首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the Förster equations we have estimated the rate of energy transfer from tryptophans to hemes in hemoglobin. Assuming an isotropic distribution of the transition moments of the heme in the plane of the porphyrin, we computed the orientation factors and the consequent transfer rates from the crystallographic coordinates of human oxy- and deoxy-hemoglobin. It appears that the orientation factors do not play a limiting role in regulating the energy transfer and that the rates are controlled almost exclusively by the intrasubunit separations between tryptophans and hemes. In intact hemoglobin tetramers the intrasubunit separations are such as to reduce lifetimes to 5 and 15 ps/ns of tryptophan lifetime. Lifetimes of several hundred picoseconds would be allowed by the intersubunit separations, but intersubunits transfer becomes important only when one heme per tetramer is absent or does not accept transfer. If more than one heme per tetramer is absent lifetimes of more than 1 ns would appear.  相似文献   

2.
Quenching of the room-temperature phosphorescence of Escherichia coli alkaline phosphatase by several freely diffusing molecules was studied, each of whose absorption spectrum overlaps the long-lived emission of this protein and which therefore can quench the excited triplet state by diffusion-enhanced F?rster energy transfer. The presence of additional nonresonance transfer mechanisms was also detected, from a lack of linear dependence of quenching rate on spectral overlap. The quenching agents used were the dye molecules methyl red, methyl orange, and 2-[(4-hydroxyphenyl)azo]benzoic acid, as well as the embedded heme groups of myoglobin, metmyoglobin, and the reduced and oxidized forms of cytochrome c. Quenching was found to be greatly diminished upon reduction of each acceptor, indicating that electron transfer occurs efficiently from the excited tryptophan to the oxidized form of the acceptors. The elimination of this electron transfer in the reduced form affords the opportunity to separately measure the F?rster transfer rates for the heme proteins. When the transfer rate constant thus measured for myoglobin is applied to a model where both donor and acceptor proteins are taken to be spherical with both tryptophan and the heme group placed off center (a model whose quenching rate equation is newly presented here), the depth of the phosphorescent tryptophan beneath the surface of alkaline phosphatase is found to be 16 A. This value is close to the depth of tryptophan 109 (which is known to be the phosphorescent residue in alkaline phosphatase), showing that with properly chosen probes this technique is indeed valuable for distance determinations in protein structure studies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We have measured the absorption spectrum of horse deoxymyoglobin in glycerol-water mixture around 430 nm in the 130 - 320 K temperature range. The observed asymmetric spectral shape of the Soret band was analyzed using a configuration-coordinate model. The results support the idea that myoglobin is liquid-like at physiological temperatures, but is glass-like below about 250 K. The equilibrium position of the iron atom in the heme group in the electronic excited state was estimated from the determined parameter values.  相似文献   

4.
Seed coat soybean peroxidase (SBP) belongs to class III of the plant peroxidase super family. The protein has a very similar 3-dimensional structure with that of horseradish peroxidase (HRP-C). The fluorescence characteristics of the single tryptophan (Trp117) present in SBP and apo-SBP have been studied by steady-state and pico-second time-resolved fluorescence spectroscopy. Fluorescence decay curve of SBP was best described by a four exponential model that gave the lifetimes, 0.035 ns (97.0%), 0.30 ns (2.0%), 2.0 ns (0.8%), and 6.3 ns (0.2%). These lifetime values agreed very well with the values obtained by the model independent maximum entropy method (MEM). The three longer lifetimes that constituted 3% of the fluorophore population in the SBP sample are attributed to the presence of trace quantities of apo-SBP. The pico-second lifetime value of SBP is indicative of efficient energy transfer from Trp117 to heme. From fluorescence resonance energy transfer (FRET) calculations, the energy-transfer efficiency in SBP is found to be relatively higher as compared to HRP-C and is attributed mainly to the higher value of orientation factor, kappa(2) for SBP. Decay-associated spectra of SBP indicated that the tryptophan of SBP is relatively more solvent exposed as compared to HRP-C and is attributed to the various structural features of SBP. Linear Stern-Volmer plots obtained from the quenching measurements using acrylamide gave k(q) = 5.4 x 10(8) M(-1) s(-1) for SBP and 7.2 x 10(8) M(-1) s(-1) for apo-SBP and indicated that on removal of heme in SBP, Trp117 is more solvent exposed.  相似文献   

5.
The primary structure of the 142 residue Glossoscolex paulistus d-chain hemoglobin has been determined from Edman degradation data of 11 endo-Glu-C peptides and 11 endo-Lys-C peptides, plus the results of Edman degradation of the intact globin. Tryptophan occupies positions 15, 33 and 129. Homology modeling allowed us to assign the positions of these Trp residues relative to the heme and its environment. The reference coordinates of the indole rings (average coordinates of the C(varepsilon2) and C(delta2) atoms) for W15 and W129 were 16.8 and 18.5 A, respectively, from the geometric center of the heme, and W33 was located in close proximity to the heme group at a distance which was approximately half of that for W15 and W129. It was possible to identify three rotamers of W33 on the basis of electrostatic and Van der Waals energy criteria. The calculated distances from the center of the heme were 8.3, 8.4 and 9.1 A for Rot1, Rot2 and Rot3, respectively. Radiationless energy transfer from the excited indole to the heme was calculated on the basis of F?rster theory. For W33, the distance was more important than the orientation factor, kappa(2), due to its proximity to the heme. However, based on kappa(2), Rot2 (kappa(2)=0.945) was more favorable for the energy transfer than Rot1 (kappa(2)=0.433) or Rot3 (kappa(2)=0.125). In contrast, despite its greater distance from the heme, the kappa(2) of W129 (2.903) established it as a candidate to be more efficiently quenched by the heme than W15 (kappa(2)=0.191). Although the F?rster approach is powerful for the evaluation of the relative efficiency of quenching, it can only explain pico- and sub-nanosecond lifetimes. With the average lifetime, =3 ns, measured for the apomonomer as the reference, the lifetimes calculated for each emitter were: W33-1 (1 ps), W33-2 (2 ps), W33-3 (18 ps), W129 (100 ps), and W15 (600 ps). Experimentally, there are four components for oxymonomers at pH 7: two long ones of 4.6 and 2.1 ns, which contribute approximately 90% of the total fluorescence, one of 300 ps (4%), and the last one of 33 ps (7.4%). It is clear that the equilibrium structure resulting from homology modeling explains the sub-nanosecond fluorescence lifetimes, while the nanosecond range lifetimes require more information about the protein in solution, since there is a significant contribution of lifetimes that resemble the apo molecule.  相似文献   

6.
By use of a newly constructed CD instrument, infrared magnetic circular dichroism (MCD) spectra were observed for various myoglobin derivatives. The ferric high spin myoglobin derivatives such as fluoride, water and hydroxide complexes, commonly exhibited the MCD spectra consisting of positive A terms. Therefore, the results reinforced the assignment that the infrared band is the charge transfer transition to the degenerate excited state (eg (dpi)). Since the fraction of A term estimated was approximately 80% for myoglobin fluoride and approximately 35% for myoglobin water, the effective symmetry for myoglobin fluoride is determined to be as close as D4h, while that for myoglobin water seems to have lower symmetry components. The ferric low spin derivatives such as myoglobin cyanide, myoglobin imidazole and myoglobin azide showed positive MCD spectra which are very similar to the electronic absorption spectra. These MCD spectra were assigned to the charge transfer transitions from porphyrin pi to iron d orbitals on the ground that they were observed only for the ferric low spin groups and insensitive to the axial ligands. The lack of temperature dependence in the MCD magnitude indicated that the MCD spectra are attributable to the Faraday B terms. Deoxymyoglobin, the ferrous high spin derivative, had fairly strong positive MCD around 760 nm with an anisotropy factor (delta epsilon/epsilon) of 1.4-10(-4). It shows some small MCD bands from 800 to 1800 nm. Among the ferrous low spin derivatives, carbonmonoxymyoglobin did not give any observable MCD in the infrared region while oxymyoglobin seemed to have significant MCD in the range from 700 to 1000 nm.  相似文献   

7.
The expressions for temperature-dependent magnetic circular dichroism (MCD) of the ferryl heme (Fe(4+)Por, S=1), which is a model of an intermediate product of the catalytic cycle of heme enzymes (compound II), have been derived in the framework of a two-term model. Theoretical predictions for the temperature and magnetic field dependence of MCD intensity of the ferryl heme are compared with those of the high-spin and low-spin ferric heme. Analysis of reported MCD spectra of myoglobin peroxide [Foot et al., Biochem. J. 2651 (1989) 515-522] and compound II of horseradish peroxidase [Browett et al., J. Am. Chem. Soc. 110 (1987) 3633-3640] has shown the presence in the samples of approximately 1% of a low-spin ferric component, which, however, should be taken into account in simulating observed temperature dependences of MCD intensity. The values of two adjustable parameters are estimated from the fit of the observed and simulated plots of MCD intensity against the reciprocal of the absolute temperature. One of them, the energy gap between the ground and excited terms, predetermines the axial zero-field splitting. The other parameter is correlated with the energy of splitting of excited quartets arising from either the porphyrin pi-->pi* transition or the spin-allowed charge-transfer transition.  相似文献   

8.
X L Xie  J D Simon 《Biochemistry》1991,30(15):3682-3692
Picosecond time-resolved polarization spectroscopy is used to study relaxation dynamics in myoglobin following photoelimination of CO from carbonmonoxymyoglobin. Evolution of the transient circular dichroism signal of the N band of myoglobin (probed at 355 nm) to that characteristic of equilibrium myoglobin requires approximately 300 ps. This time scale is significantly longer than that corresponding to the photoinitiated bond cleavage. Transient linear dichroism of the Soret band and picosecond time-resolved magnetic circular dichroism measurements of the Q band demonstrate that the circular dichroism kinetics do not result from either time-dependent changes in the orientation of the transition moments of the heme ring or the doming of the heme that accompanies the out-of-plane motion of the iron. Finally, transient absorption data of the near-IR optical transition of photogenerated myoglobin suggest that the circular dichroism data are not a measure of the tilting of the proximal histidine. The circular dichroism data are discussed in terms of a relaxation in the tertiary structure of the protein following dissociation.  相似文献   

9.
Hemoglobins and myoglobins are some of the best studied proteins. They are distributed in animals, plants and bacteria, and the characteristic two intron-three exon structure is widely conserved in animal globin genes (Jhiang et al., 1988). To date, all of the hemoglobins and myoglobins are believed to have a common origin, and so they are considered to be homologous. We have isolated a completely new type of myoglobin from the red muscle of the abalone Sulculus diversicolor aquatilis. The myoglobin consists of an unusual 41 kDa polypeptide chain, contains one heme per chain and forms a homodimer under physiological conditions. The cDNA-derived amino acid sequence of Sulculus myoglobin showed no significant homology with any other globins, but, surprisingly, showed high homology (35% identity) with human indoleamine 2,3-dioxygenase, a tryptophan degrading enzyme containing heme. This clearly indicates that Sulculus myoglobin evolved from a gene for indoleamine dioxygenase, but not from a globin gene. Sulculus myoglobin lacks the enzyme activity of indoleamine dioxygenase. However, in the presence of tryptophan, the autoxidation rate of oxymyoglobin was greatly accelerated, suggesting that a tryptophan binding site remains near or in the heme cavity as a relic of the molecular evolution.  相似文献   

10.
Otto H  Hoersch D  Meyer TE  Cusanovich MA  Heyn MP 《Biochemistry》2005,44(51):16804-16816
We show from time-resolved fluorescence intensity and depolarization experiments that the fluorescence of the unique tryptophan W119 of PYP is quenched by energy transfer to the 4-hydroxycinnamoyl chromophore. Whereas the intensity decay has a time constant of 0.18 ns in P, the decay in the absence of the cofactor (apo-PYP) has a single exponential lifetime of 4.8 ns. This difference in lifetime with and without acceptor can be explained quantitatively on the basis of energy transfer and the high-resolution X-ray structure of P, which allows an accurate calculation of the kappa2 factor. Fluorescence depolarization experiments with donor and acceptor indicate that both are immobilized so that kappa2 is constant on the fluorescence time scale. Using background illumination from an LED emitting at 470 nm, we measured the time-resolved fluorescence in a photostationary mixture of P and the intermediates I2 and I2'. The composition of the photostationary mixture depends on pH and changes from mainly I2 at low pH to predominantly I2' at high pH. The I2/I2' equilibrium is pH-dependent with a pKa of approximately 6.3. In I2 the lifetime increases to approximately 0.82 ns. This is not due to a change in distance or to the increase in spectral overlap but is primarily a consequence of a large decrease in kappa2. Kappa2 was calculated from the available X-ray structures and decreases from approximately 2.7 in P to 0.27 in I2. This change in kappa2 is caused by the isomerization of the acceptor, which leads to a reorientation of its transition dipole moment. We have here a rare case of the kappa2 factor dominating the change in energy transfer. The fluorescence decay in the light is pH-dependent. From an SVD analysis of the light/dark difference intensity decay at a number of pH values, we identify three species with associated lifetimes: P (0.18 ns), I2 (0.82 ns), and X (0.04 ns). On the basis of the pH dependence of the amplitudes associated with I2 and X, with a pKa of approximately 6.3, we assign the third species to the signaling state I2'. The absorption spectra of the 0.82 and 0.04 ns species were calculated from the pH dependence of their fluorescence amplitudes and of the photostationary light/dark difference absorption spectra. The lambda(max) values of these spectra (372 and 352 nm) identify the 0.82 and 0.04 ns components with I2 and I2', respectively, and validate the fluorescence data analysis. The mutant E46Q allows a further test of the energy transfer explanation, since lowering the pH in the dark leads to a bleached state with an increased spectral overlap but without the isomerization-induced decrease in kappa2. The measured lifetime of 0.04 ns is in excellent agreement with predictions based on energy transfer and the X-ray structure.  相似文献   

11.
The fluorescence decay of tryptophan residues in apo and met Aplysia limacina myoglobin and sperm whale myoglobin were measured in aqueous solution at 10 degrees-15 degrees C. In all species, multiexponential behavior was observed in which the individual components displayed unique frequency-dependent emission characteristics. The results suggest that the tryptophan fluorescence in all met samples are quenched by rapid Forster energy transfer to the heme as predicted from the crystal geometry. Fluorescence from the apo protein is similar to that in solutions of free tryptophans. In addition, the fluorescence properties of the reversible thermal denaturation of Aplysia limacina met myoglobin was investigated between 25 degrees and 75 degrees C.  相似文献   

12.
Das TK  Mazumdar S 《Biopolymers》2000,57(5):316-322
Picosecond time-resolved fluorescence studies are carried out on cyanide-inhibited and heat-modified cytochrome c oxidase in aqueous lauryl maltoside surfactant solution, as well as in an aqueous vesicle, to understand the conformational changes associated with electron transfer and proton pumping activity of the enzyme. The tryptophan fluorescence decay profiles follow a four exponential model, which also matches the lifetime maxima obtained in a maximum entropy method analysis. The fast lifetime components are highly affected by the reduction and chemical modification of the enzyme. Changes in these lifetime components are related to the conformational changes in the vicinity of the heme centers of the enzyme. The cyanide-inhibited enzyme in the oxidized form shows a fluorescence decay profile similar to that of the native oxidized form, indicating that the conformational changes due to cyanide binding are very small. However, reduction of the cyanide-inhibited enzyme that leaves cyanide bound heme alpha3 oxidized causes a large increase in the fluorescence lifetimes, which indicates very significant conformational changes due to electron transfer to the dinuclear Cu(A) and heme alpha centers. A comparison of the tryptophan fluorescence decay of various other modified forms of the enzyme leads us to propose that the possible site of conformational coupling is located near heme alpha instead of the binuclear heme alpha3-Cu(B) center.  相似文献   

13.
Spectroscopy of horseradish peroxidase with and without the substrate analog, benzohydroxamic acid, was monitored in a glycerol/water solvent as a function of temperature. It was determined from the water infrared (IR) absorption that the solvent has a glass transition at 170-180 K. In the absence of substrate, both the heme optical Q(0,0) absorption band and the IR absorption band of CO bound to heme broaden markedly upon heating from 10-300 K. The Q(0,0) band broadens smoothly in the whole temperature interval, whereas the IR bandwidth is constant in the glassy matrix and increases from 7 to 16 cm(-1) upon heating above the glass transition. Binding of substrate strongly diminishes temperature broadening of both the bands. The results are consistent with the view that the substrate strongly reduces the amplitude of motions of amino acids forming the heme pocket. The main contribution to the Q(0,0) bandwidth arises from the heme vibrations that are not affected by the phase transition. The CO band thermal broadening stems from the anharmonic coupling with motions of the heme environment, which, in the glassy state, are frozen in. Unusually strong temperature broadening of the CO band is interpreted to be caused by thermal population of a very flexible excited conformational substrate. Analysis of literature data on the thermal broadening of the A(0) band of Mb(CO) (Ansari et al., 1987. Biophys. Chem. 26:337-355) shows that such a state presents itself also in myoglobin.  相似文献   

14.
The nature of the heme environment in methemalbumin, the Fe(III) protoporphyrin IX (heme)-human serum albumin (HSA) complex, was investigated by optical spectroscopy. Comparison of the optical spectra of methemalbumin, ferro-hemalbumin in the absence and presence of 2-methylimidazole, and their carbon monoxide derivatives with horseradish peroxidase (HRP) and its corresponding derivatives indicates that histidine is not present in the first coordination sphere of heme in methemalbumin and that the protein is devoid of a well-defined heme cavity. The complex exhibits peroxidase activity by catalyzing oxidation of 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) by hydrogen peroxide. Its activity ( K(M)=433 microM, molar catalytic activity=0.33 s(-1)), however, is considerably lower compared to HRP, indicating differences in the heme environments. Fluorescence intensity decays of Trp214 in HSA and methemalbumin, best fitted to a three-exponential model, gave the lifetimes 7.03 ns (30%), 3.17 ns (38%), and 0.68 ns (32%) for HSA and 8.04 ns (1.7%), 2.42 ns (19.7%), and 0.64 ns (78.6%) for methemalbumin. These lifetime values were further confirmed by a model-independent maximum entropy method. Similarity in the lifetimes and variations in the amplitudes suggest that while conformational heterogeneity of HSA is unperturbed on heme binding, redistribution of the populations of the three conformations occurs and the sub-state associated with the shortest lifetime dominates the total population by approximately 80%. Decay associated spectra (DAS) indicate that the observed lifetime variation with wavelength is predominantly due to ground state heterogeneity, though solvent dipolar relaxation also contributes. Time-resolved fluorescence anisotropy measurements of the Trp214 residue yielded information on motion within the protein together with the whole protein molecule. The binding of heme did not affect the rotational correlation time of the albumin molecule (approximately 20 ns). However, the motion of tryptophan within the protein matrix increased by a factor of approximately 3 (0.46 ns to 0.15 ns). This indicates that while the overall hydrodynamic volume of the albumin molecule remained the same, tryptophan underwent a more rapid internal rotation because of the efficient energy transfer to the bound heme. Optical studies, analysis of lifetime measurements, DAS, and anisotropy measurements together suggest that heme binds to a surface residue. The rapid internal motion of Trp214 during its excited state lifetime for the approximately 80% populated conformer of methemalbumin allows the orientation factor, kappa(2), to approach the average value of 2/3. From the time-resolved fluorescence measurements and the energy transfer calculations on methemalbumin, a Trp214-heme distance of 22 A was deduced.  相似文献   

15.
Tryptophan fluorescence lifetimes at pH 2 and pH 8 have been obtained for lysozyme and for lysozyme derivatives in which tryptophan-62 or tryptophan-108 or both are nonfluorescent. The lifetimes range from about 0.5 ns to 2.8 ns for the various emitting tryptophans. The tryptophan lifetimes appear to increase with exposure of tryptophan to solvent, but intramolecular contacts, probably with cystine residues, can considerably shorten the lifetime. Intertryptophanyl interactions can also affect fluorescence lifetimes. The trytophan-108 lifetime in lysozyme is shorter than in the derivative in which tryptophan-62 is oxidized; this is ascribed to energy transfer from tryptophan-108 to tryptophan-62. From the lifetime results the relative intensities emitted by specific tryptophans can be estimated, and these values also support the existence of intertryptophanyl energy transfer. The emission intensity from tryptophan-62 is greater in the presence of tryptophan-108, and the emission intensity of tryptophan-108 appears to be greater in the absence of tryptophan-62. Conformational effects accompanying chemical modification of tryptophan cannot be completely ruled out, however. The tryptophan-62 lifetime at pH 8 in lysozyme is shorter than in the derivatives, which might indicate a subtle conformational effect. Studies with tri-(N-acetyl-glucosamine)-protein complexes indicate that both the tryptophan lifetimes and the number of emitting tryptophans may be changing upon complexation. The results illustrate the usefulness and the limitations of lifetime measurements in understanding protein fluorescence.  相似文献   

16.
We report the optical absorption spectra of sperm whale deoxy-, oxy-, and carbonmonoxymyoglobin in the temperature range 300–20 K and in 65% glycerol or ethylene glycol–water mixtures. By lowering the temperature, all bands exhibit half-width narrowing and peak frequency shift; moreover, the near-ir bands of deoxymyoglobin show a marked increase of the integrated intensities. Opposed to what has already been reported for human hemoglobin, the temperature dependence of the first moment of the investigated bands does not follow the behavior predicted by the harmonic Franck–Condon approximation and is sizably affected by the solvent composition; this solvent effect is larger in liganded than in nonliganded myoglobin. However, for all the observed bands the behavior of the second moment can be quite well rationalized in terms of the harmonic Franck–Condon approximation and is not dependent on solvent composition. On the basis of these data we put forward some suggestions concerning the structural and dynamic properties of the heme pocket in myoglobin and their dependence upon solvent composition. We also discuss the different behaviors of myoglobin and hemoglobin in terms of the different heme pocket structures and deformabilities of the two proteins.  相似文献   

17.
We carried out the flash photolysis of oxy complexes of sperm whale myoglobin, cobalt-substituted sperm whale myoglobin, and Aplysia myoglobin. When the optical absorption spectral changes associated with the O2 rebinding were monitored on the nanosecond to millisecond time scale, we found that the transient spectra of the O2 photoproduct of sperm whale myoglobin were significantly different from the static spectra of deoxy form. This was sharply contrasted with the observations that the spectra of the CO photoproduct of sperm whale myoglobin and of the O2 photoproducts of cobalt-substituted sperm whale myoglobin and Aplysia myoglobin are identical to the corresponding spectra of their deoxy forms. These results led us to suggest the presence of a fairly stable transient species in the O2 photodissociation from the oxy complex of sperm whale myoglobin, which has a protein structure different from the deoxy form. We denoted the O2 photo-product to be Mb*. In the time-resolved resonance Raman measurements, the nu Fe-His mode of Mb* gave the same value as that of the deoxy form, indicating that the difference in the optical absorption spectra is possibly due to the structural difference at the heme distal side rather than those of the proximal side. The structure of Mb* is discussed in relation to the dynamic motion of myoglobin in the O2 entry to or exit from the heme pocket. Comparing the structural characteristics of several myoglobins employed, we suggested that the formation of Mb* relates to the following two factors: a hydrogen bonding of O2 with the distal histidine, and the movement of iron upon the ligation of O2.  相似文献   

18.
The visible absorption spectra of carbonmonoxymyoglobin in the temperature range 300 to 20 K are reported and compared with the analogous spectra of carbonomonoxyhaemoglobin. The temperature dependence of the zeroth, first and second moment of the observed bands is analysed to obtain information on the local dynamics in the proximity of the haem. Contrary to haemoglobin, the first moment of the observed bands in myoglobin is markedly affected by the solvent composition and its value saturates at temperatures at which the solvent undergoes the glass transition. These data indicate that solvent properties influence the haem pocket stereodynamics in myoglobin; moreover, the different behaviour between myoglobin and haemoglobin suggests that the process should involve the surfaces that are buried in the haemoglobin tetramer and exposed to the solvent in myoglobin, and/or the different protein compressibility.  相似文献   

19.
Myoglobin was isolated from the radular muscle of the archaeogastropod mollusc Turbo cornutus (Turbinidae). This myoglobin is a monomer carrying one protoheme group; the molecular mass was estimated by SDS–PAGE to be about 40 kDa, 2.5 times larger than that of usual myoglobin. The cDNA-derived amino acid sequence of 375 residues was determined, of which 327 residues were identified directly by chemical sequencing of internal peptides. The amino acid sequence of Turbo myoglobin showed no significant homology with any other usual 16-kDa globins, but showed 36% identity with the myoglobin from Sulculus diversicolor (Haliotiidae) and 27% identity with human indoleamine 2,3-dioxygenase, a tryptophan-degrading enzyme containing heme. Thus, the Turbo myoglobin can be counted among the myoglobins which evolved from the same ancestor as that of indoleamine 2,3-dioxygenase. The absorbance ratio of γ to CT maximum (γ/CT) of Turbo metmyoglobin was 17.8, indicating that this myoglobin probably possesses a histidine residue near the sixth coordination position of heme iron. The Turbo myoglobin binds oxygen reversibly. Its oxygen equilibrium properties are similar to those of Sulculus myoglobin, giving P 50 = 3.5 mm Hg at pH 7.4 and 20°C. The pH dependence of autoxidation of Turbo oxymyoglobin was quite different from that of mammalian myoglobin, suggesting a unique protein folding around the heme cavity of Turbo myoglobin. A kinetic analysis of autoxidation indicates that the amino acid residue with pK a = 5.4 is involved in the reaction. The autoxidation reaction was enhanced markedly at pH 7.6, but not at pH 5.5 and 6.3 in the presence of tryptophan. We suggest that a noncatalytic binding site for tryptophan, in which several dissociation groups with pK a ≥ 7.6 are involved, remains in Turbo myoglobin as a relic of molecular evolution.  相似文献   

20.
Potential toxicity of transition metals like Hg, Cu and Cd are well known and their affinity toward proteins is of great concern. This work explores the selective nature of interactions of Cu2+, Hg2+ and Cd2+ with the heme proteins leghemoglobin, myoglobin and cytochrome C. The binding profiles were analyzed using absorbance spectrum and steady-state fluorescence spectroscopy. Thermodynamic parameters like enthalpy, entropy and free energy changes were derived by isothermal calorimetry and consequent binding parameters were compared for these heme proteins. Free energy (DG) values revealed Cu2+ binding toward myoglobin and leghemoglobin to be specific and facile in contrast to weak binding for Hg2+ or Cd2+. Time correlated single photon counting indicated significant alteration in excited state lifetimes for metal complexed myoglobin and leghemoglobin suggesting bimolecular collisions to be involved. Interestingly, none of these cations showed significant affinity for cytochrome c pointing that, presence of conserved sequences or heme group is not the only criteria for cation binding toward heme proteins, but the microenvironment of the residues or a specific folding pattern may be responsible for these differential conjugation profile. Binding of these cations may modulate the conformation and functions of these biologically important proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号