首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil water deficits reduce rice (Oryza sativa L.) productivity under upland field conditions. In this study, we constructed screening facilities to evaluate the performance of rice cultivars under drought conditions and to assess the roles of deep roots. Two experiments were conducted with six rice cultivars, including drought-tolerant and drought-susceptible cultivars, grown in two root environments: a root-restricted treatment that restricted rooting depth with water-permeable sheets, and a raised bed that reduced water availability in the surface soil by inserting a gravel layer between the topsoil and subsoil layers to interrupt capillary transport of water. In the root-restricted treatment, in which root growth was restricted to the surface 25-cm layer, leaf water potential decreased faster in cultivars with a large canopy during drought stress, and there was little difference in panicle weight among cultivars. With a normal (unrestricted) root environment, the deepest-rooting cultivar (‘IRAT109’) maintained higher leaf water potential during drought, although panicle weight under drought stress was affected by yield potential as well as by deep rooting. Under the intermittent drought stress in the raised bed, deep-rooting cultivars accumulated more nitrogen and produced more biomass, and the difference in panicle weight between deep-rooting drought-tolerant and shallow-rooting drought-susceptible cultivars was magnified by the raised bed compared with the yield differences under drought in a normal root environment. These results demonstrate that the drought screening facilities we developed can help to identify superior cultivars under upland field conditions without time-consuming measurement of deep root systems.  相似文献   

2.
The effects of soil water regime and wheat cultivar, differing in drought tolerance with respect to root respiration and grain yield, were investigated in a greenhouse experiment. Two spring wheat (Triticum aestivum) cultivars, a drought sensitive (Longchun 8139-2) and drought tolerant (Dingxi 24) were grown in PVC tubes (120 cm in length and 10 cm in diameter) under an automatic rain-shelter. Plants were subjected to three soil moisture regimes: (1) well-watered control (85% field water capacity, FWC); (2) moderate drought stress (50% FWC) and (3) severe drought stress (30% FWC). The aim was to study the influence of root respiration on grain yield under soil drying conditions. In the experiment, severe drought stress significantly (p < 0.05) reduced shoot and root biomass, photosynthesis and root respiration rate for both cultivars, but the extent of the decreases was greater for Dingxi 24 compared to that for Longchun 8139-2. Compared with Dingxi 24, 0.04 and 0.07 mg glucose m−2 s−1 of additional energy, equivalent to 0.78 and 1.43 J m−2 s−1, was used for water absorption by Longchun 8139-2 under moderate and severe drought stress, respectively. Although the grain yield of both cultivars decreased with declining soil moisture, loss was greater in Longchun 8139-2 than in Dingxi 24, especially under severe drought stress. The drought tolerance cultivar (Dingxi 24), had a higher biomass and metabolic activity under severe drought stress compared to the sensitive cultivar (Longchun 8139-2), which resulted in further limitation of grain yield. Results show that root respiration, carbohydrates allocation (root:shoot ratio) and grain yield were closely related to soil water status and wheat cultivar. Reductions in root respiration and root biomass under severe soil drying can improve drought tolerant wheat growth and physiological activity during soil drying and improve grain yield, and hence should be advantageous over a drought sensitive cultivar in arid regions.  相似文献   

3.
Root system characteristics are of fundamental importance to soil exploration and below-ground resource acquisition. Root architectural traits determine the in situ space-filling properties of a root system or root architecture. The growth angle of root axes is a principal component of root system architecture that has been strongly associated with acquisition efficiency in many crop species. The aims of this study were to examine the extent of genotypic variability for the growth angle and number of seminal roots in 27 current Australian and 3 CIMMYT wheat (Triticum aestivum L.) genotypes, and to quantify using fractal analysis the root system architecture of a subset of wheat genotypes contrasting in drought tolerance and seminal root characteristics. The growth angle and number of seminal roots showed significant genotypic variation among the wheat genotypes with values ranging from 36 to 56 (degrees) and 3 to 5 (plant−1), respectively. Cluster analysis of wheat genotypes based on similarity in their seminal root characteristics resulted in four groups. The group composition reflected to some extent the genetic background and environmental adaptation of genotypes. Wheat cultivars grown widely in the Mediterranean environments of southern and western Australia generally had wider growth angle and lower number of seminal axes. In contrast, cultivars with superior performance on deep clay soils in the northern cropping region, such as SeriM82, Baxter, Babax, and Dharwar Dry exhibited a narrower angle of seminal axes. The wheat genotypes also showed significant variation in fractal dimension (D). The D values calculated for the individual segments of each root system suggested that, compared to the standard cultivar Hartog, the drought-tolerant genotypes adapted to the northern region tended to distribute relatively more roots in the soil volume directly underneath the plant. These findings suggest that wheat root system architecture is closely linked to the angle of seminal root axes at the seedling stage. The implications of genotypic variation in the seminal root characteristics and fractal dimension for specific adaptation to drought environment types are discussed with emphasis on the possible exploitation of root architectural traits in breeding for improved wheat cultivars for water-limited environments.  相似文献   

4.
Soils under field conditions may experience fluctuating soil water regimes ranging from drought to waterlogging. The inability of roots to acclimate to such changes in soil water regimes may result in reduced growth and function thereby, dry matter production. This study compared the root and shoot growth, root aerenchyma development, and associated root oxygen transport of aerobic and irrigated lowland rice genotypes grown under well-watered (control), waterlogged, and droughted soil conditions for 30 days. The aerobic genotypes were as tolerant as the irrigated lowland genotypes under waterlogging because of their comparable abilities to enhance aerenchyma that effectively facilitated O2 diffusion to the roots for maintaining root growth and dry matter production. Under drought, aerobic genotypes were more tolerant than the irrigated lowland genotypes due to their higher ability to maintain nodal root production, elongation, and branching, thus, less reduction in dry matter production. Aerenchyma was also formed in droughted roots regardless of genotypes, but was resistant to internal O2 transport under O2 deficiency. The ability of roots to resist temporal variations in drought and waterlogging stresses might have strong implications for the adaptation of rice growing in environments with fluctuating soil water regimes.  相似文献   

5.
通过对两个品种白三叶Trifolium repens cv.Haifa(海发)和Trifolium repens cv.Rivendel(瑞文德)盆栽试验,模拟3种不同的土壤水分状况(无水分胁迫:保持植株良好的水分供应;轻度胁迫:表层0~20cm土壤处于干旱状态;重度胁迫:表层0~20cm土壤处于极干旱状态,20~40cm土壤处于干旱状态)对白三叶光合作用和根系生长的影响.结果表明,当植株未遭受水分胁迫时,两个品种白三叶的光合作用和根系生长状况没有明显差异;当表层0~20cm处于干旱状态时,'海发'在处理后期的净光合速率和水分利用效率升高,根系生长量增大,表现出促进作用,'瑞文德'受到的影响不显著;当表层0~20cm处于极干旱、20~40cm处于干旱状态时,'海发'在处理前期受到轻微影响,随后恢复正常状态,'瑞文德'则受到较严重的影响.随着干旱程度的加深和时间的延长,白三叶的根冠比逐渐增大.与'瑞文德'相比,在相同时期相同胁迫程度下,'海发'的根冠比没有显著差异,但深根数量大大超过'瑞文德',因而,'海发'的耐旱能力强于'瑞文德'.  相似文献   

6.
Root attributes affecting water uptake of rice (Oryza sativa) under drought   总被引:1,自引:0,他引:1  
Lowland rice roots have a unique physiological response to drought because of their adaptation to flooded soil. Rice root attributes that facilitate growth under flooded conditions may affect rice response to drought, but the relative roles of root structural and functional characteristics for water uptake under drought in rice are not known. Morphological, anatomical, biochemical, and molecular attributes of soil-grown rice roots were measured to investigate the genotypic variability and genotype×environment interactions of water uptake under variable soil water regimes. Drought-resistant genotypes had the lowest night-time bleeding rates of sap from the root system in the field. Diurnal fluctuation predominated as the strongest source of variation for bleeding rates in the field and root hydraulic conductivity (Lp (r)) in the greenhouse, and was related to expression trends of various PIP and TIP aquaporins. Root anatomy was generally more responsive to drought treatments in drought-resistant genotypes. Suberization and compaction of sclerenchyma layer cells decreased under drought, whereas suberization of the endodermis increased, suggesting differential roles of these two cell layers for the retention of oxygen under flooded conditions (sclerenchyma layer) and retention of water under drought (endodermis). The results of this study point to the genetic variability in responsiveness to drought of rice roots in terms of morphology, anatomy, and function.  相似文献   

7.
Oyanagi  A. 《Plant and Soil》1994,165(2):323-326
Recent work on root distribution, growth angles and gravitropic responses in Japanese cultivars of winter wheat are reviewed. Vertical distribution of roots, which influences the environmental stress tolerance of plants, was observed in the 12 Japanese cultivars in the field. The root depth index (RDI: the depth at which 50% of the root length has been reached) differed among the cultivars at the stem elongation stage. Since the RDI was closely related to the growth angle of seminal roots obtained in a pot experiment, it was assumed that growth angle is useful for predicting vertical root distribution among wheat genotypes. Gravitropic responses of the primary seminal root of 133 Japanese wheat cultivars assessed by measuring the growth angle in agar medium, were larger in the northern Japanese cultivars and smaller in the southern ones. It was also found that the geographical variation resulted from the wheat breeding process, i.e. genotypes with limited gravitropic responses of roots had been selected in the southern part of Japan where excessive soil moisture is one of the most serious problems.  相似文献   

8.
Li J  Wang D  Xie Y  Zhang H  Hu G  Li J  Dai A  Liu L  Li Z 《遗传学报》2011,38(11):547-556
Introgression lines (ILs) are valuable materials for identifying quantitative trait loci (QTLs),evaluating genetic interactions,and marker assisted breeding.A set of 430 ILs (BC5F3) containing segments from upland tropical japonica cultivar IRAT109 in a lowland temperate japonica cultivar Yuefu background were developed.One hundred and seventy-six polymorphic markers were used to identify introgressed segments.No segment from IRAT 109 was found in 160 lines.Introgressed segments of the other 270 lines covered 99.1% of the donor genome.The mean number of introgressed donor segments per individual was 3.3 with an average length of 14.4 cM.QTL analysis was conducted on basal root thickness (BRT) of the 270 ILs grown under irrigated lowland,upland and hydroponic conditions.A total of 22 QTLs affecting BRT were identified,six QTLs (qBRT3.1,qBRT3.2,qBRT6.1,qBRT8.2,qBRT9.1,and qBRT9.2) were consistently expressed under at least two environments (location and water regime),and qBRT7.2 was a new BRT QTL identified under lowland conditions.IL255 containing qBRT9.1 showed an increase of 10.09% and 7.07% BRT over cultivar Yuefu when grown under upland and lowland conditions,respectively.Using a population of 304 F2:3 lines derived from the cross IL255 × Yuefu,qBRT9.1 was validated and mapped to a 1.2 cM interval between RM24271 and RM566.The presence of qBRT9.1 explained 12% of BRT variation.The results provide upland rice ILs and BRT QTLs for analyzing the genetic basis of drought resistance,detecting favorable genes from upland rice,and rice drought resistance breeding.  相似文献   

9.
The effects of three levels of moisture under greenhouse conditions and also identical moisture levels under field conditions, on the growth yield and water relations of two tomato cultivars, Fireball and Ife I, were investigated. The objective was to ascertain the drought susceptibility of these two tomato cultivars. The cultivar, Ife I, was more drought susceptible than Fireball and the drought susceptibility increased with the level of soil water stress. The drought tolerance, of Fireball is attributed to a lower leaf area, better root system development in terms of average root length and rooting depth, and a higher leaf water potential. The higher leaf stomatal resistances of Fireball variety suggest an inbuilt mechanism to regulate water vapour flow in times of stress.  相似文献   

10.
Improving the water capturing capacity of its large and deep root system is required to stabilize the yield of upland rice in drought-prone areas in the tropics. For the improvement of the root system through breeding and soil management, it is critical to understand the relative importance of genotypic and environmental effect and their interaction on the root development under various soil conditions and agronomic management. This study aimed to quantify and characterize the effect of genotype and environment, soils and N application levels (0 and 90 kg N ha–1) in the variations of the traits related to the size and distribution of the root system at the flowering stage using 11 rice genotypes in upland fields in southern Luzon in the Philippines. The results indicated that, among the root traits, the genotypic factor accounted for the largest portion of variation for the number of nodal roots, specific root weight (SRW), and R/S ratio, whereas the environmental effect was relatively large for deep root length ratio (DRR) and total root dry weight (RDW). Especially, the DRR, the ratio of root length at deeper than 30 cm per unit area to the RDW, was strongly affected by the site. Nitrogen application increased RDW without a substantial change in the R/S ratio and DRR. On the other hand, significant genotypic variations of RDW and DRR were obtained, which may imply the opportunity for the genetic improvement. Japonica upland varieties showed a large RDW (90–111 g m–2) associated with high R/S ratio (0.18–0.23) and a high SRW (0.26–0.27 mg cm–1), whereas aus (Dular) and indica (Vandana) upland varieties had a large DRR (12.5–13.8 m g–1) with a medium R/S ratio (0.14–0.17), suggesting an efficient formation of a deep root system with a limited biomass allocation to the roots. In addition, the analysis of G × E interaction term for RDW by an Additive Main Effects and Multiplicative Interaction (AMMI) model indicated that the response to soil conditions also differed between these groups. This indicated that proper deployment of genotype to the given soil conditions is also important to maximize the expression of genotypic potentials.  相似文献   

11.
水氮处理下不同品种水稻根系生长分布特征   总被引:11,自引:0,他引:11       下载免费PDF全文
为明确不同栽培条件下水稻(Oryza sativa)根系生长分布特征, 通过不同水氮处理和不同品种的水稻桶栽试验, 采用内置根架法, 于拔节期和抽穗期取样, 获取根系总干重(TRW)、不定根数(ARN)以及各类根(不定根、细分枝根和粗分枝根)的形态指标(长度、表面积和体积), 并分析植株根系生长状况和根系分布特征。结果显示: (1)各试验条件下抽穗期各项根系指标较拔节期均呈增长趋势。同一时期, 各项根系指标在3个施氮水平间均差异显著, 且随施氮量的增加而增加。不同水分处理下, 两个时期的ARN在湿润灌溉(W2)与保持水层(W1)之间差异均不显著, 而其他指标上W2处理均显著最高; 干旱处理 (W3)下, 仅拔节期的TRW和粗分枝形态指标与W1处理接近, 而在其他指标上均显著最低。不同品种间, ‘扬稻6号’ (V3)的各项根系指标均最高, 而‘日本晴’ (V1)和‘武香粳14’ (V2)间差异不显著。(2)各试验条件下, 抽穗期较拔节期根系下扎生长比例增加, 多分布于表层(0-5 cm)土中; 减少氮素和水分供应可提高根系在5 cm以下土层中的分布比例, 且分枝根反应最为明显; 品种V1和V2的深扎根性较V3明显。结果表明, 合理施氮与控水可优化水稻不同类型根的生长与分布特征, 但需考虑不同品种之间的差异。  相似文献   

12.
棉花根系生长和空间分布特征   总被引:25,自引:0,他引:25       下载免费PDF全文
结合田间根钻取样和图像扫描分析方法, 研究了不同棉花品种根系的长度、直径和表面积动态及 0~ 10 0cm深和 0~ 4 0cm宽土壤范围内的空间分布特征。该方法与常规直尺测量结果相比相关系数R2 达到 0.899 (n =1318), 显示了较好的可靠性。研究结果表明, 棉花平均根长密度 (RLD) 在花铃期为 1.2 1~ 1.2 7mm·cm-3, 吐絮后降至 1.0 4~ 1.12mm·cm-3, 收花时为 0.76mm·cm-3 。棉花根平均直径在不同基因型间存在显著差异, 抗虫杂交棉的根直径最粗, 平均为 0.5 2mm ;早熟类型品种根直径较细, 平均为 0.36mm。在土壤深度上根直径的差异不显著, 但距棉行距离越远, 根的平均直径越小。在明确根系长度和直径动态规律的基础上, 提出了根表面积指数 (RAI) 的概念, 与地上部叶面积指数具有相似的含义和生物学意义, 且呈较好的指数相关关系 (R2 =0.779) 。RAI在生理发育时间 (PDT) 小于等于 4 0前, 其增长动态符合LOGISTIC生长规律 (R2 =0.84 9), 在PDT大于 4 0后, 呈线性递减趋势 (R2 =0.5 70~ 0.895 ), 且杂交抗虫棉的RAI在全生育期内均明显高于其它类型品种, 而早熟类型品种相对略低。RAI空间分布特征表现为, 开花前在浅根层内 (0~ 30cm) 分布最多, 花铃期以中层根系 (40~ 6 0cm) 为主, 吐絮后主要以深层 (70~ 10 0cm) 和距棉行较远的行间较多。研究结果为制定合理的施肥、灌溉措施提供了理论依据, 并量化了棉花根系的时空变化, 为进一步提高生长发育模拟模型的精度奠定了基础。  相似文献   

13.
Adaptation to severe drought and to irrigated cropping can both contribute to increased water use efficiency of lucerne, but knowledge on the relevant adaptive traits is limited. Five cultivars featuring contrasting adaptive responses for 3‐year forage yield across 10 agricultural environments of the western Mediterranean basin were currently studied, to identify physiological and morphological traits associated with specific and wide‐adaptation responses. The landraces Mamuntanas, Demnat 203 and Erfoud 1, and the varieties SARDI 10 and Prosementi, were grown in replicated metal containers (55 cm long × 12 cm wide × 75 cm deep; 21 plants per container) under irrigation (weekly restoring soil field capacity) and under moderate and severe drought stress (implying decreased irrigation for 30 days followed by withheld irrigation for 33 and 58 days, respectively). Cultivar post‐stress survival reflected the known cultivar adaptation to drought‐prone agricultural environments. Demnat 203, specifically adapted to irrigated, frequently mown environments, displayed higher amounts of starch, soluble proteins and total nitrogen in the crown and the root under irrigation. This was due to outstanding organ size and, for starch, higher concentrations. Mamuntanas, specifically adapted to drought‐prone environments, exhibited high water‐soluble carbohydrate concentration in storage organs under severe stress, along with a water‐conservation strategy implying less water used in initial drought‐stress phases due to limited early root development that resulted in more water available under severe stress. Drought‐tolerant germplasm also displayed lower wilting under early stress, more plants with green tissues under severe stress, and more stems per plant in stress or favourable conditions. Multivariate patterns of cultivar variation for physiological and morphological traits were strictly associated with cultivar variation for adaptation pattern. Our results highlighted the difficulty to combine some traits of environment‐specific adaptive value into a unique widely adapted variety, supporting the selection of varieties specifically adapted to irrigated or severely drought‐prone environments.  相似文献   

14.
水稻根系生长及其对土壤紧密度的反应   总被引:19,自引:0,他引:19  
采用筒栽方法研究了杂交稻汕优63和65002在分蘖期,穗分化期,开花期和成熟期根系生长量和垂直分布以及开花期土壤容重对根系生长和分布的影响,结果表明,根系生长量以开花期最高,开花后下降,随生育进展,深层根系(20-45cm)比例提高,分蘖期到穗 分化期是根系重量增长最快,且根系向下生长的主要时期,随耕层以下土壤容重提高,根系生长量下降,同时深层根系比例下降。  相似文献   

15.
The effects of different water regimes on the pathogenicity of Meloidogyne graminicola on six rice cultivars were determined in two soil types in three greenhouse experiments. Two water regimes, simulating continuous flooding and intermittent flooding, were used with five of the cultivars. All cultivars were susceptible to the nematode, but IR72 and IR74 were more tolerant than IR20 and IR29 under intermittent flooding. All were tolerant under continuous flooding. UPLRi-5 was grown under multiple water regimes: no flooding; continuous flooding; flooding starting at maximum tillering, panicle initiation, or booting stage; and flooding from sowing until maximum tillering or booting. In sandy loam soil, M. graminicola reduced stem and leaf dry weight, root dry weight, and grain weight under all water regimes. In clay loam soil, the nematode reduced root weight when the soil was not flooded or flooded only for a short time, from panicle initiation, or booting to maturity, and from sowing to maximum tillering. In clay loam soil, stem and leaf dry weight, as well as grain weight, were reduced by the nematode under all water regimes except continuous flooding or when the soil was flooded from sowing to booting stage. These results indicate that rice cultivar tolerance of M. graminicola varies with water regime and that yield losses due to M. graminicola may be prevented or minimized when the rice crop is flooded early and kept flooded until a late stage of development.  相似文献   

16.
In order to determine the importance of root axial resistanceto water flow for drought resistance of rice (Oryza sativa L.)aseries of glasshouse and growth chamber studies was conductedfrom 1985 to 1986. A preliminary study surveyed root distributionand histological characteristics of six cultivars grown in aerobicsoil (20x20x90cm boxes) under well–watered ormoisturedeficit conditions. Subsequently, four experiments were conductedwith plants grown in culture solution. Our results demonstratethat plant breeders can use root thickness as a selection indexfor xylem size for root diameters up to about 1–2 mm.Usingthe Poiseuille–Hagen Law for water movement in capillaries,rice root axial resistance explained differences in leaf waterpotential and transpiration when only one cultivar was used,but did not explain differences among cultivars. Thus, increasingroot xylem vessel radii probably will not directly increasedrought resistance. Key words: Rice (Oryza sativa), roots, xylem characteristics, drought resistance  相似文献   

17.
Six rice (Oryza sativa L.) genotypes with different performances under phosphorus (P) deficiency stress were tested in mixed growth medium of vermiculite and sand under different conditions of P supply to evaluate the effects of P deficiency stress on lateral root growth and the relations between lateral root growth induced by P deficiency and P absorption. The results showed that elongation and development of lateral root were induced by P deficiency. There was significant genotypic variation in lateral root growth in response to P deficiency. A significant positive correlation was observed between the increase of lateral root length per cm of nodal root and the increase of root surface area per cm of nodal root (RSAP), while no significant correlation was observed between the increase of lateral root number per cm of nodal root and the increase of RSAP. The result suggested that the increase of root surface area under P deficiency condition could be mainly attributable to the increase of lateral root length induced. P uptake was significantly positively correlated with the total root surface area and positively correlated with the total lateral root length and the total lateral root number under P deficiency, which implied that elongation and development of lateral root were important to the ability of P uptake from growth medium where P supply was poor. Analysis of soluble sugar content indicated that P deficiency stress changed the distribution of carbohydrate between roots and shoots.  相似文献   

18.
This research was undertaken to identify and map quantitative trait loci (QTLs) associated with five parameters of rice root morphology and to determine if these QTLs are located in the same chromosomal regions as QTLs associated with drought avoidance/tolerance. Root thickness, root:shoot ratio, root dry weight per tiller, deep root dry weight per tiller, and maximum root length were measured in three replicated experiments (runs) of 203 recombinant inbred lines grown in a greenhouse. The lines were from a cross between indica cultivar Co39 andjaponica cultivar Moroberekan. The 203 RI lines were also grown in three replicated field experiments where they were drought-stressed at the seedling, early vegetative, and late-vegetative growth stage and assigned a visual rating based on leaf rolling as to their degree of drought avoidance/tolerance. The QTL analysis of greenhouse and field data was done using single-marker analysis (ANOVA) and interval analysis (Mapmaker QTL). Most QTLs that were identified were associated with root thickness, root/shoot ratio, and root dry weight per tiller, and only a few with deep root weight. None were reliably associated with maximum root depth due to genotype-by-experiment interaction. Root thickness and root dry weight per tiller were the characters found to be the least influenced by environmental differences between greenhouse runs. Correlations of root parameters measured in greenhouse experiments with field drought avoidance/tolerance were significant but not highly predictive. Twelve of the fourteen chromosomal regions containing putative QTLs associated with field drought avoidance/tolerance also contained QTLs associated with root morphology. Thus, selecting for Moroberekan alleles at marker loci associated with the putative root QTLs identified in this study may be an effective strategy for altering the root phenotype of rice towards that commonly associated with drought-resistant cultivars.  相似文献   

19.
Most high-yielding rice cultivars developed for irrigated conditions, including the widely grown lowland variety IR64, are highly susceptible to drought stress. This limits their adoption in rainfed rice environments where there is a risk of water shortage during the growing season. Mapping studies using lowland-by-upland rice populations have provided limited information about the genetic basis of variation in yield under drought. One approach to simultaneously improve and understand rice drought tolerance is to generate backcross populations, select superior lines in managed stress environments, and then evaluate which features of the selected lines differ from the recurrent parent. This approach was been taken with IR64, using a range of tolerant and susceptible cultivars as donor parents. Yields of the selected lines measured across 13 widely contracting water environments were generally greater than IR64, but genotype-by-environment effects were large. Traits expected to vary between IR64 and selected lines are plant height, because many donors were not semi-dwarf types, and maturity, because selection in a terminal stress environment is expected to favour earliness. In these experiments it was found that some lines that performed better under upland drought were indeed taller than IR64, but that shorter lines with good yield under drought could also be identified. In trials where drought stress developed in previously flooded (lowland) fields, height was not associated with performance. There was little change in maturity with selection. Other notable differences between IR64 and the selected backcross lines were in their responses to applied ABA and ethylene in greenhouse experiments at the vegetative stage and in leaf rolling observed under chronic upland stress in the field. These observations are consistent with the hypothesis that adaptive responses to drought can effectively allow for improved performance across a broad range of water environments. The results indicate that the yield of IR64 under drought can be significantly improved by backcrossing with selection under stress. In target environments where drought is infrequent but significant in certain years, improved IR64 with greater drought tolerance would be a valuable option for farmers.  相似文献   

20.
The rapid progress in rice genotyping must be matched by advances in phenotyping. A better understanding of genetic variation in rice for drought response, root traits, and practical methods for studying them are needed. In this study, the OryzaSNP set (20 diverse genotypes that have been genotyped for SNP markers) was phenotyped in a range of field and container studies to study the diversity of rice root growth and response to drought. Of the root traits measured across more than 20 root experiments, root dry weight showed the most stable genotypic performance across studies. The environment (E) component had the strongest effect on yield and root traits. We identified genomic regions correlated with root dry weight, percent deep roots, maximum root depth, and grain yield based on a correlation analysis with the phenotypes and aus, indica, or japonica introgression regions using the SNP data. Two genomic regions were identified as hot spots in which root traits and grain yield were co-located; on chromosome 1 (39.7–40.7 Mb) and on chromosome 8 (20.3–21.9 Mb). Across experiments, the soil type/ growth medium showed more correlations with plant growth than the container dimensions. Although the correlations among studies and genetic co-location of root traits from a range of study systems points to their potential utility to represent responses in field studies, the best correlations were observed when the two setups had some similar properties. Due to the co-location of the identified genomic regions (from introgression block analysis) with QTL for a number of previously reported root and drought traits, these regions are good candidates for detailed characterization to contribute to understanding rice improvement for response to drought. This study also highlights the utility of characterizing a small set of 20 genotypes for root growth, drought response, and related genomic regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号