首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 620 毫秒
1.
Profilin is an actin monomer-binding protein implicated in the polymerization of actin filaments. In the budding yeast Saccharomyces cerevisiae, the pfy1-111 rho2delta double mutant has severe growth and actin cytoskeletal defects. The GEA1 and GEA2 genes, which code for paralog guanosine exchange factors for Arf proteins, were identified as multicopy suppressors of the mutant phenotype. These two genes restored the polarized distribution of actin cortical patches and produced visible actin cables in both the pfy1-111 rho2delta and pfy1delta cells. Thus, overexpression of GEA1 or GEA2 bypassed the requirement for profilin in actin cable formation. In addition, gea1 gea2 double mutants showed defects in budding and in actin cytoskeleton organization, while overexpression of GEA1 or GEA2 led to the formation of supernumerary actin cable-like structures in a Bni1p/Bnr1p-dependent manner. The ADP-ribosylation factor Arf3p may be a target of Gea1p/Gea2p, since overexpression of ARF3 partially suppressed the profilin-deficient phenotype and a deletion of ARF3 exacerbated the phenotype of a pfy1-111 mutant. Gea1p, Gea2p, Arf1p, and Arf2p but not Arf3p are known to function in vesicular transport between the endoplasmic reticulum and the Golgi. In this work, we demonstrate a role for Gea1p, Gea2p, and Arf3p in the organization of the actin cytoskeleton.  相似文献   

2.
The RHO1 gene encodes a homolog of the mammalian RhoA small GTP binding protein in the yeast Saccharomyces cerevisiae. Rho1p is localized at the growth site and is required for bud formation. Multicopy suppressors of a temperature-sensitive, dominant negative mutant allele of RHO1, RHO1(G22S, D125N), were isolated and named ROM (RHO1 multicopy suppressor). Rom1p and Rom2p were found to contain a DH (Dbl homologous) domain and a PH (pleckstrin homologous) domain, both of which are conserved among the GDP/GTP exchange proteins (GEPs) for the Rho family small GTP binding proteins. Disruption of ROM2 resulted in a temperature-sensitive growth phenotype, whereas disruption of both ROM1 and ROM2 resulted in lethality. The phenotypes of deltarom1deltarom2 cells were similar to those of deltarho1 cells, including growth arrest with a small bud and cell lysis. Moreover, the temperature-sensitive growth phenotype of deltarom2 was suppressed by overexpression of RHO1 or RHO2, but not of CDC42. The glutathione-S-transferase (GST) fusion protein containing the DH domain of Rom2p showed the lipid-modified Rholp-specific GDP/GTP exchange activity which was sensitive to Rho GDP dissociation inhibitor. These results indicate that Rom1p and Rom2p are GEPs that activate Rho1p in S.cerevisiae.  相似文献   

3.
We show that Arf3p, a member of the ADP ribosylation family, is involved in the organization of actin cables and cortical patches in Saccharomyces cerevisiae. Profilin-deficient cells (pfy1Delta) have severe growth defects and lack actin cables. Overexpression of ARF3 restores actin cables and corrects growth defects in these cells. Cells deficient for the cortical patch proteins Las17p and Vrp1p have growth defects and a random cortical patch distribution. Overexpression of ARF3 in las17Delta and in vrp1Delta cells partially corrects growth defects and restores the polarized distribution of cortical patches. The N-terminal glycine, a myristoylation site in Arf3p, is necessary for its suppressor activity. arf3Delta cells show a random budding pattern. Overexpression of BNI1, GEA2 or SYP1, three genes involved in actin cytoskeleton formation, restores the normal axial budding pattern of arf3Delta cells. BUD6 is a polarity gene and GEA2 is involved in retrograde transport and the organization of the actin cytoskeleton. We have identified genetic interactions between ARF3 and BUD6, and between ARF3 and GEA2. Both double mutant strains have actin cytoskeleton defects. Our results support a role for ARF3 in cell polarity and the organization of the actin cytoskeleton.  相似文献   

4.
Schizosaccharomyces pombe Rho1p regulates (1,3)beta-d-glucan synthesis and is required for cell integrity maintenance and actin cytoskeleton organization, but nothing is known about the regulation of this protein. At least nine different S. pombe genes code for proteins predicted to act as Rho GTPase-activating proteins (GAPs). The results shown in this paper demonstrate that the protein encoded by the gene named rga5+ is a GAP specific for Rho1p. rga5+ overexpression is lethal and causes morphological alterations similar to those reported for Rho1p inactivation. rga5+ deletion is not lethal and causes a mild general increase in cell wall biosynthesis and morphological alterations when cells are grown at 37 degrees C. Upon mild overexpression, Rga5p localizes to growth areas and possesses both in vivo and in vitro GAP activity specific for Rho1p. Overexpression of rho1+ in rga5Delta cells is lethal, with a morphological phenotype resembling that of the overexpression of the constitutively active allele rho1G15V. In addition (1,3)beta-d-glucan synthase activity, regulated by Rho1p, is increased in rga5Delta cells and decreased in rga5-overexpressing cells. Moreover, the increase in (1,3)beta-d-glucan synthase activity caused by rho1+ overexpression is considerably higher in rga5Delta than in wild-type cells. Genetic interactions suggest that Rga5p is also important for the regulation of the other known Rho1p effectors, Pck1p and Pck2p.  相似文献   

5.
Summary Profilin is a ubiquitous actin-monomer-binding protein. The protistPhysarum polycephalum contains two profilins, ProA and ProP, present in amoebae and plasmodia, respectively. We have used mutantSaccharomyces cerevisiae cells in an attempt to observe distinct functions for the two profilins. Profilin-deficient yeast cells (pfy1) have delocalized actin cortical patches, do not contain visible actin cables, have reduced mating efficiency and do not grow at 37 °C or in the presence of caffeine. Deletion of theSRV2 gene (srv2), coding for the adenylyl cyclase-associated protein, also results in an altered actin distribution and an inability to survive on rich medium. We found that the pfy1 and srv2 mutant phenotypes were corrected equally well by the overexpression of Physarum ProA or yeast Pfy1p profilins. The pfy1 cells overexpressing ProP have improved mating efficiency and a normal distribution of actin cortical patches. These cells, however, have barely detectable actin cables, do not grow at 37 °C, and are sensitive to caffeine. Also, the expression of ProP does not correct the growth defect of the srv2 cells. These results suggest that the two Physarum proteins are not functionally equivalent in yeast cells. No difference was detected in the affinity of ProA and ProP for poly-L-proline, while ProA has a slightly greater affinity than ProP for phosphatidylinositol 4,5-biphosphate.Abbreviations FITC tfluorescein isothiocyanate - PIP2 phosphatidylinositol 4,5-biphosphate - YPD yeast extract peptone dextrose  相似文献   

6.
7.
8.
A formin Bni1p nucleates actin to assemble actin cables, which guide the polarized transport of secretory vesicles in budding yeast. We identified mutations that suppressed both the lethality and the excessive actin cable formation caused by overexpression of a truncated Bni1p (BNI1DeltaN). Two recessive mutations, act1-301 in the actin gene and sla2-82 in a gene involved in cortical actin patch assembly, were identified. The isolation of sla2-82 was unexpected, because cortical actin patches are required for the internalization step of endocytosis. Both act1-301 and sla2-82 exhibited synthetic growth defects with bni1Delta. act1-301, which resulted in an E117K substitution, interacted genetically with mutations in profilin (PFY1) and BUD6, suggesting that Act1-301p was not fully functional in formin-mediated polymerization. sla2-82 also interacted genetically with genes involved in actin cable assembly. Some experiments, however, suggested that the effects of sla2-82 were caused by depletion of actin monomers, because the temperature-sensitive growth phenotype of the bni1Delta sla2-82 mutant was suppressed by increased expression of ACT1. The isolation of suppressors of the BNI1DeltaN phenotype may provide a useful system for identification of actin amino-acid residues that are important for formin-mediated actin polymerization and mutations that affect the availability of actin monomers.  相似文献   

9.
The Rho GTPase family and their effectors are key regulators involved in many eukaryotic cell functions related to actin organization and polarity establishment. Schizosaccharomyces pombe Rho1p is essential, directly activates the (1,3)-beta-d-glucan synthase, and participates in regulation of cell wall growth and morphogenesis. Here we describe the characterization of the fission yeast Rho5p GTPase, highly homologous to Rho1p, sharing 86% identity and 95% similarity. Overexpression of the hyperactive allele rho5-G15V causes a morphological effect similar to that of rho1-G15V, but the penetrance is significantly lower, and overexpression of the dominant-negative allele rho5-T20N causes lysis like that of rho1-T20N. Importantly, overexpression of rho5(+) but no other rho genes is able to rescue the lethality of rho1Delta cells. Shutoff experiments indicated that Rho5p can replace Rho1p, but it is not as effective in maintaining cell wall integrity or actin organization. rho5(+) expression is hardly detected during log-phase growth but is induced under nutritional starvation conditions. rho5Delta cells are viable and do not display any defects during logarithmic growth. However, when rho1(+) expression is repressed during stationary phase, rho5Delta cells display reduced viability. Ascospores lacking Rho5p are less resistant to heat or lytic enzymes than wild-type spores. Moreover, h(90) mutant strains carrying the hyperactive rho5-G15V or the dominant-negative rho5-T20N alleles display severe ascospore formation defects. These results suggest that Rho5p functions in a way similar to, but less efficient than, Rho1p, plays a nonessential role during stationary phase, and participates in the spore wall formation.  相似文献   

10.
Yeast Las17 protein is homologous to the Wiskott-Aldrich Syndrome protein, which is implicated in severe immunodeficiency. Las17p/Bee1p has been shown to be important for actin patch assembly and actin polymerization. Here we show that Las17p interacts with the Arp2/3 complex. LAS17 is an allele-specific multicopy suppressor of ARP2 and ARP3 mutations; overexpression restores both actin patch organization and endocytosis defects in ARP2 temperature-sensitive (ts) cells. Six of seven ARP2 ts mutants and at least one ARP3 ts mutant are synthetically lethal with las17Delta ts confirming functional interaction with the Arp2/3 complex. Further characterization of las17Delta cells showed that receptor-mediated internalization of alpha factor by the Ste2 receptor is severely defective. The polarity of normal bipolar bud site selection is lost. Las17-gfp remains localized in cortical patches in vivo independently of polymerized actin and is required for the polarized localization of Arp2/3 as well as actin. Coimmunoprecipitation of Arp2p with Las17p indicates that Las17p interacts directly with the complex. Two hybrid results also suggest that Las17p interacts with actin, verprolin, Rvs167p and several other proteins including Src homology 3 (SH3) domain proteins, suggesting that Las17p may integrate signals from different regulatory cascades destined for the Arp2/3p complex and the actin cytoskeleton.  相似文献   

11.
The Rho family of GTPases is present in all eukaryotic cells from yeast to mammals; they are regulators in signaling pathways that control actin organization and morphogenetic processes. In yeast, Rho GTPases are implicated in cell polarity processes and cell wall biosynthesis. It is known that Rho1 and Rho2 are key proteins in the construction of the cell wall, an essential structure that in Schizosaccharomyces pombe is composed of beta-glucan, alpha-glucan, and mannoproteins. Rho1 regulates the synthesis of 1,3-beta-D-glucan by activation of the 1,3-beta-D-glucan synthase, and Rho2 regulates the synthesis of alpha-glucan by the 1,3-alpha-D-glucan synthase Mok1. Here we describe the characterization of another Rho GTPase in fission yeast, Rho4. rho4Delta cells are viable but display cell separation defects at high temperature. In agreement with this observation, Rho4 localizes to the septum. Overexpression of rho4(+) causes lysis and morphological defects. Several lines of evidence indicate that both rho4(+) deletion or rho4(+) overexpression result in a defective cell wall, suggesting an additional role for Rho4 in cell wall integrity. Rho4Delta cells also accumulate secretory vesicles around the septum and are defective in actin polarization. We propose that Rho4 could be involved in the regulation of the septum degradation during cytokinesis.  相似文献   

12.
SLA1 was identified previously in budding yeast in a genetic screen for mutations that caused a requirement for the actin-binding protein Abp1p and was shown to be required for normal cortical actin patch structure and organization. Here, we show that Sla1p, like Abp1p, localizes to cortical actin patches. Furthermore, Sla1p is required for the correct localization of Sla2p, an actin-binding protein with homology to talin implicated in endocytosis, and the Rho1p-GTPase, which is associated with the cell wall biosynthesis enzyme beta-1,3-glucan synthase. Mislocalization of Rho1p in sla1 null cells is consistent with our observation that these cells possess aberrantly thick cell walls. Expression of mutant forms of Sla1p in which specific domains were deleted showed that the phenotypes associated with the full deletion are functionally separable. In particular, a region of Sla1p encompassing the third SH3 domain is important for growth at high temperatures, for the organization of cortical actin patches, and for nucleated actin assembly in a permeabilized yeast cell assay. The apparent redundancy between Sla1p and Abp1p resides in the C-terminal repeat region of Sla1p. A homologue of SLA1 was identified in Schizosaccharomyces pombe. Despite relatively low overall sequence homology, this gene was able to rescue the temperature sensitivity associated with a deletion of SLA1 in Saccharomyces cerevisiae.  相似文献   

13.
We have discovered a novel cortical patch structure in Saccharomyces cerevisiae defined by a family of integral plasma membrane proteins, including Sur7p, Ynl194p, and Ydl222p. Sur7p-family patches localized as cortical patches that were immobile and stable. These patches were polarized to regions of the cell with a mature cell wall; they were absent from small buds and the tips of many medium-sized buds. These patches were distinct from other known cortical structures. Digestion of the cell wall caused Sur7p patches to disassemble, indicating that Sur7p requires cell wall-dependent extracellular interactions for its localization as patches. sur7Delta, ydl222Delta, and ynl194Delta mutants had reduced sporulation efficiencies. SUR7 was originally described as a multicopy suppressor of rvs167, whose product is an actin patch component. This suppression is probably mediated by sphingolipids, since deletion of SUR7, YDL222, and YNL194 altered the sphingolipid content of the yeast plasma membrane, and other SUR genes suppress rvs167 via effects on sphingolipid synthesis. In particular, the sphingoid base length and number of hydroxyl groups in inositol phosphorylceramides were altered in sur7Delta, ydl222Delta, and yne194Delta strains.  相似文献   

14.
Rho1p regulates cell integrity by controlling the actin cytoskeleton and cell wall synthesis. We have identified a new GEF, designated Rgf1p, which specifically regulates Rho1p during polarized growth. The phenotype of rgf1 null cells was very similar to that seen after depletion of Rho1p, 30% of cells being lysed. In addition, rgf1(+) deletion caused hypersensitivity to the antifungal drug Caspofungin and defects in the establishment of bipolar growth. rho1(+), but none of the other GTPases of the Rho-family, suppressed the rgf1Delta phenotypes. Moreover, deletion of rgf1(+) suppressed the severe growth defect in rga1(+) null mutants (a Rho1-GAP, negative regulator). Rgf1p and Rho1p coimmunoprecipitated and overexpression of rgf1(+) specifically increased the GTP-bound Rho1p; it caused changes in cell morphology, and a large increase in beta(1,3)-glucan synthase activity. These effects were similar to those elicited when the hyperactive rho1-G15V allele was expressed. A genetic relationship was observed between Rgf1p, Bgs4p (beta[1,3]-glucan synthase), and Pck1p (protein kinase C [PKC] homologue); Bgs4p and Pck1p suppressed the hypersensitivity to Caspofungin in rgf1Delta mutants. Rgf1p localized to the growing ends and the septum, where Rho1, Pck1p, and Bgs4p are known to function. Our results suggest that Rgf1p probably activates the Rho functions necessary for coordinating actin deposition with cell wall biosynthesis during bipolar growth, allowing the cells to remodel their wall without risk of rupture.  相似文献   

15.
Wsc1 and Mid2 are highly O-glycosylated cell surface proteins that reside in the plasma membrane of Saccharomyces cerevisiae. They have been proposed to function as mechanosensors of cell wall stress induced by wall remodeling during vegetative growth and pheromone-induced morphogenesis. These proteins are required for activation of the cell wall integrity signaling pathway that consists of the small G-protein Rho1, protein kinase C (Pkc1), and a mitogen-activated protein kinase cascade. We show here by two-hybrid experiments that the C-terminal cytoplasmic domains of Wsc1 and Mid2 interact with Rom2, a guanine nucleotide exchange factor (GEF) for Rho1. At least with regard to Wsc1, this interaction is mediated by the Rom2 N-terminal domain. This domain is distinct from the Rho1-interacting domain, suggesting that the GEF can interact simultaneously with a sensor and with Rho1. We also demonstrate that extracts from wsc1 and mid2 mutants are deficient in the ability to catalyze GTP loading of Rho1 in vitro, providing evidence that the function of the sensor-Rom2 interaction is to stimulate nucleotide exchange toward this G-protein. In a related line of investigation, we identified the PMT2 gene in a genetic screen for mutations that confer an additive cell lysis defect with a wsc1 null allele. Pmt2 is a member of a six-protein family in yeast that catalyzes the first step in O mannosylation of target proteins. We demonstrate that Mid2 is not mannosylated in a pmt2 mutant and that this modification is important for signaling by Mid2.  相似文献   

16.
Chai B  Hsu JM  Du J  Laurent BC 《Genetics》2002,161(2):575-584
RSC is a 15-protein ATP-dependent chromatin-remodeling complex related to Snf-Swi, the prototypical ATP-dependent nucleosome remodeler in budding yeast. Despite insight into the mechanism by which purified RSC remodels nucleosomes, little is known about the chromosomal targets or cellular pathways in which RSC acts. To better understand the cellular function of RSC, a screen was undertaken for gene dosage suppressors of sth1-3ts, a temperature-sensitive mutation in STH1, which encodes the essential ATPase subunit. Slg1p and Mid2p, two type I transmembrane stress sensors of cell wall integrity that function upstream of protein kinase C (Pkc1p), were identified as multicopy suppressors of sth1-3ts cells. Although the sth1-3ts mutant exhibits defects characteristic of PKC1 pathway mutants (caffeine and staurosporine sensitivities and an osmoremedial phenotype), only upstream components and not downstream effectors of the PKC1-MAP kinase pathway can suppress defects conferred by sth1-3ts, suggesting that RSC functions in an alternative PKC1-dependent pathway. Moreover, sth1-3ts cells display defects in actin cytoskeletal rearrangements and are hypersensitive to the microtubule depolymerizing drug, TBZ; both of these defects can be corrected by the high-copy suppressors. Together, these data reveal an important functional connection between the RSC remodeler and PKC1-dependent signaling in regulating the cellular architecture.  相似文献   

17.
In the yeast Saccharomyces cerevisiae the guanosine triphosphatase (GTPase) Rho1 controls actin polarization and cell wall expansion. When cells are exposed to various environmental stresses that perturb the cell wall, Rho1 activates Pkc1, a mammalian Protein Kinase C homologue, and Mpk1, a mitogen activated protein kinase (MAPK), resulting in actin depolarization and cell wall remodeling. In this study, we demonstrate a novel feedback loop in this Rho1-mediated Pkc1-MAPK pathway that involves regulation of Rom2, the guanine nucleotide exchange factor of Rho1, by Mpk1, the end kinase of the pathway. This previously unrecognized Mpk1-depedent feedback is a critical step in regulating Rho1 function. Activation of this feedback mechanism is responsible for redistribution of Rom2 and cell wall synthesis activity from the bud to cell periphery under stress conditions. It is also required for terminating Rho1 activity toward the Pkc1-MAPK pathway and for repolarizing actin cytoskeleton and restoring growth after the stressed cells become adapted.  相似文献   

18.
19.
The protein kinase C (PKC) pathway is involved in the maintenance of cell shape and cell integrity in Saccharomyces cerevisiae. Here, we show that this pathway mediates tolerance to low pH and that the Bck1 and Slt2 proteins belonging to the mitogen-activated protein kinase cascade are essential for cell survival at low pH. The PKC pathway is activated during acidification of the extracellular environment, and this activation depends mainly on the Mid2p cell wall sensor. Rgd1p, which encodes a Rho GTPase-activating protein for the small G proteins Rho3p and Rho4p, also plays a role in low-pH response. The rgd1Delta strain is sensitive to low pH, and Rgd1p activates the PKC pathway in an acidic environment. Inactivation of both genes in the double mutant rgd1Delta mid2Delta strain renders yeast cells unable to survive at low pH as in bck1Delta and slt2Delta strains. Our data provide evidence for the existence of two distinct ways, one involving Mid2p and the other involving Rgd1p, with both converging to the cell integrity pathway to mediate low-pH tolerance in Saccharomyces cerevisiae. Nevertheless, even if Rgd1p acts on the PKC pathway, it seems that its mediating action on low-pH tolerance is not limited to this pathway. As the Mid2p amount plays a role in rgd1Delta sensitivity to low pH, Mid2p seems to act more like a molecular rheostat, controlling the level of PKC pathway activity and thus allowing phenotypical expression of RGD1 inactivation.  相似文献   

20.
SCD5 was identified as a multicopy suppressor of clathrin HC-deficient yeast. SCD5 is essential, but an scd5-Delta338 mutant, expressing Scd5p with a C-terminal truncation of 338 amino acids, is temperature sensitive for growth. Further studies here demonstrate that scd5-Delta338 affects receptor-mediated and fluid-phase endocytosis and normal actin organization. The scd5-Delta338 mutant contains larger and depolarized cortical actin patches and a prevalence of G-actin bars. scd5-Delta338 also displays synthetic negative genetic interactions with mutations in several other proteins important for cortical actin organization and endocytosis. Moreover, Scd5p colocalizes with cortical actin. Analysis has revealed that clathrin-deficient yeast also have a major defect in cortical actin organization and accumulate G-actin. Overexpression of SCD5 partially suppresses the actin defect of clathrin mutants, whereas combining scd5-Delta338 with a clathrin mutation exacerbates the actin and endocytic phenotypes. Both Scd5p and yeast clathrin physically associate with Sla2p, a homologue of the mammalian huntingtin interacting protein HIP1 and the related HIP1R. Furthermore, Sla2p localization at the cell cortex is dependent on Scd5p and clathrin function. Therefore, Scd5p and clathrin are important for actin organization and endocytosis, and Sla2p may provide a critical link between clathrin and the actin cytoskeleton in yeast, similar to HIP1(R) in animal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号