首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The perchlorate (ClO4)-respiring organism, strain perc1ace, can grow using nitrate (NO3) as a terminal electron acceptor. In resting cell suspensions, NO3 grown cells reduced ClO4, and ClO4 grown cells reduced NO3. Activity assays showed that nitrate reductase (NR) activity was 1.31 μmol min−1 (mg protein)−1 in ClO4 grown cells, and perchlorate reductase (PR) activity was 4.24 μmol min−1 (mg protein)−1 in NO3 grown cells. PR activity was detected within the periplasmic space, with activities as high as 14 μmol min−1 (mg protein)−1. The NR had a pH optimum of 9.0 while the PR had an optimum of 8.0. This study suggests that separate terminal reductases are present in strain perclace to reduce NO3 and ClO4.  相似文献   

2.
3.
4.
高氯酸盐污染及修复的研究进展   总被引:7,自引:1,他引:7  
蔡贤雷  谢寅峰  刘伟龙  邓伟 《生态学报》2008,28(11):5592-5600
戏真做高氯酸盐作为一种甲状腺干扰物质,因其高溶解度、低吸附性及其稳定性,决定了其是一种可快速扩散的持久型污染物,其环境污染问题已引起人们的高度关注。从高氯酸盐污染的危害性出发,阐述了我国可能存在的高氯酸盐污染状况,并对近年来不同介质中高氯酸盐的分析检测技术及前处理方法进行了介绍,同时对已开展的高氯酸盐动物毒理研究、在不同环境介质中的迁移转化和植物积累、及其按生物修复和非生物修复进行分类的修复方法进行了综述。最后,对进一步研究的意义和方向提出建议。  相似文献   

5.
A mathematical model was developed to describe the biodegradation kinetics of perchlorate in the presence of nitrate and oxygen as competing electron acceptors. The rate of perchlorate degradation is described as a function of the electron donor (acetate) degradation rate, the concentration of the alternate electron acceptors, and rates of biomass growth and decay. The kinetics of biomass growth are described using a modified Monod model, and inhibition factors are incorporated to describe the influence of oxygen and nitrate on perchlorate degradation. In order to develop input parameters for the model, a series of batch biodegradation studies were performed using Azospira suillum JPLRND, a perchlorate-degrading strain isolated from groundwater. This strain is capable of utilizing oxygen, nitrate, or perchlorate as terminal electron acceptors. The maximum specific growth rate (μmax) and half-saturation constant (K S don) for the bacterium when utilizing either perchlorate or nitrate were similar; 0.16 per h and 158 mg acetate/L, respectively. However, these parameters were different when the strain was growing on oxygen. In this case, μmax and K S don were 0.22 per h and 119 mg acetate/L, respectively. The batch experiments also revealed that nitrate inhibits perchlorate biodegradation by this strain. This finding was incorporated into the model by applying an inhibition coefficient (K i nit) value of 25 mg nitrate/L. Combined with appropriate groundwater transport models, this model can be used to predict perchlorate biodegradation during in situ remediation efforts.  相似文献   

6.
目前,我国历史遗留铬渣堆场多数采用湿法解毒工艺进行处理,但大量化学药剂的添加不仅增加了成本,引入了污染物,而且随时间的延长铬渣中的Cr(Ⅵ) 源源不断的返溶,场地出现返黄现象,形成二次污染。为了持久稳定的修复铬渣,研究人员提出用微生物修复技术处理湿法解毒后铬渣中Cr(Ⅵ) 的返溶。文中综述了国内外微生物修复铬渣污染场地的研究进展,首先简述了铬渣的危害、处理现状及传统的铬污染修复技术,并以湿法解毒铬污染为例,重点揭示了处理后铬渣中Cr(Ⅵ) 的返溶机理,由此可知湿法解毒后的二次污染不可避免。随后详述了微生物修复Cr(Ⅵ) 过程中生物还原、生物吸附和生物矿化三大作用机理,并阐述了铬污染场地修复过程中微生物物种的响应及群落结构的演替,最后,总结了微生物修复铬渣的研究进展并展望了未来的研究方向。  相似文献   

7.
The catabolic diversity of wetland microbial communities may be a sensitive indicator of nutrient loading or changes in environmental conditions. The objectives of this study were to assess the response of periphyton and microbial communities in water conservation area-2a (WCA-2a) of the Everglades to additions of C-substrates and inorganic nutrients. Carbon dioxide and CH4 production rates were measured using 14 days incubation for periphyton, which typifies oligotrophic areas, and detritus, which is prevalent at P-impacted areas of WCA-2a. The wetland was characterized by decreasing P levels from peripheral to interior, oligotrophic areas. Microbial biomass and N mineralization rates were higher for oligotrophic periphyton than detritus. Methane production rates were also higher for unamended periphyton (80 mg CH4-C kg−1 d−1) than detritus (22 mg CH4-C kg−1 d−1), even though the organic matter content was higher for detritus (80%) than periphyton (69%). Carbon dioxide production for unamended periphyton (222 mg CO2-C kg−1 d−1) was significantly greater than unamended detritus (84 mg CO2-C kg−1 d−1). The response of the heterotrophic microbial community to added C-substrates was related to the nutrient status of the wetland, as substrate-induced respiration (SIR) was higher for detritus than periphyton. Amides and polysaccharides stimulated SIR more than other C-substrates, and methanogenesis was greater contributor to SIR for periphyton than detritus. Inorganic P addition stimulated CO2 and CH4 production for periphyton but not detritus, indicating a P limitation in the interior areas of WCA-2a. Continued nutrient loading into oligotrophic areas of WCA-2a or enhanced internal nutrient cycling may stimulate organic matter decomposition and further contribute to undesirable changes to the Everglades ecosystem caused by nutrient enrichment.  相似文献   

8.
多环芳烃污染土壤微生物修复研究进展   总被引:7,自引:1,他引:7  
曾军  吴宇澄  林先贵 《微生物学报》2020,60(12):2804-2815
多环芳烃是我国土壤环境质量标准中要求严格管控的一类持久性有机污染物,利用微生物技术修复有机污染土壤具有绿色、经济等突出特点,应用前景广泛。目前多学科的协同发展和新技术的研究应用,为多环芳烃土壤微生物转化机制与污染生态过程等方面带来了新的认识,同时对修复技术的实际应用与调控提供了新的思考方向。本文以多环芳烃污染土壤微生物修复为主体,从污染土壤微生物修复应用技术、多环芳烃微生物降解特征、土壤体系污染物归趋规律与微生物作用及土壤污染微生物群落响应与研究技术等方面进行综合评述,并针对现存应用技术瓶颈和理论空白作进一步思考和展望。  相似文献   

9.
Sequential reduction of chromate and nitrate, two competitive electron acceptors, has been demonstrated for strains of Pseudomonas genus for both planktonic cells and cells immobilised in agar layers on the surface of synthetic membrane. Denitrification occurs practically after chromate depletion. This order of reduction process is consistent with redox potentials of the respective reactions. In a membrane bioreactor, competitive inhibition results in nitrate transfer through the membrane without transformation. Thus the receiving phase is contaminated with nitrate. To address this problem, a membrane has been used for spatial sequencing of chromate and nitrate reduction. Bacterial cells were immobilised in two layers with each layer placed on opposing sides of the membrane. By this means, chromate reduction is localised into the layer contacting the feed phase while nitrate reduction occurs in the layer facing the receiving phase. As a result, only traces of the pollutants are detected in the receiving phase.  相似文献   

10.
Perchlorate (ClO4 ?) has been detected in many drinking water supplies in the United States, including the Las Vegas Wash and Lake Mead, Nevada. These locations are highly contaminated and contribute perchlorate to Lake Mead and the Colorado River system. Essential elements for perchlorate bioremediation at these locations were examined, including the presence of perchlorate-reducing bacteria (PRB), sufficient electron donors, occurrence of competing electron acceptors, and ability of PRB to utilize a variety of electron donors. Enumeration of PRB was performed anoxically using most probable number (MPN). Values ranged from ≤20 to 230 PRB/100 ml or ≤20 to ≥ 1.6× 105 PRB/g for Lake Mead water samples and Las Vegas Wash sediments, respectively. 16S rRNA sequences revealed that isolates were γ -proteobacteria, Aeromonas, Dechlorosoma, Rahnella and Shewanella. A screening of potential electron donors using BIOLOGTM demonstrated that all isolates were capable of metabolic versatility. Measurements of total organic carbon (TOC), nitrate and dissolved oxygen (DO) indicated limited presence of electron donor at all sites, whereas the electron acceptors varied throughout the Wash and Lake Mead. The persistence of perchlorate in the sites is attributed to lack of available electron donor and/or the presence of competing electron acceptors. A location has been identified where perchlorate biodegradation could be implemented thereby halting the transport of perchlorate to Lake Mead and the Colorado River.  相似文献   

11.
Goal and Scope A comparison of in situ and ex situ treatment scenarios for a diesel-contaminated site was performed using an evolutive LCA. Treatment time along with primary (residual contamination left in soil or groundwater after treatment) and secondary (impacts due to remediation) environmental impacts were considered. The site under study had a light Non Aqueous Phase Liquid (LNAPL) thickness of up to 1 m, a diesel soil concentration of 10,500 mg/kg and a residual contamination in groundwater. Methods Four treatment scenarios to remove LNAPL and to treat soil and groundwater were compared: 1) pump and treat 2) bioslurping, bioventing and biosparging 3) bioslurping, bioventing and chemical oxidation and 4) ex situ treatment using biopiles. The technologies’ design was performed using simulation tools and analytical equations. The LCA was evaluated for each year of treatment. Environmental impacts were assessed using the U.S. EPA Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) method. Results and Discussion The biological in situ scenario (2) showed the least primary and secondary impacts but its treatment time was more than 4 times longer than that obtained for the ex situ scenario (4). The ex situ scenario showed the best treatment time but its secondary impacts were significantly higher than those found for the biological in situ scenario due to the pavement of the treatment area. The combined biological and chemical in situ scenario (3) was the worst in terms of secondary impacts while the pump and treat scenario (1) was the worst in terms of primary impacts. Two scenarios were selected: one based upon low environmental impacts and the other on the fastest treatment time. Conclusions Even without excavation, an in situ treatment can generate more secondary impacts than an ex situ treatment. Low environmental impact scenarios require time while rapid treatment scenarios generate high environmental impacts. The selection of the best remediation scenario will depend on the site owner’s priority. Recommendations Better characterization factors for aggregated substances are required. This paper is openly accessible!  相似文献   

12.
Perchlorate (ClO4-) has been detected in many drinking water supplies in the United States, including the Las Vegas Wash and Lake Mead, Nevada. These locations are highly contaminated and contribute perchlorate to Lake Mead and the Colorado River system. Essential elements for perchlorate bioremediation at these locations were examined, including the presence of perchlorate-reducing bacteria (PRB), sufficient electron donors, occurrence of competing electron acceptors, and ability of PRB to utilize a variety of electron donors. Enumeration of PRB was performed anoxically using most probable number (MPN). Values ranged from ≤20 to 230 PRB/100 ml or ≤20 to ≥ 1.6× 105 PRB/g for Lake Mead water samples and Las Vegas Wash sediments, respectively. 16S rRNA sequences revealed that isolates were γ -proteobacteria, Aeromonas, Dechlorosoma, Rahnella and Shewanella. A screening of potential electron donors using BIOLOGTM demonstrated that all isolates were capable of metabolic versatility. Measurements of total organic carbon (TOC), nitrate and dissolved oxygen (DO) indicated limited presence of electron donor at all sites, whereas the electron acceptors varied throughout the Wash and Lake Mead. The persistence of perchlorate in the sites is attributed to lack of available electron donor and/or the presence of competing electron acceptors. A location has been identified where perchlorate biodegradation could be implemented thereby halting the transport of perchlorate to Lake Mead and the Colorado River.  相似文献   

13.
中原石油污染土壤原位微生物生态修复技术的应用   总被引:2,自引:0,他引:2  
利用优化原位土著微生物菌群辅以物理和化学相结合的生态修复技术, 进行了河南中原油田石油残留污染土壤的野外修复应用研究。修复结果显示, 土壤中残留石油含量平均在2 898.25 mg/kg时, 经过99 d微生物生态修复技术的实施, 土壤中石油含量降解可达99%以上, 为油田区土壤石油残留污染的修复提供了技术方法和推广应用的可行性研究。  相似文献   

14.
Abstract

The aim of this paper is to develop a simulation-aided PROMETHEE-TOPSIS approach for the selection of the most desirable groundwater remediation strategies. The combination methods enables a careful evaluation of the identified remediation alternatives in which their strong and weak points can be detected and a ranking is provided which facilitates the final selection for the decision-maker. The capabilities and effectiveness of the developed method are illustrated through a case study on the remedial alternative selection for a naphthalene contaminated site in Anhui, China. Four attributes (i.e., total pumping rate, total cost, mean residual contaminant concentration and maximum excess life time cancer risk) for fifty remedial alternatives in each duration are considered and analytic hierarchy process is used to determine the weight of attributes importance. The results demonstrates that the developed method could help decision makers obtain the useful ranking information strategies that covering a variety of decision-relevant remediation options, which is beneficial for public health and environmental protection.  相似文献   

15.
Present investigation deals with the effect of sulfide to nitrate (S/N) molar ratio on the simultaneous anaerobic sulfide and nitrate removal on capacity, stability and selectivity of the process. The volumetric sulfide-sulfur and nitrate-nitrogen removal rates at molar S/N ratio of 5:2 were 4.86 kg (m3 d)−1 and 0.99 kg (m3 d)−1, respectively, which were higher than those at S/N molar ratios of 5:5 and 5:8. Moreover, the fluctuations in the effluent at S/N ratio of 5:2 were less than those at the other two tested ratios. During the operation, the ratio of converted sulfide to converted nitrate tended to approach 5:2. The selectivity for elemental sulfur and dinitrogen was improved when the S/N molar ratio was set at 5:2 rather than 5:5 or 5:8. The process became unstable if the influent sulfide surpassed its critical concentration. The electron balance between reactants was also analyzed for different S/N molar ratios.  相似文献   

16.
Nitrate concentration and microbial nitrogen transformations in ground-water-affected sediments of Great South Bay, NY were examined over several annual cycles. Nitrate concentrations are typically higher at 40 cm depth than at the surface, while salinity generally decreases with depth. Denitrification occurs through the sediment core and is organic substrate limited at depth while being nitrate limited near the sediment-water interface. Denitrification accounts for about 50% of the biological NO3 - decrease between 40 and 15 cm depth interval. Higher than average annual rainfall during 1983 and 1984 was reflected in an elevated water table as well as lower Bay salinities. Conversely, extremely low rainfall occurred in 1985 and 1986, and the water table reached an extreme low in Sep. 1986. Interestingly, the amounts of nitrate in the sediment column of our primary station varied directly with water table height and, presumably, the discharge rate of nitrate enriched groundwater. We suggest that this may be a result of the more efficient removal of advected nitrate by denitrification during low flow conditions.  相似文献   

17.
Microbial souring (production of hydrogen sulfide by sulfate-reducing bacteria, SRB) in crushed Berea sandstone columns with oil field-produced water consortia incubated at 60°C was inhibited by the addition of nitrate (NO3) or nitrite (NO 2 ). Added nitrate (as nitrogen) at a concentration of 0.71 mM resulted in the production of 0.57–0.71 mM nitrite by the native microbial population present during souring and suppressed sulfate reduction to below detection limits. Nitrate added at 0.36 mM did not inhibit active souring but was enough to maintain inhibition if the column had been previously treated with 0.71 mM or greater. Continuous addition of 0.71–0.86 mM nitrite also completely inhibited souring in the column. Pulses of nitrite were more effective than the same amount of nitrite added continuously. Nitrite was more effective at inhibiting souring than was glutaraldehyde, and SRB recovery was delayed longer with nitrite than with glutaraldehyde. It was hypothesized that glutaraldehyde killed SRB while nitrite provided a long-term inhibition without cell death. Removal of nitrate after as long as 3 months of continuous addition allowed SRB in a biofilm to return to their previous level of activity. Inhibition was achieved with much lower levels of nitrate and nitrite, and at higher temperatures, than noted by other researchers.  相似文献   

18.
Due to the intensive and complicated human activities, the identification of nitrate pollution source of coastal aquifer is usually a challenge. This study firstly adopted stable isotope technique and stable isotope analysis in R (SIAR) model to identify the nitrate sources and contribution proportions of different sources in typical coastal groundwater of northern China. The results showed that about 91.5% of the groundwater samples illustrated significantly high nitrate concentrations exceeding the maximum WHO drinking water standard (50 mg/l), reflecting the high risk of groundwater nitrate pollution in the coastal area. A total of 57 sampling sites were classified into three groups according to hierarchical cluster analysis (HCA). The δ15N-NO3? and δ18O-NO3? values of groundwater samples from Group C (including nine samples) were much higher than those from Group A (including 40 samples) and Group B (including 8 samples). SIAR results showed that NH4+ fertilizer was the dominant nitrate source for groundwater samples of Groups A and B while manure and sewage (M&;S) served as dominant source for Group C. This study provided essential information on the high risk and pollution sources of coastal groundwater nitrate of northern China.  相似文献   

19.
Moderate levels of N were toxic to the native Australian plant boronia (Boronia megastigma Nees). As NO-3 is the major N form available for plants under cultivated conditions, NO-3 reduction and accumulation patterns in boronia were examined following the supply of various levels of NO-3 to understand the physiological basis of this toxicity. At a low level of supplied NO-3 [15 mmol (plant)-1], NO-3 was reduced without any detectable accumulation and without nitrate reductase activity (NRA) reaching its maximum capacity. When higher NO-3 levels [≥25 mmol (plant)-1] were supplied, both NRA and NO-3 accumulation increased further. However, NRA increased to a maximum of ca 500 nmol NO-3 (g fresh weight)-1 h-1, both in the roots and leaves, irrespective of a 4-fold difference in the levels of supplied NO-3, whereas NO-3 continued to accumulate in proportion to the level of supplied NO-3. Chlorotic toxicity symptoms appeared on the leaves at an accumulation of ca 32 μmol NO-3 (g fresh weight)-1. High endogenous NO-3 concentrations inhibited NRA. The low level of NRA in boronia was not limited by NO-3 or electron donor availability. It is concluded that the low NR enzyme activity is a genetic adaptation to the low NO-3 availability in the native soils of boronia. Thus, when NO-3 supply is high, the plat cannot reduce it at high rates, leading to large and toxic accumulations of the ion in the leaf tissues.  相似文献   

20.
A survey of soil gases associated with gasoline stations on theSwan Coastal Plain of Western Australia has shown that 20% leak detectable amountsof petroleum. The fates of volatile hydrocarbons in the vadose zone at one contaminatedsite, and dissolved hydrocarbons in groundwater at another site were followed in anumber of studies which are herein reviewed. Geochemical evidence from a plume ofhydrocarbon-contaminated groundwater has shown that sulfate reduction rapidly developedas the terminal electron accepting process. Toluene degradation but not benzene degradationwas linked to sulfate reduction. The sulfate-reducing bacteria isolated from the plumerepresented a new species, Desulfosporosinus meridiei. Strains of the speciesdo not mineralise 14C-toluene in pure culture. The addition of large numbersof cells and sulfate to microcosms did stimulate toluene mineralisation but not benzenemineralisation. Attempts to follow populations of sulfate-reducing bacteria byphospholipid signatures, or Desulfosporosinus meridiei by FISH in the plume were unsuccessful, but fluorescently-labeled polyclonal antibodies were successfully used.In the vadose zone at a different site, volatile hydrocarbons were consumed in thetop 0.5 m of the soil profile. The fastest measured rate of mineralisation of 14C-benzenein soils collected from the most active zone (6.5 mg kg-1 day-1) could accountfor the majority of the flux of hydrocarbon vapour towards the surface. The studiesconcluded that intrinsic remediation by subsurface microbial populations in groundwateron the Swan Coastal Plain can control transport of aromatic hydrocarbon contamination,except for the transport of benzene in groundwater. In the vadose zone, intrinsicremediation by the microbial populations in the soil profile can contain the transportof aromatic hydrocarbons, provided the physical transport of gases, inparticular oxygen from the atmosphere, is not impeded by structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号