-dependent manner.  相似文献   

13.
The amino acid sequences of human, porcine, and bovine erythrocyte cytochromes b5 which are soluble and present in the cytosol have been determined. In addition, the partial sequences of microsome-bound liver cytochrome b5, namely the sequence of the N-terminal region and joint region between the heme-containing and membranous part, have been established for human and porcine sources. All the cytochromes b5 from erythrocyte and liver contained N-acetylated N-termini. Of the 97 amino acid residues of erythrocyte cytochrome b5, residues 1-96 were identical with those of the liver protein of the same species. However, residue 97 (C-terminal residue) was proline for human erythrocyte cytochrome b5 and serine for the porcine protein, while residues 97 (joint region) of human and porcine liver cytochromes b5 were threonine. These findings indicate that the two forms of cytochrome b5 are encoded by two different but closely related mRNAs.  相似文献   

14.
15.
Structure of cytochrome b5 and its topology in the microsomal membrane   总被引:5,自引:0,他引:5  
The complete amino acid sequence of human and chicken liver microsomal cytochrome b5 was determined. The amino termini of cytochrome b5 from four other mammalian species were examined in order to determine their complete covalent structure. As in the rat species, cytochrome b5 preparations from man, rabbit, calf and horse had an acetylated alanine as the first residue. In contrast, the pig cytochrome had alanine at the amino terminus. The amino terminus of the chicken cytochrome b5 was also unmodified, and extended three residues absent in the mammalian species. In order to investigate whether the carboxy-terminal segment of cytochrome b5 is located on the cytosolic or the luminal side of the microsomal membrane, rabbit liver microsomes were treated with trypsin and subjected to gel filtration and high-pressure liquid chromatography. The nonpolar peptide isolated from these microsomes lacked the terminal hexapeptide, indicating that when cytochrome b5 is bound to intact microsomes, the carboxy terminus is located on the cytosolic side of the membrane and does not extend in the lumen of the endoplasmic reticulum.  相似文献   

16.
Microsomal cytochrome b5 plays a key role in the oxidation of a variety of exogenous and endogenous compounds, including drugs, fatty acids, cholesterol and steroid hormones. To better understand its functional properties in a membrane mimic environment, we carried out high-resolution solution NMR studies. Here we report resonance assignments for full-length rabbit cytochrome b5 embedded in dodecylphosphocholine micelles.  相似文献   

17.
18.
Two distinct forms of cytochrome b5 exist in the rat hepatocyte. One is associated with the membrane of the endoplasmic reticulum (microsomal, or Mc, cyt b5) while the other is associated with the outer membrane of liver mitochondria (OM cyt b5). Rat OM cyt b5, the only OM cyt b5 identified so far, has a significantly more negative reduction potential and is substantially more stable toward chemical and thermal denaturation than Mc cytochromes b5. In addition, hemin is kinetically trapped in rat OM cyt b5 but not in the Mc proteins. As a result, no transfer of hemin from rat OM cyt b5 to apomyoglobin is observed at pH values as low as 5.2, nor can the thermodyamically favored ratio of hemin orientational isomers be achieved under physiologically relevant conditions. These differences are striking given the similarity of the respective protein folds. A combined theoretical and experimental study has been conducted in order to probe the structural basis behind the remarkably different properties of rat OM and Mc cytochromes b5. Molecular dynamics (MD) simulations starting from the crystal structure of bovine Mc cyt b5 revealed a conformational change that exposes several internal residues to the aqueous environment. The new conformation is equivalent to the "cleft-opened" intermediate observed in a previously reported MD simulation of bovine Mc cyt b5 [Storch, E. M., and Daggett, V. (1995) Biochemistry 34, 9682-9693]. The rat OM protein does not adopt a comparable conformation in MD simulations, thus restricting access of water to the protein interior. Subsequent comparisons of the protein sequences and structures suggested that an extended hydrophobic network encompassing the side chains of Ala-18, Ile-32, Leu-36, and Leu-47 might contribute to the inability of rat OM cyt b5 to adopt the cleft-opened conformation and, hence, stabilize its fold relative to the Mc isoforms. A corresponding network is not present in bovine Mc cyt b5 because positions 18, 32, and 47, are occupied by Ser, Leu, and Arg, respectively. To probe the roles played by Ala-18, Ile-32, and Leu-47 in endowing rat OM cyt b5 with its unusual structural properties, we have replaced them with the corresponding residues in bovine Mc cyt b5. Hence, the I32L (single), A18S/L47R (double), and A18S/L47R/I32L (triple) mutants of rat OM cyt b5 were prepared. The stability of these proteins was found to decrease in the following order: WT rat OM > rat OM I32L > rat OM A18S/L47R > rat OM A18S/L47R/I32L > bovine Mc cyt b5. The decrease in stability of the rat OM protein correlates with the extent to which the hydrophobic cluster involving the side chains of residues 18, 32, 36, and 47 has been disrupted. Complete disruption of the hydrophobic network in the triple mutant is confirmed in a 2.0 A resolution crystal structure of the protein. Disruption of the hydrophobic network also facilitates hemin loss at pH 5.2 for the double and triple mutants, with the less stable triple mutant exhibiting the greater rate of hemin transfer to apomyoglobin. Finally, 1H NMR spectroscopy and side-by-side comparisons of the crystal structures of bovine Mc, rat OM, and rat OM A18S/L47R/I32L cyt b5 allowed us to conclude that the nature of residue 32 plays a key role in controlling the relative stability of hemin orientational isomers A and B in rat OM cyt b5. A similar analysis led to the conclusion that Leu-70 and Ser-71 play a pivotal role in stabilizing isomer A relative to isomer B in Mc cytochromes b5.  相似文献   

19.
T Iyanagi 《Biochemistry》1977,16(12):2725-2730
Hepatic NADH-cytochrome b5 reductase was reduced by 1 mol of dithionite or NADH per mol of enzyme-bound FAD, without forming a stable semiquinone or intermediate during the titrations. However, the addition of NAD+ to the partially reduced enzyme or illumination in the presence of both NAD+ and EDTA yielded a new intermediate. The intermediate had an absorption band at 375 nm and the optical spectrum resembled anionic semiquinones seen on reduction of other flavin enzymes. Electron paramagnetic resonance measurements confirmed the free-radical nature of the species. To explain the results, a disproportionation reaction between the oxidized and reduced NAD+ complexes (E-FAD-NAD+ + E-FADH2-NAD+ in equilibrium 2E-FADH.-NAD+) is assumed. Potentiometric titration of NADH-cytochrome b5 reductase at pH 7.0 with dithionite gave a midpoint potential of -258 mV; titration with NADH gave -160 mV. This difference may be due to a difference in the relative affinity of NAD+ for the reduced and oxidized forms of the enzyme. The effects of pH on the midpoint potential of the NAD+-free enzyme were very similar to those which have been measured with free FAD. At pH 7.0, midpoint potentials of trypsin-solubilized and detergent-solubilized cytochrome b5 were 13 and 0 mV, respectively.  相似文献   

20.
A rabbit antiserum was prepared against rat liver microsomal cytochrome b5, and utilized in demonstrating the participation of this cytochrome in the microsomal stearyl-CoA desaturation reaction. The antiserum inhibited the NADH-cytochrome c reductase activity of rat liver microsorncs, but it did not inhibit either NADH-ferricyanide or NADPH-cytochrome c reductase activity of the microsomes. Thus, the inhibitory effect of the antiserum on the microsomal electron-transferring reactions seemed to be specific to those which require the participation of cytochrome b5.The NADH-dependent and NADPH-dependent desaturations of stearyl CoA by rat liver microsomes were strongly inhibited by the antiserum. The reduction of cytochrome b5 by NADH-cytochrome b5 reductase as well as the reoxidation of the reduced cytochrome b3 by the desaturase, the terminal cyanide-sensitive factor of the desaturation system, was also strongly inhibited by the antiserum. When about 90%, of cytochrome b5 was removed from rat liver microsomes by protease treatment, the desaturation activity of the microsomes became much more sensitive to inhibition by the antiserum. These results confirmed our previous conclusion that the reducing equivalent for the desaturation reaction is transferred from NAD(P)H to the cyanidesensitive factor mainly via cytochrome b5 in the microsomal membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号