首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The effects of schisandrin B (Sch B), a dibenzocyclooctadiene derivative isolated from the fruit of Schisandra chinensis, and dimethyl diphenyl bicarboxylate (DDB), a synthetic intermediate of schisandrin C (also a dibenzocyclooctadiene derivative), on hepatic mitochondrial glutathione redox status in control and carbon tetrachloride (CCl4)-intoxicated mice were examined. Treating mice with Sch B or DDB at a daily oral dose of 1 mmol/kg for 3 d did not produce any significant alterations in plasma alanine aminotransferase (ALT) and sorbital dehydrogenase (SDH) activities. CCl4 treatment caused drastic increases in both plasma ALT and SDH activities in mice. Pretreating mice with Sch B or DDB at the same dosage regimen significantly suppressed the CCl4-induced increase in plasma ALT activity, with the inhibitory effect of Sch B being much more potent. Sch B, but not DDB, pretreatment could also decrease the plasma SDH activity in CCl4-intoxicated mice. The lowering of plasma SDH activity, indicative of hepatoprotection against CCl4 toxicity, by Sch B pretreatment was associated with an enhancement in hepatic mitochondrial glutathione redox status as well as an increase in mitochondrial glutathione reductase (mtGRD) activity in both non-CCl4 and CCl4-treated mice. DDB pretreatment, though enhancing both hepatic mitochondrial glutathione redox status and mtGRD activity in control animals, did not produce any beneficial effect in CCl4-treated mice. The difference in hepatoprotective action against CCl4 toxicity between Sch B and DDB may therefore be related to their ability to maintain hepatic mitochondrial glutathione redox status under oxidative stress condition.  相似文献   

2.
《Free radical research》2013,47(1-2):57-68
The effects of oxidative stress caused by hyperoxia or administration of the redox active compound diquat were studied in isolated hepatocytes, and the relative contribution of lipid peroxidation, glutathione (GSH) depletion, and NADPH oxidation to the cytotoxicity of active oxygen species was investigated.

The redox cycling of diquat occurred primarily in the microsomal fraction since diquat was found not ' to penetrate into the mitochondria. Depletion of intracellular GSH by pretreatment of the animals with diethyl maleate promoted lipid peroxidation and sensitized the cells to oxidative stress. Diquat toxicity was also greatly enhanced when glutathione reductase was inhibited by pretreatment of the cells with 1,3-bis(2-chloroethyI)-1-nitrosourea. Despite extensive lipid peroxidation, loss of cell viability was not observed, with either hyperoxia or diquat, until the GSH level had fallen below ≈ 6 nmol/106 cells.

The iron chelator desferrioxamine provided complete protection against both diquat-induced lipid peroxidation and loss of cell viability. In contrast, the antioxidant a-tocopherol inhibited lipid peroxidation but provided only partial protection from toxicity. The hydroxy! radical scavenger α-keto-γ-methiol butyric acid, finally, also provided partial protection against diquat toxicity but had no effect on lipid peroxidation.

The results indicate that there is a critical GSH level above which cell death due to oxidative stress is not observed. As long as the glutathione peroxidase – glutathione reductase system is unaffected, even relatively low amounts of GSH can protect the cells by supporting glutathione peroxidase-mediated metabolism of H2O2 and lipid hydroperoxides.  相似文献   

3.
The effect of aqueous extract of the flowers of Cassia auriculata were examined on antioxidants and lipid peroxidation in the brain of streptozotocin diabetic rats. Significant increase in the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and reduced glutathione were observed in brain on treatment with Cassia auriculata flower extract (CFEt) and glibenclamide. Both the treated groups showed significant decrease in thiobarbituric reactive substances (TBARS) and hydroperoxide formation in brain, suggesting its role in protection against lipid peroxidation induced membrane damage. Since the study of induction of the antioxidant enzymes is considered to be a reliable marker for evaluating the antiperoxidative efficacy of medicinal plant, these findings are suggestions of possible antiperoxidative role played by Cassia auriculata flower extract.  相似文献   

4.
The haemolysis of sea bass Dicentrarchus labrax red blood cells (RBC) was initiated by tert -butyl-hydroperoxide (t-BHP). The onset of the haemolytic process was accelerated by increasing t-BHP concentration. This process was preceded by a drop in the RBC glutathione content followed by the production of lipid peroxidation products. Also t-BHP induced DNA fragmentation in RBC nuclei as measured by COMET assay. The addition of the antioxidant Trolox C® dose-dependently delayed the onset of both lipid peroxidation and haemolysis, and protected GSH stores against t-BHP-induced depletion. DNA fragmentation was also pre-vented by Trolox C®. These results indicate that t-BHP induces haemolysis in sea bass RBC through the induction of oxidative stress. Such a simple model could prove useful for both fundamental and applied studies on marine fish antioxidant mechanisms.  相似文献   

5.
In this study, the time course of schisandrin B- (Sch B-) induced changes in hepatic mitochondrial glutathione antioxidant status (mtGAS) and heat shock protein (HSP) 25/70 induction was examined to study their differential roles in the hepatoprotection afforded by Sch B pretreatment against carbon tetrachloride (CCl(4)) toxicity in mice. Dimethyl diphenyl bicarboxylate (DDB), a nonhepatoprotective analog of Sch B, was also included for comparison. The results indicate that Sch B treatment (2 mmol/kg) produced maximum enhancement in hepatic mtGAS and increases in both hepatic HSP 25 and HSP 70 levels at 24 h after dosing. While the extent of hepatoprotection afforded by Sch B pretreatment against CCl(4) was found to correlate inversely with the elapsed time postdosing, the protective effect was associated with the ability to sustain mtGAS and/or HSP 70 levels in a CCl(4)-intoxicated condition. On the other hand, DDB (2 mmol/kg) treatment, which did not sustain mtGAS and HSP 70 level, could not protect against CCl(4) toxicity. Abolition of the Sch B-mediated enhancement of mtGAS by buthionine sulfoximine/phorone did not completely abrogate the hepatoprotective action of Sch B. The results indicate that Sch B pretreatment independently enhances mtGAS and induces HSP 25/70 production, particularly under conditions of oxidative stress, thereby protecting against CCl(4) hepatotoxicity.  相似文献   

6.
In the present study, we investigated the differential role of the mitochondrial glutathione status and induction of heat shock proteins (HSPs) 25/70 in protecting against carbon tetrachloride (CCl_4) hepatotoxicity in schisandrin B (Sch B)-pretreated mice. The time-course of Sch B-induced changes in these hepatic parameters were examined. Dimethyl diphenyl bicarboxylate (DDB), a non-hepatoprotective analog of Sch B, was studied for comparison. Sch B treatment (2 mmol/kg) produced maximal enhancement in hepatic mitochondrial glutathione status as well as increases in hepatic HSP 25/70 levels at 24 h post-dosing. The stimulatory effect of Sch B then gradually subsided, but the activities of hepatic mitochondrial glutathione reductase (GR) and glutathione S-transferases (GST) as well as the level of HSP 25 remained relatively high even at 72 h post-dosing. CCl_4 challenge caused significant impairment in mitochondrial glutathione status and a decrease in HSP 70 level, but the HSP 25 level was significantly elevated. While the extent of hepatoprotection afforded by Sch B pretreatment against CCl_4 was found to inversely correlate with the time elapsed after the dosing, the protective effect was associated with the ability of Sch B to maintain the mitochondrial glutathione status and/or induce further production of HSP 25 in CCl_4-intoxicated condition. On the other hand, DDB treatment (2 mmol/kg), which did not increase mitochondrial GSH level and GST activity or induce further production of HSP 25 after CCl_4 challenge, could not protect against CCl_4 toxicity. The results suggest that the enhancement of mitochondrial glutathione status and induction of HSP 25/70 may contribute independently to the hepatoprotection afforded by Sch B pretreatment.  相似文献   

7.
Using an ex vivo model of isolated–perfused rat hearts and cultured H9c2 cells, the structure–activity relationships of schisandrin B (Sch B), and analogs lacking either the methylendioxy group or cyclooctadiene ring, schisandrin A (Sch A) and dimethyl diphenyl bicarboxylate (DDB), respectively, were investigated. Pretreatment with Sch B, but not with Sch A or DDB, protected against myocardial ischemia–reperfusion (I-R) injury in rats. Although Sch B pretreatment largely prevented H9c2 cells from menadione-induced cytotoxicity, Sch A pretreatment produced only a marginal protection. However, DDB pretreatment did not cause any detectable effect. The myocardial and cellular protection afforded by Sch B pretreatment correlated with increases in mitochondrial ATP generation capacity and/or reduced glutathione level as well as heat shock protein (Hsp)25/70 expression, under both control and oxidative stress conditions. The results indicate that the methylenedioxy group and the cyclooctadiene ring are important structural determinants of Sch B in enhancing mitochondrial functional ability and glutathione status, as well as tissue Hsp25/70 expression, thereby protecting the myocardium against I-R injury.  相似文献   

8.
Alloxan is a diabetogenic drug and is known to induce diabetes through generation of free radicals. The toxic oxygen species can be detoxified by antioxidant enzyme system and thus reduce the deleterious effect of lipid peroxidation. Erythrocytes exposed to alloxan induced lipid peroxidationin vivo as well asin vitro. Although alloxan treatment produced a deleterious effect on antioxidant enzymes, pretreatment with glutathione and selenium led to a recovery of the activities of superoxide dismutase and glutathione peroxidase. However, catalase activity increased on alloxan treatment. Alloxan reduced blood glucose level significantly within 60 min but thereafter a slow and steady rise was observed.  相似文献   

9.
Effects of Schisandrin B (Sch B) and -tocopherol (-TOC) on ferric chloride (Fe3+) induced oxidation of erythrocyte membrane lipids in vitro and carbon tetrachloride (CCl4) induced lipid peroxidation in vivo were examined. While -TOC could produce prooxidant and antioxidant effect on Fe3+-induced lipid peroxidation, Sch B only inhibited the peroxidation reaction. Pretreatment with -TOC (3 mmol/kg/day × 3) did not protect against CCl4-induced lipid peroxidation and hepatocellular damage in mice, whereas Sch B pretreatment (0.3 mmol/3.0 mmol/kg/day × 3) produced a dose-dependent protective effect on the CCl4-induced hepatotoxicity. The ensemble of results suggests that the ability of Sch B to inhibit lipid peroxidation, while in the absence of pro-oxidant activity, may at least in part contribute to its hepatoprotective action.Abbreviations ALT alanine aminotransferase - CCl4 carbon tetrachloride - Fe3+ ferric chloride - MDA malondialdehyde - Sch B Schisandrin B - TBA 2-thiobarbituric acid - TBARS thiobarbituric acid reactive substances - -TOC dl--tocopherol  相似文献   

10.
Saffari Y  Sadrzadeh SM 《Life sciences》2004,74(12):1513-1518
Green tea polyphenols like epigallocatechin gallate (EGCG) have been proposed as a cancer chemopreventative. Several studies have shown that EGCG can act as an antioxidant by trapping proxyl radicals and inhibiting lipid peroxidation. The main propose of this study is to investigate the antioxidant capacity of EGCG using erythrocyte membrane-bound ATPases as a model. The effects of EGCG on t-butylhydroperoxide-induced lipid peroxidation and the activity of membrane-bound ATPases in human erythrocyte membranes were studied. The extent of oxidative damage in membranes was assessed by measuring lipid peroxidation, (TBARS, thiobarbituric acid reactive substances formation) and the activity of ATPases (Na(+)/K(+), Ca(2+), and CaM-activated Ca(2+) pump ATPases). EGCG blocked t-BHP induced lipid peroxidation in erythrocyte membranes, significantly (0.45 +/- 0.02 vs 0.20 +/- 0.01; t-BHP vs t-BHP + EGCG respectively, microm/L TBARS) (p < 0.05). EGCG also protected ATPases against t-BHP induced damage; for Na/K ATPase (2.4 +/- 0.2 vs 1.6 +/- 0.1 vs 2.44 +/- 0.2, nmol Pi/min/mg protein, control vs t-BHP vs t-BHP and EGCG respectively), for Ca ATPase (5.8 +/- 0.4 vs 3.9 +/- 0.3 vs 5.6 +/- 0.34, nmol Pi/min/mg protein, control vs t-BHP vs t-BHP and EGCG respectively) and for CaM-Ca ATPase (14.7 +/- 0.7 vs 7.3 +/- 0.4 vs 11.6 +/- 0.55, nmol Pi/min/mg protein, control vs t-BHP vs t-BHP and EGCG respectively) (p < 0.05). In conclusion our results indicate that EGCG is a powerful antioxidant that is capable protecting erythrocyte membrane-bound ATPases against oxidative stress.  相似文献   

11.
Incubation of isolated rat hepatocytes with tert-butylhydroperoxide resulted in marked cytotoxicity preceded by intracellular glutathione depletion and extensive lipid peroxidation. Addition of antioxidants delayed, but did not prevent, this toxicity. A significant decrease in protein-free sulfhydryl groups also, occurred in the presence of tert-butylhydroperoxide; direct oxidation of protein thiols and mixed disulfide formation with glutathione were responsible for this decrease. The involvement of protein thiol depletion in tert-butylhydroperoxide–induced cytotoxicity is suggested by our observation that administration of dithiothreitol, which caused re-reduction of the oxidized sulfhydryl groups and mixed disulfides, efficiently protected the cells from toxicity. Moreover, depletion of intracellular glutathione by pretreatment of the hepatocytes with diethyl maleate accelerated and enhanced the depletion of protein thiols induced by tert-butylhydroperoxide and potentiated cell toxicity even in the absence of lipid peroxidation.  相似文献   

12.
In order to explore the role of cytochrome P-450 (CYP) 2E1 in schisandrin B (Sch B)-induced antioxidant and heat shock responses, the effects of Sch B treatment on hepatic mitochondrial glutathione antioxidant status (mtGAS) and heat shock protein (Hsp)25/70 expression were compared between wild-type and cyp2e1 knock-out C57B/6N mice. Cyp2e1 knock-out mice exhibited a significantly smaller degree of Sch B-induced enhancement in hepatic mtGAS when compared with the wild-type counterpart. But Hsp25/70 expression induced by Sch B was not affected. Sch B-induced enhancement of mtGAS was corroborated by the increase in hepatic mitochondrial antioxidant capacity, as assessed by in vitro measurement of oxidant production, with the enhancing effect being slightly reduced in the knock-out mice. Using liver microsomes prepared from wild-type and knock-out mice as a source of CYP, Sch B was found to be a good co-substrate for the CYP-catalyzed reaction, with the rate of NADPH oxidation observable in microsomes prepared from knock-out mice being slower. The CYP-catalyzed reaction with Sch B was associated with a concomitant production of oxidant species, with the extent of oxidant production being reduced in cyp2e1 knock-out mouse microsomes. Taken together, the results indicate that CYP2E1 is partly responsible for the hepatic metabolism of Sch B that may trigger the antioxidant response in vivo.  相似文献   

13.
Boldine, an aporphine alkaloid, was recently shown by us to exhibit potent antioxidant properties. We report here that boldine concentration-dependently inhibited the peroxidative (accumulation of thiobarbituric acid reactive substances) and lytic damage (trypan blue exclusion and lactate dehydrogenase leakage) to isolated rat hepatocytes induced by tert-butyl hydroperoxide (TBOOH). Boldine (200 mol/L) fully cytoprotected and completely prevented the peroxidation induced by TBOOH a concentrations equal to or lower than 0.87 mmol/L. However, at a peroxide concentration of 0.91 mmol/L, although boldine completely inhibited lipid peroxidation it largely failed to afford cytoprotection against TBOOH. TBOOH alone (0.83 mmol/L) caused an early (within 60 s) sudden decline of reduced glutathione (by 50%) and an equivalent increase in the levels of oxidized glutathione. Neither of these effects was prevented by the simultaneous addition of a cytoprotective and antioxidant concentration of boldine (200 mol/L). The delayed addition of boldine to the suspension (after 10 or 20 min), while effectively blocking any further increase in thiobarbituric acid reactive substances, totally failed to prevent the peroxide-induced loss in cell viability. Conversely, preincubation of the hepatocytes with boldine for 150 min (at which time no boldine could be detected in either intra- or extracellular spaces) prevented lipid peroxidation and was as effective in protecting the cells against the damage caused by the subsequent addition of TBOOH as the simultaneous addition of boldine and TBOOH to hepatocytes preincubated for 150 min under control conditions.Abbreviations DMSO dimethyl sulfoxide - GSH reduced glutathione - GSSG oxidized glutathione - LDH lactic dehydrogenase - TBARS thiobarbituric acid reactive substances - TBOOH tert-butyl hydroperoxide  相似文献   

14.
The streptozotocin-induced short-term (2 week) diabetic rats showed an increase in susceptibility to carbon tetrachloride (CCl4)-induced hepatocellular damage. This diabetes-induced change was associated with a marked impairment in the hepatic glutathione antioxidant/detoxification response to CCl4 challenge, as indicated by the abrogation of the increases in hepatic reduced glutathione (GSH) level, glucose-6-phosphate dehydrogenase and microsomal glutathione S-transferases (GST) activities upon challenge with increasing doses of CCl4. While the hepatic GSH level was increased in diabetic rats, the hepatic mitochondrial GSH level and Se-glutathione peroxidase activity were significantly reduced. Insulin treatment could reverse most of the biochemical alterations induced by diabetes. Both insulin and schisandrin B (Sch B) pretreatments protected against the CCl4 hepatotoxicity in diabetic rats. The hepatoprotection was associated with improvement in hepatic glutathione redox status in both cytosolic and mitochondrial compartments, as well as the increases in hepatic ascorbic acid level and microsomal GST activity. The ensemble of results suggests that the diabetes-induced impairment in hepatic mitochondrial glutathione redox status may at least in part be attributed to the enhanced susceptibility to CCl4 hepatotoxicity. Sch B may be a useful hepatoprotective agent against xenobiotics-induced toxicity under the diabetic conditions. (Mol Cell Biochem 175: 225–232, 1997)  相似文献   

15.
Sch B (schisandrin B), the most abundant dibenzocyclooctadiene lignan in Fructus schisandrae, can induce glutathione antioxidant and heat shock responses, as well as protect against oxidant-induced injury in various tissues, including the liver in rodents and AML12 (alpha mouse liver 12) hepatocytes. (-)Sch B is the most potent stereoisomer of Sch B in its cytoprotective action on AML12 hepatocytes. To define the role of ROS (reactive oxygen species) arising from CYP (cytochrome P450)-catalysed metabolism of (-)Sch B in triggering glutathione antioxidant and heat shock responses, the effects of a CYP inhibitor [ABT (aminobenzotriazole)] and antioxidants [DMTU (dimethylthiouracil) and TRX (trolox)] on (-)Sch B-induced ROS production and associated increases in cellular GSH level, as well as Hsp25/70 (heat-shock protein 25/70) production, were investigated in AML12 hepatocytes. The results indicated that (-)Sch B causes a dose dependent and sustained increase in ROS production over 6 h in AML12 hepatocytes, which was completely suppressed by pre-/co-treatment with ABT or DTMU/TRX. Incubation with (-)Sch B for 6 h caused optimal and dose-dependent increases in cellular GSH level and Hsp25/70 production at 16 h post-drug exposure in AML12 hepatocytes. These cellular responses were associated with protection against menadione-induced apoptosis. Pre-/co-treatment with ABT or antioxidants completely abrogated the (-)Sch B-induced glutathione antioxidant and heat shock responses, as well as protection against menadione-induced apoptosis. Experimental evidence obtained thus far supports the causal role of ROS arising from the CYP-catalysed metabolism of (-)Sch B in eliciting glutathione antioxidant and heat shock responses in AML12 hepatocytes.  相似文献   

16.
In vivo effects of the antidepressant fluoxetine on spleen antioxidant status of C57BL/6 mice were studied using a melanoma experimental model. After a 14‐day treatment with fluoxetine (10 mg kg?1 day?1, i.p.), the endogenous antioxidant non‐enzyme (glutathione) and enzyme (superoxide dismutase (SOD) and glutathione peroxidase (GPx)) defense systems in spleen of healthy animals were not changed; the lipid peroxidation (LP) was also unchanged. When B16F10 melanoma cells were introduced in C57BL/6 mice 2 h before fluoxetine treatment, a drug‐protective effect against the melanoma‐induced oxidative changes (increased LP and decreased total glutathione (GSH)‐level, as well as antioxidant enzyme activities) in spleen was observed. Fluoxetine dose‐dependently reduced the amounts of free oxygen radicals (hydroxyl and superoxide anion radicals), generated in chemical systems. Taken together, the present results suggest that fluoxetine, acting as antioxidant, prevents from melanoma‐induced oxidative changes in mice spleen. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Pretreating mice with schisandrin B (Sch B), a dibenzocyclooctadiene derivative isolated from the fruit of Schisandra chinensis, at a daily dose of 1 mmol/kg for 3 days protected against menadione-induced hepatic oxidative damage in mice, as evidenced by decreases in plasma alanine aminotransferase activity (78%) and hepatic malondialdehyde level (70%), when compared with the menadione intoxicated control. In order to define the biochemical mechanism involved in the hepatoprotection afforded by Sch B pretreatment, we examined the activity of DT-diaphorase (DTD) in hepatocytes isolated from Sch B pretreated rats. Hepatocytes isolated from Sch B pretreated (a daily dose of 1 mmol/kg for 3 days) rats showed a significant increase (25%) in DTD activity. The increase in DTD activity was associated with the enhanced rate of menadione elimination in the hepatocyte culture. The ensemble of results suggests that the ability of Sch B pretreatment to enhance hepatocellular DTD activity may at least in part be attributed to the protection against menadione hepatotoxicity.  相似文献   

18.
Acrylonitrile (ACN) is a volatile, toxic liquid used as a monomer in the manufacture of synthetic rubber, styrene plastics, acrylic fiber, and adhesives. ACN is a potent neurotoxin. A role for free radical mediated lipid peroxidation in the toxicity of ACN has been suggested. We examined the ability of hesperidin, an antioxidant flavonoid, to attenuate ACN-induced alterations in lipid peroxidation in rat brains. The daily oral administration of ACN to male albino rats in a dose of 50 mg/kg bwt for a period of 28 days produced a significant elevation in brain lipid peroxides measured as malondialdehyde (MDA) amounting to 107%, accompanied by a marked decrease in brain-reduced glutathione (GSH) content reaching 63%. In addition, ACN administration resulted in significant reductions in the enzymatic antioxidant parameters of brain; superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione-S-transferase (GST) recording 43%, 64%, 52%, and 43%, respectively. On the other hand, pretreatment with hesperidin and its coadministration with ACN once daily in a dose of 200 mg/kg bwt i.p. for 28 days ameliorated ACN-induced alterations in brain lipid peroxidation. These results suggest that hesperidin may have a beneficial role against ACN-induced oxidative stress in the brain; an effect that is mainly attributed to the antioxidant property of hesperidin.  相似文献   

19.
Aqueous extract (OE) of the leaves of Ocimum sanctum, the Indian holy basil, has been found to protect mouse against radiation lethality and chromosome damage and to possess significant antioxidant activity in vitro. Therefore a study was conducted to see if OE protects against radiation induced lipid peroxidation in liver and to determine the role, if any, of the inherent antioxidant system in radioprotection by OE. Adult Swiss mice were injected intraperitoneally (i.p.) with 10 mg/kg of OE for 5 consecutive days and exposed to 4.5 Gy of gamma radiation 30 min after the last injection. Glutathione (GSH) and the antioxidant enzymes glutathione transferase (GST), reductase (GSRx), peroxidase (GSPx) and superoxide dismutase (SOD), as well as lipid peroxide (LPx) activity were estimated in the liver at 15 min, 30 min, 1, 2, 4 and 8 hr post-treatment. LPx was also studied after treatment with a single dose of 50 mg/kg of OE with/without irradiation. OE itself increased the GSH and enzymes significantly above normal levels whereas radiation significantly reduced all the values. The maximum decline was at 30-60 min for GSH and related enzymes and at 2 hr for SOD. Pretreatment with the extract checked the radiation induced depletion of GSH and all the enzymes and maintained their levels within or above the control range. Radiation significantly increased the lipid peroxidation rate, reaching a maximum value at 2 hr after exposure (approximately 3.5 times that of control). OE pretreatment significantly (P < 0.0001) reduced the lipid peroxidation and accelerated recovery to normal levels. The results indicate that Ocimum extract protects against radiation induced lipid peroxidation and that GSH and the antioxidant enzymes appear to have an important role in the protection.  相似文献   

20.
In the present work, the potential hepatoprotective effects of five phenolic compounds against oxidative damages induced by tert-butyl hydroperoxide (t-BHP) were evaluated in HepG2 cells in order to relate in vitro antioxidant activity with cytoprotective effects. t-BHP induced considerable cell damage in HepG2 cells as shown by significant LDH leakage, increased lipid peroxidation, DNA damage as well as decreased levels of reduced glutathione (GSH). All tested phenolic compounds significantly decreased cell death induced by t-BHP (when in co-incubation). If the effects of quercetin are given the reference value 1, the compounds rank in the following order according to inhibition of cell death: luteolin (4.0) > quercetin (1.0) > rosmarinic acid (0.34) > luteolin-7-glucoside (0.30) > caffeic acid (0.21). The results underscore the importance of the compound's lipophilicity in addition to its antioxidant potential for its biological activity. All tested phenolic compounds were found to significantly decrease lipid peroxidation and prevent GSH depletion induced by t-BHP, but only luteolin and quercetin significantly decreased DNA damage. Therefore, the lipophilicity of the natural antioxidants tested appeared to be of even greater importance for DNA protection than for cell survival. The protective potential against cell death was probably achieved mainly by preventing intracellular GSH depletion. The phenolic compounds studied here showed protective potential against oxidative damage induced in HepG2 cells. This could be beneficial against liver diseases where it is known that oxidative stress plays a crucial role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号