首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat shock protein (Hsp) 72 is a cytosolic stress protein that is highly inducible by several factors including exercise. Hsp60 is primarily mitochondrial in cellular location, plays a key role in the intracellular protein translocation and cytoprotection, is increased in skeletal muscle by exercise, and is found in the peripheral circulation of healthy humans. Glucose deprivation increases Hsp72 in cultured cells, whereas reduced glycogen availability elevates Hsp72 in contracting human skeletal muscle. To determine whether maintained blood glucose during exercise attenuates the exercise-induced increase in intramuscular and circulating Hsp72 and Hsp60, 6 males performed 120 minutes of semirecumbent cycling at approximately 65% maximal oxygen uptake on 2 occasions while ingesting either a 6.4% glucose (GLU) or sweet placebo (CON) beverage throughout exercise. Muscle biopsies, obtained before and immediately after exercise, were analyzed for Hsp72 and Hsp60 protein expression. Blood samples were simultaneously obtained from a brachial artery, a femoral vein, and the hepatic vein before and during exercise for the analysis of serum Hsp72 and Hsp60. Leg and hepatosplanchnic blood flow were measured to determine Hsp72-Hsp60 flux across these tissue beds. Neither exercise nor glucose ingestion affected the Hsp72 or Hsp60 protein expression in, or their release from, contracting skeletal muscle. Arterial serum Hsp72 increased (P < 0.05) throughout exercise in both trials but was attenuated (P < 0.05) in GLU. This may have been in part because of the increased (P < 0.05) hepatosplanchnic Hsp72 release in CON, being totally abolished (P < 0.05) in GLU. Serum Hsp60 increased (P < 0.05) after 60 minutes of exercise in CON before returning to resting levels at 120 minutes. In contrast, no exercise-induced increase in serum Hsp60 was observed in GLU. We detected neither hepatosplanchnic nor contracting limb Hsp60 release in either trial. In conclusion, maintaining glucose availability during exercise attenuates the circulating Hsp response in healthy humans.  相似文献   

2.
The purpose of the present investigation was to examine the levels of muscle soreness, muscle damage, and performance output in men with (S, n = 24) or without (A, n = 24) chronic compartment syndrome (CACS)-related symptoms after an intense 10-minute basketball-simulated exercise. Anterior compartment pressure (ICP), muscle soreness perception, creatine kinase (CK) and lactate dehydrogenase (LDH) activities, myoglobin (Mb) concentration, leg strength, and knee joint range of motion (KJRM) were measured at rest, immediately after exercise, and at 24, 48, 72 and 96 hours postexercise (ICP was also measured at 5, 15, and 30 minutes postexercise). ICP, muscle soreness, CK, LDH, and myoglobin increased (p < 0.05) immediately postexercise and during the next 4 days of recovery in both groups. However, S demonstrated a far more pronounced and prolonged (p < 0.05) response than A. Leg strength and KJRM declined (p < 0.05) in both groups, but S demonstrated a greater (p < 0.05) performance deterioration than A. The results of this study suggest that intense basketball-simulated exercise increases ICP, muscle soreness, and indices of muscle damage with a concomitant decrease of performance. Men with CACS-related symptoms and/or history appear more sensitive to muscle damage and soreness than asymptomatic men, probably due to a compromised blood flow to the muscle producing fluid shifts from vascular to interstitial space and further increasing compartment pressure and muscle cell disruption. Results of the present investigation provide evidence to support proper diagnosis, monitoring, care, and preventive measures for symptomatic individuals prior to participation in activities such as basketball.  相似文献   

3.
To test the hypothesis that creatine supplementation would enhance the anabolic responses of muscle cell signaling and gene expression to exercise, we studied nine subjects who received either creatine or a placebo (maltodextrin) for 5 days in a double-blind fashion before undergoing muscle biopsies: at rest, immediately after exercise (10 x 10 repetitions of one-leg extension at 80% 1 repetition maximum), and 24 and 72 h later (all in the morning after fasting overnight). Creatine supplementation decreased the phosphorylation state of protein kinase B (PKB) on Thr308 at rest by 60% (P < 0.05) and that of eukaryotic initiation factor 4E-binding protein on Thr37/46 (4E-BP1) by 30% 24 h postexercise (P < 0.05). Creatine increased mRNA for collagen 1 (alpha(1)), glucose transporter-4 (GLUT-4), and myosin heavy chain I at rest by 250%, 45%, and 80%, respectively, and myosin heavy chain IIA (MHCIIA) mRNA immediately after exercise by 70% (all P < 0.05). Immediately after exercise, and independent of creatine, mRNA for muscle atrophy F-box (MAFbx), MHCIIA, peroxisome proliferator-activated receptor gamma coactivator-1alpha, and interleukin-6 were upregulated (60-350%; P < 0.05); the phosphorylation state of p38 both in the sarcoplasm and nucleus were increased (12- and 25-fold, respectively; both P < 0.05). Concurrently, the phosphorylation states of PKB (Thr308) and 4E-BP1 (Thr37/46) were decreased by 50% and 75%, respectively (P < 0.05). Twenty-four hours postexercise, MAFbx, myostatin, and GLUT-4 mRNA expression decreased below preexercise values (-35 to -50%; P < 0.05); calpain 1 mRNA increased 70% 72 h postexercise (P < 0.05) and at no other time. In conclusion, 5 days of creatine supplementation do not enhance anabolic signaling but increase the expression of certain targeted genes.  相似文献   

4.
Heat shock protein (Hsp) 72 is a cytosolic protein that also is present in the circulation. Extracellular Hsp72 (eHsp72) is inducible by exercise and is suggested to act as a danger signal to the immune system. The adaptive response of eHsp72 to repeated exercise-heat exposures in humans remains to be determined. An intracellular animal study found a reduced Hsp72 response, with no change in resting levels, during heat stress after a single day of passive heat acclimation. The current study therefore tested whether adaptations in human eHsp72 levels would similarly occur 24 hours after a single exercise-heat exposure. Seven males completed cycle exercise (42.5% V(O2peak) for 2 hours) in a hot, humid environment (38 degrees C, 60% relative humidity) on each of 2 consecutive days. Blood samples were obtained from an antecubital vein before exercise and 0 hours and 22 hours postexercise for the analysis of eHsp72. Exercise-heat stress resulted in enhanced eHsp72, with a similar absolute increase found on both days (day 1: 1.26 ng/mL [0.80 ng/mL]; day 2: 1.29 ng/mL [1.60 ng/mL]). Resting eHsp72 decreased from rest on day 1 to day 2's 22-hour postexercise sample (P < 0.05). It is suggested that the reduction in resting eHsp72 after 2 consecutive exercise-heat exposures is possibly due to an enhanced removal from the circulation, for either immunoregulatory functions, or for improved cellular stress tolerance in this initial, most stressful period of acclimation.  相似文献   

5.
Previous studies have shown that creatine supplementation reduces muscle damage and inflammation following running but not following high-force, eccentric exercise. Although the mechanical strain placed on muscle fibers during high-force, eccentric exercise may be too overwhelming for creatine to exert any protective effect, creatine supplementation may protect skeletal muscle stressed by a resistance training challenge that is more hypoxic in nature. The purpose of this study was to examine the effects of short-term creatine supplementation on markers of muscle damage (i.e., strength, range of motion, muscle soreness, muscle serum protein activity, C-reactive protein) to determine whether creatine supplementation offers protective effects on skeletal muscle following a hypoxic resistance exercise test. Twenty-two healthy, weight-trained men (19-27 years) ingested either creatine or a placebo for 10 days. Following 5 days of supplementation, subjects performed a squat exercise protocol (5 sets of 15-20 repetitions at 50% of 1 repetition maximum [1RM]). Assessments of creatine kinase (CK) and lactate dehydrogenase activity, high-sensitivity C-reactive protein, maximal strength, range of motion (ROM), and muscle soreness (SOR) with movement and palpation were conducted pre-exercise and during a 5-day follow up. Following the exercise test, maximal strength and ROM decreased, whereas SOR and CK increased. Creatine and placebo-supplemented subjects experienced significant decreases in maximal strength (creatine: 13.4 kg, placebo: 17.5 kg) and ROM (creatine: 2.4 degrees , placebo: 3.0 degrees ) immediately postexercise, with no difference between groups. Following the exercise test, there were significant increases in SOR with movement and palpation (p < 0.05 at 24, 48, and 72 hours postexercise), and CK activity (p < 0.05 at 24 and 48 hours postexercise), with no differences between groups at any time. These data suggest that oral creatine supplementation does not reduce skeletal muscle damage or enhance recovery following a hypoxic resistance exercise challenge.  相似文献   

6.
We examined differences in muscle damage and muscle performance perturbations in relation to the same volumes of high (HI) and low intensity (LI) of eccentric exercise. Untrained young healthy men (n = 12) underwent 2 isokinetic quadriceps eccentric exercise sessions, 1 on each randomly selected leg, separated by a 2-week interval. In the first session subjects performed HI exercise (i.e., 12 sets of 10 maximal voluntary efforts). In the second session, volunteers were subjected to continuous exercise of LI (50% of peak torque) until the total work done was approximately equal to that generated during HI. Muscle damage (serum creatine kinase concentration [CK], delayed onset of muscle soreness, and range of motion) and muscle performance (eccentric [EPT] and isometric peak torque [IPT]) indicators were assessed pre-exercise and 24, 48, 72, and 96 hours postexercise. Compared to baseline data, changes in muscle damage indicators were significantly different (p < 0.05) at almost all postexercise time points in both conditions. However, apart from the significant elevation of CK at 24 hours after HI (p < 0.05), no other significant differences were observed between the 2 exercise conditions (p > 0.05). The main finding in relation to muscle performance was that decrements following HI exercise were significantly greater (p < 0.05) compared to LI. Compared with baseline data, the EPT values following HI and LI exercise were as follows: 24 hours, 72.1% vs. 92%; 48 hours, 81.9% vs. 94.8%; 72 hours, 77.7% vs. 100.6%; 96 hours, 86.8% vs. 107.9%. The corresponding data for IPT were as follows: 24 hours, 86.4% vs. 102.8%; 48 hours, 84.2% vs. 107%; 72 hours, 84.8% vs. 109.2%; 96 hours, 86.8% vs. 114.4%. These results indicate that matching volumes of HI and LI eccentric exercise have similar effects on muscle damage, but HI has a more prominent effect on muscle performance.  相似文献   

7.
The present study tested the hypothesis that in response to physical stress the human brain has the capacity to release heat shock protein 72 (Hsp72) in vivo. Therefore, 6 humans (males) cycled for 180 minutes at 60% of their maximal oxygen uptake, and the cerebral Hsp72 response was determined on the basis of the internal jugular venous to arterial difference and global cerebral blood flow. At rest, there was a net balance of Hsp72 across the brain, but after 180 minutes of exercise, we were able to detect the release of Hsp72 from the brain (335 +/- 182 ng/min). However, large individual differences were observed as 3 of the 6 subjects had a marked increase in the release of Hsp72, whereas exercise had little effect on the cerebral Hsp72 balance in the remaining 3 subjects. Given that cerebral blood flow was unchanged during exercise compared with values obtained at rest, it is unlikely that the cerebral Hsp72 release relates to necrosis of specific cells within the brain. These data demonstrate that the human brain is able to release Hsp72 in vivo in response to a physical stressor such as exercise. Further study is required to determine the biological significance of these observations.  相似文献   

8.
The aim of this study was to investigate the differences in the length-dependent changes in quadriceps muscle torque during voluntary isometric and isokinetic contractions performed after severe muscle-damaging exercise. Thirteen physically active men (age = 23.8 ± 3.2 years, body weight = 77.2 ± 4.5 kg) performed stretch-shortening cycle (SSC) exercise comprising 100 drop jumps with 30-second intervals between each jump. Changes in the voluntary and electrically evoked torque in concentric and isometric conditions at different muscle lengths, muscle soreness, and plasma creatine kinase (CK) activity were assessed within 72 hours after SSC exercise. Isokinetic knee extension torque decreased significantly (p < 0.05) at all joint angles after SSC exercise. At 2 minutes and at 72 hours after SSC exercise, the changes in knee torque were significantly smaller at 80° (where 180° = full knee extension) than at 110-130°. At 2 minutes after SSC exercise, the optimal angle for isokinetic knee extension torque shifted by 9.5 ± 8.9° to a longer muscle length (p < 0.05). Electrically induced torque at low-frequency (20-Hz) stimulation decreased significantly more at a knee joint angle of 130° than at 90°. The subjects felt acute muscle pain and CK activity in the blood increased to 1,593.9 ± 536.2 IU·L?1 within 72 hours after SSC exercise (p < 0.05). This study demonstrates that the effect of muscle-damaging exercise on isokinetic torque is greatest for contractions at short muscle lengths. These findings have practical importance because the movements in most physical activities are dynamic in nature, and the decrease in torque at various points in the range of motion during exercise might affect overall performance.  相似文献   

9.
The purposes of this study were to determine whether acute resistance exercise increases serum malondialdehyde (MDA) levels postexercise, and if so, whether resistance exercise training status influences the magnitude of the exercise-induced lipid peroxidation response. Twelve recreationally resistance-trained (RT) and 12 untrained (UT) men who did not have resistance exercise experience in the past year participated in this study. All subjects completed an 8-exercise circuit resistance exercise protocol consisting of 3 sets of 10 repetitions at 10 repetitions maximum for each exercise. Blood samples were obtained pre-exercise, at 5 minutes postexercise, and at 6, 24, and 48 hours postexercise. At pre-exercise, MDA (nmol.ml(-1)) averaged 3.41 +/- 0.25 (RT) and 3.20 +/- 0.25 (UT) and did not differ (p > 0.05) either between groups or over time. Creatine kinase (IU.L(-1)) was significantly (p < 0.05) elevated 5 minutes postexercise (170.6 +/- 25.8), 6 hours postexercise (290.3 +/- 34.4), 24 hours postexercise (365.5 +/- 49.9), and 48 hours postexercise (247.5 +/- 38.5) as compared with pre-exercise (126.4 +/- 20.2) for both groups. There was no difference (p > 0.05) in CK activity between groups. This study indicated that moderate-intensity whole-body resistance exercise had no effect on serum MDA concentration in RT and UT subjects.  相似文献   

10.
The purpose of this study was to examine the effects of ibuprofen on delayed onset muscle soreness (DOMS), indirect markers of muscle damage and muscular performance. Nineteen subjects (their mean [+/- SD] age, height, and weight was 24.6 +/- 3.9 years, 176.2 +/- 11.1 cm, 77.3 +/- 18.7 kg) performed the eccentric leg curl exercise to induce muscle soreness in the hamstrings. Nine subjects took an ibuprofen pill of 400 mg every 8 hours within a period of 48 hours, whereas 10 subjects received a placebo randomly (double blind). White blood cells (WBCs) and creatine kinase (CK) were measured at pre-exercise, 4-6, 24, and 48 hours after exercise and maximal strength (1 repetition maximum). Vertical jump performance and knee flexion range of motion (ROM) were measured at pre-exercise, 24 and 48 hours after exercise. Muscle soreness increased (p < 0.05) in both groups after 24 and 48 hours, although the ibuprofen group yielded a significantly lower value (p < 0.05) after 24 hours. The WBC levels were significantly (p < 0.05) increased 4-6 hours postexercise in both groups with no significant difference (p > 0.05) between the 2 groups. The CK values increased (p < 0.05) in the placebo group at 24 and 48 hours postexercise, whereas no significant differences (p > 0.05) were observed in the ibuprofen group. The CK values of the ibuprofen group were lower (p < 0.05) after 48 hours compared with the placebo group. Maximal strength, vertical jump performance, and knee ROM decreased significantly (p < 0.05) after exercise and at 24 and 48 hours postexercise in both the placebo and the ibuprofen groups with no differences being observed (p > 0.05) between the 2 groups. The results of this study reveal that intake of ibuprofen can decrease muscle soreness induced after eccentric exercise but cannot assist in restoring muscle function.  相似文献   

11.
Eccentrically biased exercise results in skeletal muscle damage and stimulates adaptations in muscle, whereby indexes of damage are attenuated when the exercise is repeated. We hypothesized that changes in ultrastructural damage, inflammatory cell infiltration, and markers of proteolysis in skeletal muscle would come about as a result of repeated eccentric exercise and that gender may affect this adaptive response. Untrained male (n = 8) and female (n = 8) subjects performed two bouts (bout 1 and bout 2), separated by 5.5 wk, of 36 repetitions of unilateral, eccentric leg press and 100 repetitions of unilateral, eccentric knee extension exercises (at 120% of their concentric single repetition maximum), the subjects' contralateral nonexercised leg served as a control (rest). Biopsies were taken from the vastus lateralis from each leg 24 h postexercise. After bout 2, the postexercise force deficit and the rise in serum creatine kinase (CK) activity were attenuated. Women had lower serum CK activity compared with men at all times (P < 0.05), but there were no gender differences in the relative magnitude of the force deficit. Muscle Z-disk streaming, quantified by using light microscopy, was elevated vs. rest only after bout 1 (P < 0.05), with no gender difference. Muscle neutrophil counts were significantly greater in women 24 h after bout 2 vs. rest and bout 1 (P < 0.05) but were unchanged in men. Muscle macrophages were elevated in men and women after bout 1 and bout 2 (P < 0.05). Muscle protein content of the regulatory calpain subunit remained unchanged whereas ubiquitin-conjugated protein content was increased after both bouts (P < 0.05), with a greater increase after bout 2. We conclude that adaptations to eccentric exercise are associated with attenuated serum CK activity and, potentially, an increase in the activity of the ubiquitin proteosome proteolytic pathway.  相似文献   

12.
We examined the effect of two levels of exercise-induced hypotension on esophageal (Tes) and active and nonactive muscle temperatures during and following exercise. Seven males performed an incremental isotonic test on a Kin-Com isokinetic apparatus to determine their peak oxygen consumption during bilateral knee extensions (VO2sp). This was followed on separate days by 15-min of isolated bilateral knee extensions at moderate (60% VO2sp) (MEI) and high (80% VO2sp) (HEI) exercise intensities, followed by 90 min of recovery. Muscle temperature was measured with an intramuscular probe inserted in the left vastus medialis (Tvm) and triceps brachii (Ttb) muscles under ultrasound guidance. The deepest sensor (tip) was located approximately 10 mm from the femur and deep femoral artery and from the superior ulnar collateral artery and humerus for the Tvm and Ttb, respectively. Additional sensors were located 15 and 30 mm from the tip with an additional sensor located at 45 mm for the Tvm measurements only. Following exercise, mean arterial pressure (MAP) remained significantly below preexercise rest for the initial 60 min of recovery after MEI and for the duration of the postexercise recovery period after HEI (P< or =0.05). After HEI, significantly greater elevations from preexercise rest were recorded for Tes and all muscle temperatures paralleled a greater decrease in MAP compared with MEI (P< or =0.05). By the end of 90-min postexercise recovery, MAP, Tes, and all muscle temperatures remained significantly greater after HEI than MEI. Furthermore, a significantly shallower muscle temperature profile across Tvm, relative to preexercise rest, was observed at the end of exercise for both HEI and MEI (P< or=0.05), and for 30 min of recovery for MEI and throughout 90 min of recovery for HEI. No significant differences in muscle temperature profile were observed for Ttb. Thus we conclude that the increase in the postexercise hypotensive response, induced by exercise of increasing intensity, was paralleled by an increase in the magnitude and recovery time of the postexercise esophageal and active muscle temperatures.  相似文献   

13.
14.
To investigate the time course of fiber type-specific heat shock protein 70 (Hsp70) expression in human skeletal muscle after acute exercise, 10 untrained male volunteers performed single-legged isometric knee extensor exercise at 60% of their maximal voluntary contraction (MVC) with a 50% duty cycle (5-s contraction and 5-s relaxation) for 30 min. Muscle biopsies were collected from the vastus lateralis before (Pre) exercise in the rested control leg (C) and immediately after exercise (Post) in the exercised leg (E) only and on recovery days 1 (R1), 2 (R2), 3 (R3), and 6 (R6) from both legs. As demonstrated by Western blot analysis, whole muscle Hsp70 content was unchanged (P > 0.05) immediately after exercise (Pre vs. Post), was increased (P < 0.05) by approximately 43% at R1, and remained elevated throughout the entire recovery period in E only. Hsp70 expression was also assessed in individual muscle fiber types I, IIA, and IIAX/IIX by immunohistochemistry. There were no fiber type differences (P > 0.05) in basal Hsp70 expression. Immediately after exercise, Hsp70 expression was increased (P < 0.05) in type I fibers by approximately 87% but was unchanged (P > 0.05) in type II fibers (Pre vs. Post). At R1 and throughout recovery, Hsp70 content in E was increased above basal levels (P < 0.05) in all fiber types, but Hsp70 expression was always highest (P < 0.05) in type I fibers. Hsp70 content in C was not different from Pre at any time throughout recovery. Glycogen depletion was observed at Post in all type II, but not type I, fibers, suggesting that the fiber type differences in exercise-induced Hsp70 expression were not related to glycogen availability. These results demonstrate that the time course of exercise-induced Hsp70 expression in human skeletal muscle is fiber type specific.  相似文献   

15.
The purpose of this study was to evaluate the time course of strength and power recovery after a single bout of strength training designed with fast and slow contraction velocities. Nineteen male subjects were randomly divided into 2 groups: the slow-velocity contraction (SV) group and the fast velocity contraction (FV) group. Resistance training protocols consisted of 5 sets of 12 repetition maximum (5 × 12RM) with 50 seconds of rest between sets and 2 minutes between exercises. Contraction velocity was controlled by the execution time for each repetition (SV-6 seconds to complete concentric and eccentric phases and for FV-1.5 seconds). Leg Press 45° 1RM (LP 1RM), horizontal countermovement jump (HCMJ), and right thigh circumference (TC) were accessed in 6 distinct moments: base (1 week before exercise), 0 (immediately after exercises), 24, 48, 72, and 96 hours after exercise protocol. The SV and FV presented significant LP 1RM decrements at 0, and these were still evident 24-48 hours postexercise. The magnitude of decline was significantly (p < 0.05) higher for FV. The SV and FV presented significant HCMJ decrements at 0, but only for FV were these still evident 24-72 hours postexercise. The SV and FV presented significant TC increments at 0, and these were still evident 24-48 hours postexercise for SV but for FV it continued up to 96 hours. The magnitude of increase was significantly (p < 0.05) higher for FV. In conclusion, the fast contraction velocity protocol resulted in greater decreases in LP 1RM and HCMJ performance, when compared with slow velocity. The results lead us to interpret that this variable may exert direct influence on acute muscle strength and power generation capacity.  相似文献   

16.
Loss of exercise-induced cardioprotection after cessation of exercise.   总被引:3,自引:0,他引:3  
Endurance exercise provides cardioprotection against ischemia-reperfusion (I/R) injury. Exercise-induced cardioprotection is associated with increases in cytoprotective proteins, including heat shock protein 72 (HSP72) and increases in antioxidant enzyme activity. On the basis of the reported half-life of these putative cardioprotective proteins, we hypothesized that exercise-induced cardioprotection against I/R injury would be lost within days after cessation of exercise. To test this, male rats (4 mo) were randomly assigned to one of five experimental groups: 1). sedentary control, 2). exercise followed by 1 day of rest, 3). exercise followed by 3 days of rest, 4). exercise followed by 9 days of rest, and 5). exercise followed by 18 days of rest. Exercise-induced increases (P < 0.05) in left ventricular catalase activity and HSP72 were evident at 1 and 3 days postexercise. However, at 9 days postexercise, myocardial HSP72 and catalase levels declined to sedentary control values. To evaluate cardioprotection during recovery from I/R, hearts were isolated, placed in working heart mode, and subjected to 20.5 min of global ischemia followed by 30 min of reperfusion. Compared with sedentary controls, exercised animals sustained less I/R injury as evidenced by maintenance of a higher (P < 0.05) percentage of preischemia cardiac work during reperfusion at 1, 3, and 9 days postexercise. The exercise-induced cardioprotection vanished by 18 days after exercise cessation. On the basis of the time course of the loss of cardioprotection and the return of HSP72 and catalase to preexercise levels, we conclude that HSP72 and catalase are not essential for exercise-induced protection during myocardial stunning. Therefore, other cytoprotective molecules are responsible for providing protection during I/R.  相似文献   

17.
The purpose of this study was to determine whether resistance exercise performance and postexercise muscle damage were altered when consuming a carbohydrate and protein beverage (CHO-PRO; 6.2% and 1.5% concentrations). Thirty-four male subjects (age: 21.5 +/- 1.7 years; height: 177.3 +/- 1.1 cm; weight: 77.2 +/- 2.2 kg) completed 3 sets of 8 repetitions at their 8 repetition maximum to volitional fatigue. The exercise order consisted of the high pull, leg curl, standing overhead press, leg extension, lat pull-down, leg press, and bench press. In a double-blind, posttest-only control group design, subjects consumed 355 ml of either CHO-PRO or placebo (electrolyte and artificial sweetener beverage) 30 minutes prior to exercise, 177 ml immediately prior to exercise, 177 ml halfway through the exercise bout, and 355 ml immediately following the exercise bout. There were no significant differences between groups relative to exercise performance. Cortisol was significantly elevated in the placebo group compared to the CHO-PRO group at 24 hours postexercise. Insulin was significantly elevated immediately pre-exercise, after the fourth lift, immediately postexercise, 1 hour, and 6 hours postexercise in CHO-PRO compared to the placebo group. Myoglobin levels in the placebo group approached significance halfway through the exercise bout and at 1 hour postexercise (p = 0.06 and 0.07, respectively) and were significantly elevated at 6 hours postexercise compared to the CHO-PRO group. Creatine kinase levels were significantly elevated in the placebo group at 24 hours postexercise compared to the CHO-PRO group. The CHO-PRO supplement did not improve performance during a resistance exercise bout, but appeared to reduce muscle damage, as evidenced by the responses of both myoglobin and creatine kinase. These results suggest the use of a CHO-PRO supplement during resistance training to reduce muscle damage and soreness.  相似文献   

18.
19.
High mechanical loading was hypothesized to induce the expression of angiogenic and/or lymphangiogenic extracellular matrix (ECM) proteins in skeletal muscle. Eight men performed a strenuous exercise protocol, which consisted of 100 unilateral maximal drop jumps followed by submaximal jumping until exhaustion. Muscle biopsies were taken 30 min and 48 h postexercise from the vastus lateralis muscle and analyzed for the following parameters: mRNA and protein expression of ECM-associated CCN proteins [cysteine-rich angiogenic protein 61 (Cyr61)/CCN1, connective tissue growth factor (CTGF)/CCN2], and mRNA expression of vascular endothelial growth factors (VEGFs) and hypoxia-inducible factor-1alpha. The mRNA expression of Cyr61 and CTGF increased 30 min after the exercise (14- and 2.5-fold, respectively; P < 0.001). Cyr61 remained elevated 48 h postexercise (threefold; P < 0.05). The mRNA levels of VEGF-A, VEGF-B, VEGF-C, VEGF-D, or hypoxia-inducible factor-1alpha did not change significantly at either 30 min or 48 h postexercise; however, the variation between subjects increased markedly in VEGF-A and VEGF-B mRNA. Cyr61 protein levels were higher at both 30 min and 48 h after the exercise compared with the control (P < 0.05). Cyr61 and CTGF proteins were localized to muscle fibers and the surrounding ECM by immunohistochemistry. Fast fibers stained more intensively than slow fibers. In conclusion, mechanical loading induces rapid expression of CCN proteins in human skeletal muscle. This may be one of the early mechanisms involved in skeletal muscle remodeling after exercise, since Cyr61 and CTGF regulate the expression of genes involved in angiogenesis and ECM remodeling.  相似文献   

20.
The purpose of this study was to determine whether high intensity weight lifting exercise produces elevations of urinary 3-methylhistidine (3-MH), serum creatine kinase activity (CK), and serum myoglobin concentration (MY), and whether trained weight lifters differed in such responses when compared to a group of untrained subjects. Ten experienced male weight lifters (EWL) and seven untrained male subjects (IWL) performed three sets of six weight lifting exercises at 70%-80% of 1 RM. All subjects consumed a meat-free diet. The 3-MH:creatinine (3-MH:CR) values decreased 24 h and 48 h following exercise (P less than 0.05). The 12-h and 24-h postexercise CK response and the 12-h postexercise MY response increased for both EWL and IWL (P less than 0.05). However, EWL had a lower 24-h postexercise CK response and lower 12-h and 24-h postexercise MY responses compared to IWL (P less than 0.05). Within 48 h following weight lifting exercise, skeletal muscle protein degradation (as assessed by 3-MH:CR values) decreased regardless of prior training experience whereas skeletal muscle tissue damage (as assessed by CK and MY responses) increased. However, prior weight lifting training appeared to diminish the extent of muscle tissue damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号