首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
M Mudryj  S H Devoto  S W Hiebert  T Hunter  J Pines  J R Nevins 《Cell》1991,65(7):1243-1253
We have examined E2F binding activity in extracts of synchronized NIH 3T3 cells. During the G0 to G1 transition, there is a marked increase in the level of active E2F. Subsequently, there are changes in the nature of E2F-containing complexes. A G1-specific complex increases in abundance, disappears, and is then replaced by another complex as S phase begins. Analysis of extracts of thymidine-blocked cells confirms that the complexes are cell cycle regulated. We also show that the cyclin A protein is a component of the S phase complex. Each complex can be dissociated by the adenovirus E1A 12S product, releasing free E2F. The release of E2F from the cyclin A complex coincides with the stimulation of an E2F-dependent promoter. We suggest that these interactions control the activity of E2F and that disruption of the complexes by E1A contributes to a loss of cellular proliferation control.  相似文献   

4.
5.
6.
7.
8.
9.
We have used high-density DNA microarrays to provide an analysis of gene regulation during the mammalian cell cycle and the role of E2F in this process. Cell cycle analysis was facilitated by a combined examination of gene control in serum-stimulated fibroblasts and cells synchronized at G(1)/S by hydroxyurea block that were then released to proceed through the cell cycle. The latter approach (G(1)/S synchronization) is critical for rigorously maintaining cell synchrony for unambiguous analysis of gene regulation in later stages of the cell cycle. Analysis of these samples identified seven distinct clusters of genes that exhibit unique patterns of expression. Genes tend to cluster within these groups based on common function and the time during the cell cycle that the activity is required. Placed in this context, the analysis of genes induced by E2F proteins identified genes or expressed sequence tags not previously described as regulated by E2F proteins; surprisingly, many of these encode proteins known to function during mitosis. A comparison of the E2F-induced genes with the patterns of cell growth-regulated gene expression revealed that virtually all of the E2F-induced genes are found in only two of the cell cycle clusters; one group was regulated at G(1)/S, and the second group, which included the mitotic activities, was regulated at G(2). The activation of the G(2) genes suggests a broader role for E2F in the control of both DNA replication and mitotic activities.  相似文献   

10.
11.
12.
Nitration of tyrosine residues in proteins is associated with cell response to oxidative/nitrosative stress. Tyrosine nitration is relatively low abundant post-translational modification that may affect protein functions. Little is known about the extent of protein tyrosine nitration in cells during progression through the cell cycle. Here we report identification of proteins enriched for tyrosine nitration in cells synchronized in G0/G1, S or G2/M phases of the cell cycle. We identified 27 proteins in cells synchronized in G0/G1 phase, 37 proteins in S phase synchronized cells, and 12 proteins related to G2/M phase. Nineteen of the identified proteins were previously described as regulators of cell proliferation. Thus, our data indicate which tyrosine nitrated proteins may affect regulation of the cell cycle.  相似文献   

13.
The cleavage cycle, which is initiated by fertilization, consists of only S and M phases, and the gap phases (G1 and G2) appear after the midblastula transition (MBT) in the African clawed frog, Xenopus laevis. During early development in Xenopus, we examined the E2F activity, which controls transition from the G1 to S phase in the somatic cell cycle. Gel retardation and transactivation assays revealed that, although the E2F protein was constantly present throughout early development, the E2F transactivation activity was induced in a stage-specific manner, that is, low before MBT and rapidly increased after MBT. Introduction of the recombinant dominant negative E2F (dnE2F), but not the control, protein into the 2-cell stage embryos specifically suppressed E2F activation after MBT. Cells in dnE2F-injected embryos appeared normal before MBT, but ceased to proliferate and eventually died at the gastrula. These cells contained decreased cdk activity with enhanced inhibitory phosphorylation of Cdc2 at Tyr15. Thus, E2F activity is required for cell cycle progression and cell viability after MBT, but not essential for MBT transition and developmental progression during the cleavage stage.  相似文献   

14.
15.
The mammary cancer cell line CAMA-1 synchronized at the G1/S boundary by thymidine block or at the G1/M boundary by nocodazole was used to evaluate 1) the sensitivity of a specific cell cycle phase or phases to 17 beta-estradiol (E2), 2) the effect of E2 on cell cycle kinetics, and 3) the resultant E2 effect on cell proliferation. In synchronized G1/S cells, E2-induced 3H-thymidine uptake, which indicated a newly formed S population, was observed only when E2 was added during, but not after, thymidine synchronization. Synchronized G2/M cells, enriched by Percoll gradient centrifugation to approximately 90% mitotic cells, responded to E2 added immediately following selection; the total E2-treated population traversed the cycle faster and reached S phase approximately 4 hr earlier than cells not exposed to E2. When E2 was added during the last hour of synchronization (ie, at late G2 or G2/M), or for 1 hr during mitotic cell enrichment, a mixed response occurred: a small portion had an accelerated G1 exit, while the majority of cells behaved the same as controls not incubated with E2. When E2 addition was delayed until 2 hr, 7 hr, or 12 hr following cell selection, to allow many early G1 phase cells to miss E2 exposure, the response to E2 was again mixed. When E2 was added during the 16 hr of nocodazole synchronization, when cells were largely at S or possibly at early G2, it inhibited entry into S phase. The E2-induced increase or decrease of S phase cells in the nocodazole experiments also showed corresponding changes in mitotic index and cell number. These results showed that the early G1 phase and possibly the G2/M phase are sensitive to E2 stimulation, late G1, G1/S, or G2 are refractory; the E2 stimualtion of cell proliferation is due primarily to an increased proportion of G1 cells that traverse the cell cycle and a shortened G1 period, E2 does not facilitate faster cell division; and estrogen-induced cell proliferation or G1/S transition occurs only when very early G1 phase cells are exposed to estrogen. These results are consistent with the constant transition probability hypothesis, that is, E2 alters the probability of cells entering into DNA synthesis without significantly affecting the duration of other cell cycle phases. Results from this study provide new information for further studies aimed at elucidating E2-modulated G1 events related to tumor growth.  相似文献   

16.
As described previously, a natural product isolated from fungus (Acremonium sp.), dehydroaltenusin, is an inhibitor of mammalian DNA polymerase alpha in vitro [Y. Mizushina, S. Kamisuki, T. Mizuno, M. Takemura, H. Asahara, S. Linn, T. Yamaguchi, A. Matsukage, F. Hanaoka, S. Yoshida, M. Saneyoshi, F. Sugawara, K. Sakaguchi, Dehydroaltenusin, a mammalian DNA polymerase alpha inhibitor, J. Biol. Chem. 275 (2000) 33957_33961]. In this study, we investigated the interaction of dehydroaltenusin with lipid bilayers using an in vitro liposome system, which is a model of the cell membrane, and found that approximately 4% of dehydroaltenusin was incorporated into liposomes. We also investigated the influence of dehydroaltenusin on cultured cancer cells. Dehydroaltenusin inhibited the growth of HeLa cells with an LD50 value of 38 microM, and as expected, S phase accumulation in the cell cycle. The total DNA polymerase activity of the extract of incubated cells with dehydroaltenusin was 23% lower than that of nontreated cells. Dehydroaltenusin increased cyclin E and cyclin A levels. In the analysis of the cell cycle using G1/S synchronized cells by employing hydroxyurea, the compound delayed both entry into the S phase and S phase progression. In a similar analysis using G2/M synchronized cells by employing nocodazole, the compound accumulated the cells at G1/S and inhibited entry into the S phase. Thus, the pharmacological abrogation of cell proliferation by dehydroaltenusin may prove to be an effective chemotherapeutic agent against tumors.  相似文献   

17.
18.
The transactivator protein Tax of human T-cell leukemia virus type I plays an important role in the development of adult T-cell leukemia probably through modulation of growth regulatory molecules including p16(INK4a). The molecular mechanism of leukemogenesis induced by Tax has yet to be elucidated. We analyzed Tax function in the cell cycle using an interleukin-2 (IL-2)-dependent human T-cell line (Kit 225) that can undergo cell cycle arrest at G(0)/G(1) phase by deprivation of IL-2. Tax activated endogenous E2F activity in IL-2-starved Kit 225 cells, resulting in activation of E2F site-carrying promoters of genes involved in G(1) to S phase transition in a cell type-dependent and p16(INK4a)-independent manner. The ability of Tax mutants to activate E2F coincided with that to activate nuclear factors kappaB and AT, sole expression of which, however, did not activate E2F, suggesting involvement of another pathway in activation of E2F. Introduction of Tax by a recombinant adenovirus induced cell cycle progression to G(2)/M phase in resting Kit 225 cells accompanied by endogenous cyclin D2 gene expression. Similarly, Tax-induced cell cycle progression was seen with peripheral blood lymphocytes prestimulated with phytohemagglutinin. Analyses with Tax mutants did not allow Tax-induced cell cycle progression to be differentiated from Tax-dependent activation of E2F, suggesting that Tax induces cell cycle progression presumably through activation of E2F. Nevertheless, infection with an E2F1-expressing virus, which is sufficient for induction of S phase in serum-starved fibroblasts, was not sufficient for either E2F activation or cell cycle progression in IL-2-starved Kit 225 cells, implying differential regulation of E2F activation and cell cycle progression in T-cells that is activated by Tax.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号