首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular chaperones perform vital functions in mitochondrial protein import and folding. In yeast mitochondria, two members of the Clp/Hsp100 chaperone family, Hsp78 and Mcx1, have been identified as homologs of the bacterial proteins ClpB and ClpX, respectively. In this report we employed a novel quantitative assay system to assess the role of Hsp78 and Mcx1 in protein degradation within the matrix. Mitochondria were preloaded with large amounts of two purified recombinant reporter proteins exhibiting different folding stabilities. Proteolysis of the imported substrate proteins depended on the mitochondrial level of ATP and was mediated by the matrix protease Pim1/LON. Degradation rates were found to be independent of the folding stability of the reporter proteins. Mitochondria from hsp78Delta cells exhibited a significant defect in the degradation efficiency of both substrates even at low temperature whereas mcx1Delta mitochondria showed wild-type activity. The proteolysis defect in hsp78Delta mitochondria was independent from the aggregation behavior of the substrate proteins. We conclude that Hsp78 is a genuine component of the mitochondrial proteolysis system required for the efficient degradation of substrate proteins in the matrix.  相似文献   

2.
ATP-dependent oligomeric proteases are major components of cellular protein quality control systems. To investigate the role of proteolytic processes in the maintenance of mitochondrial functions, we analyzed the dynamic behavior of the mitochondrial proteome of Saccharomyces cerevisiae by two-dimensional (2D) polyacrylamide gel electrophoresis. By a characterization of the influence of temperature on protein turnover in isolated mitochondria, we were able to define four groups of proteins showing a differential susceptibility to proteolysis. The protein Pim1/LON has been shown to be the main protease in the mitochondrial matrix responsible for the removal of damaged or nonnative proteins. To assess the substrate range of Pim1 under in vivo conditions, we performed a quantitative comparison of the 2D protein spot patterns between wild-type and pim1Delta mitochondria. We were able to identify a novel subset of mitochondrial proteins that are putative endogenous substrates of Pim1. Using an in organello degradation assay, we confirmed the Pim1-specific, ATP-dependent proteolysis of the newly identified substrate proteins. We could demonstrate that the functional integrity of the Pim1 substrate proteins, in particular, the presence of intact prosthetic groups, had a major influence on the susceptibility to proteolysis.  相似文献   

3.
The transmembrane (TM) envelope protein of lentiviruses, including equine infectious anemia virus (EIAV), is significantly larger than that of other retroviruses and may extend in the C-terminal direction 100 to 200 amino acids beyond the TM domain. This size difference suggests a lentivirus-specific function for the long C-terminal extension. We have investigated the synthesis and processing of the EIAV TM protein by immune precipitation and immunoblotting experiments, by using several envelope-specific peptide antisera. We show that the TM protein in EIAV particles is cleaved by proteolysis to an N-terminal glycosylated 32- to 35-kilodalton (kDa) segment and a C-terminal nonglycosylated 20-kDa segment. The 20-kDa fragment was isolated from virus fractionated by high-pressure liquid chromatography, and its N-terminal amino acid sequence was determined for 13 residues. Together with the known nucleotide sequence, this fixes the cleavage site at a His-Leu bond located 240 amino acids from the N terminus of the TM protein. Since the 32- to 35-kDa fragment and the 20-kDa fragment are not detectable in infected cells, we assume that cleavage occurs in the virus particle and that the viral protease may be responsible. We have also found that some cells producing a tissue-culture-adapted strain of EIAV synthesize a truncated envelope precursor polyprotein. The point of truncation differs slightly in the two cases we have observed but lies just downstream from the membrane-spanning domain, close to the cleavage point described above. In one case, virus producing the truncated envelope protein appeared to be much more infectious than virus producing the full-size protein, suggesting that host cell factors can select for virus on the basis of the C-terminal domain of the TM protein.  相似文献   

4.
Mitochondria contribute significantly to the cellular production of ROS. The deleterious effects of increased ROS levels have been implicated in a wide variety of pathological reactions. Apart from a direct detoxification of ROS molecules, protein quality control mechanisms are thought to protect protein functions in the presence of elevated ROS levels. The reactivities of molecular chaperones and proteases remove damaged polypeptides, maintaining enzyme activities, thereby contributing to cellular survival both under normal and stress conditions. We characterized the impact of oxidative stress on mitochondrial protein homeostasis by performing a proteomic analysis of isolated yeast mitochondria, determining the changes in protein abundance after ROS treatments. We identified a set of mitochondrial proteins as substrates of ROS‐dependent proteolysis. Enzymes containing oxidation‐sensitive prosthetic groups like iron/sulfur clusters represented major targets of stress‐dependent degradation. We found that several proteins involved in ROS detoxification were also affected. We identified the ATP‐dependent protease Pim1/LON as a major factor in the degradation of ROS‐modified soluble polypeptides localized in the matrix compartment. As Pim1/LON expression was induced significantly under ROS treatment, we propose that this protease system performs a crucial protective function under oxidative stress conditions.  相似文献   

5.
Alginate is believed to be a major virulence factor in the pathogenicity of Pseudomonas aeruginosa in the lungs of patients suffering from cystic fibrosis. Guanosine diphospho-D-mannose dehydrogenase (GDPmannose dehydrogenase, EC 1.1.1.132) is a key enzyme in the alginate biosynthetic pathway which catalyzes the oxidation of guanosine diphospho-D-mannose (GDP-D-mannose) to GDP-D-mannuronic acid. In this paper, we report the structural analysis of GMD by limited proteolysis using three different proteases, trypsin, submaxillary Arg-C protease, and chymotrypsin. Treatment of GMD with these proteases indicated that the amino-terminal part of this enzyme may fold into a structural domain with an apparent molecular mass of 25-26 kDa. Multiple proteolytic cleavage sites existed at the carboxyl-terminal end of this domain, indicating that this segment may represent an exposed region of the protein. Initial proteolysis also generated a carboxyl-terminal fragment with an apparent molecular mass of 16-17 kDa which was further digested into smaller fragments by trypsin and chymotrypsin. The proteolytic cleavage sites were localized by partial amino-terminal sequencing of the peptide fragments. Arg-295 was identified as the initial cleavage site for trypsin and Tyr-278 for chymotrypsin. Catalytic activity of GMD was totally abolished by the initial cleavage. However, binding of the substrate, GDP-D-mannose, increased stability toward proteolysis and inhibited the loss of enzyme activity. GMP and GDP (guanosine 5'-mono- and diphosphates) also blocked the initial cleavage, but NAD and mannose showed no effect. These results suggest that binding of the guanosine moiety at the catalytic site of GMD may induce a conformational change that reduces the accessibility of the cleavage sites to proteases. Binding of [14C]GDP-D-mannose to the amino-terminal domain was not affected by the removal of the carboxyl-terminal 16-kDa fragment. Furthermore, photoaffinity labeling of GMD with [32P]arylazido-beta-alanine-NAD followed by proteolysis demonstrated that the radioactive NAD was covalently linked to the amino-terminal domain. These observations imply that the amino-terminal domain (25-26 kDa) contains both the substrate and cofactor binding sites. However, the carboxyl-terminal fragment (16-17 kDa) may possess amino acid residues essential for catalysis. Thus, proteolysis had little effect on substrate binding, but totally eliminated catalysis. These biochemical data are in complete agreement with amino acid sequence analysis for the existence of substrate and cofactor sites of GMD. A linear peptide map of GMD was constructed for future structure/functional studies.  相似文献   

6.
Pichia pastoris is a highly successful system for the large-scale expression of heterologous proteins, with the added capability of performing most eukaryotic post-translational modifications. However, this system has one significant disadvantage - frequent proteolytic degradation by P. pastoris proteases of heterologously expressed proteins. Several methods have been proposed to address this problem, but none has proven fully effective. We tested the effectiveness of a broad specificity protease inhibitor to control proteolysis. A recombinant variant of the BPTI-Kunitz protease inhibitor ShPI-1 isolated from the sea anemone Stichodactyla helianthus, was expressed in P. pastoris. The recombinant inhibitor (rShPI-1A), containing four additional amino acids (EAEA) at the N-terminus, was folded similarly to the natural inhibitor, as assessed by circular dichroism. rShPI-1A had broad protease specificity, inhibiting serine, aspartic, and cysteine proteases similarly to the natural inhibitor. rShPI-1A protected a model protein, recombinant human miniproinsulin (rhMPI), from proteolytic degradation during expression in P. pastoris. The addition of purified rShPI-1A at the beginning of the induction phase significantly protected rhMPI from proteolysis in culture broth. The results suggest that a broad specificity protease inhibitor such as rShPI-1A can be used to improve the yield of recombinant proteins secreted from P. pastoris.  相似文献   

7.
Proteolysis experiments have been used to monitor the conformational transitions from an unfolded to a folded state occurring when the apo form of horse cytochrome c (cyt c) binds the heme moiety or when two fragments of cyt c form a native-like 1:1 complex. Proteinase K was used as a proteolytic probe, in view of the fact that the broad substrate specificity of this protease allows digestion at many sites along a polypeptide chain. The rather unfolded apo form of cyt c binds heme with a concomitant conformational transition to a folded species characterized by an enhanced content of helical secondary structure. While the holoprotein is fully resistant to proteolytic digestion and the apoprotein is digested to small peptides, the noncovalent complex of the apoprotein and heme exhibits an intermediate resistance to proteolysis, in agreement with the fact that the more folded structure of the complex makes the protein substrate more resistant to proteolysis. The noncovalent native-like complex of the two fragments 1-56 and 57-104 of cyt c, covering the entire polypeptide chain of 104 residues of the protein, is rather resistant to proteolysis, while the individual fragments are easily digested. Fragment 57-104 is fast degraded to several peptides, while fragment 1-56 is slowly degraded stepwise from its C-terminal end, leading initially mostly to fragments 1-48 and 1-40 and, at later stages of proteolysis, fragments 1-38, 1-35, 1-33, and 1-31. Thus, proteolysis data indicate that the heme containing fragment 1-56 has a rather compact core and a C-terminal flexible tail. Upon prolonged incubation of the complex of fragments 1-56 and 57-104 (nicked cyt c) with proteinase K, a chain segment is removed from the nicked protein, leading to a gapped protein complex of fragments of 1-48 and 57-104 and, on further digestion, fragments 1-40 and 57-104. Of interest, the chain segment being removed by proteolysis of the complex matches the omega-loop which is evolutionarily removed in cyt c of microbial origin. Overall, rates and/or resistance to proteolysis correlates well with the extent of folding of the protein substrates, as deduced from circular dichroism measurements. Thus, our results underscore the utility of proteolytic probes for analyzing conformational and dynamic features of proteins. Finally, a specific interest of the cyt c fragment system herewith investigated resides in the fact that the fragments are exactly the exon products of the cyt c gene.  相似文献   

8.
The purpose of these experiments was to study the physical structure of the nucleocapsid-M protein complex of vesicular stomatitis virus by analysis of nucleocapsid binding by wild-type and mutant M proteins and by limited proteolysis. We used the temperature-sensitive M protein mutant tsO23 and six temperature-stable revertants of tsO23 to test the effect of sequence changes on M protein binding to the nucleocapsid as a function of NaCl concentration. The results showed that M proteins from wild-type, mutant, and three of the revertant viruses had similar NaCl titration curves, while the curve for M proteins from the other three revertants differed significantly. The altered NaCl dependence of M protein was correlated with a single amino acid substitution from Phe to Leu at position 111 compared with the original temperature-sensitive mutant and was not correlated with a substitution of Gly to Glu at position 21 in tsO23 and the revertants. To determine whether protease cleavage sites in the M protein were protected by interaction with the nucleocapsid, nucleocapsid-M protein complexes were subjected to limited proteolysis with trypsin, chymotrypsin, or Staphylococcus aureus V8 protease. The initial trypsin and chymotrypsin cleavage sites, located after amino acids 19 and 20, respectively, were as accessible to proteases when M protein was bound to the nucleocapsid as when it was purified, indicating that this region of the protein does not interact directly with the nucleocapsid. Furthermore, trypsin or chymotrypsin treatment released the M protein fragments from the nucleocapsid, presumably due to conformational changes following proteolysis. V8 protease cleaved the M protein at position 34 or 50, producing two distinct fragments. The M protein fragment produced by V8 protease cleavage at position 34 remained associated with the nucleocapsid, while the fragment produced by cleavage at position 50 was released from the nucleocapsid. These results suggest that the amino-terminal region of the M protein around amino acid 20 does not interact directly with the nucleocapsid and that conformational changes resulting from single-amino-acid substitutions at other sites in the M protein are important for this interaction.  相似文献   

9.
Protein degradation by eukaryotic proteasomes is a multi-step process involving substrate recognition, ATP-dependent unfolding, translocation into the proteolytic core particle, and finally proteolysis. To date, most investigations of proteasome function have focused on the first and the last steps in this process. Here we examine the relationship between the stability of a folded protein domain and its degradation rate. Test proteins were targeted to the proteasome independently of ubiquitination by directly tethering them to the protease. Degradation kinetics were compared for test protein pairs whose stability was altered by either point mutation or ligand binding, but were otherwise identical. In both intact cells and in reactions using purified proteasomes and substrates, increased substrate stability led to an increase in substrate turnover time. The steady-state time for degradation ranged from ~5 min (dihydrofolate reductase) to 40 min (I27 domain of titin). ATP turnover was 110/min./proteasome, and was not markedly changed by substrate. Proteasomes engage tightly folded substrates in multiple iterative rounds of ATP hydrolysis, a process that can be rate-limiting for degradation.  相似文献   

10.
NF-H has the highest mol. wt. of the three mammalian neurofilament components (NF-L, NF-M, NF-H). In spite of its unusually large mol. wt., estimated to be 200 K by gel electrophoresis, NF-H contains sequences which identify it as an integral intermediate filament (IF) protein in its amino-terminal region. We have isolated and partially characterized a basic, non-α-helical segment located at the amino-terminal end with properties similar to headpieces of other non-epithelial IF proteins. The highly α-helical 40-K fragment excised by chymotrypsin is now identified by the amino acid sequence of a 17-K fragment. This sequence can be unambiguously aligned with the rod region of other IF proteins and covers about half of the presumptive coiled-coil arrays. NF-H and NF-M show 45% sequence identity in this region. The extra mass of NF-H in comparison with most other IF proteins arises from a carboxy-terminal extension thought to be responsible for inter-neurofilament cross-bridges in axons. This autonomous domain has a unique amino acid composition characterized by a high content of proline, alanine and particularly of lysine and glutamic acid. The NF-H tailpiece extension also carries a large number of serine phosphates, which are not evenly distributed, but are restricted to the amino-terminal part. Having now delineated the intermediate filament-type sequences for all three neurofilament proteins it seems very likely that the three components interact via coiled-coil interactions. They all carry unique carboxy-terminal extensions which increase in length from NF-L to NF-H and seem to extend from the filament wall.  相似文献   

11.
The regulated turnover of endoplasmic reticulum (ER)–resident membrane proteins requires their extraction from the membrane lipid bilayer and subsequent proteasome-mediated degradation. Cleavage within the transmembrane domain provides an attractive mechanism to facilitate protein dislocation but has never been shown for endogenous substrates. To determine whether intramembrane proteolysis, specifically cleavage by the intramembrane-cleaving aspartyl protease signal peptide peptidase (SPP), is involved in this pathway, we generated an SPP-specific somatic cell knockout. In a stable isotope labeling by amino acids in cell culture–based proteomics screen, we identified HO-1 (heme oxygenase-1), the rate-limiting enzyme in the degradation of heme to biliverdin, as a novel SPP substrate. Intramembrane cleavage by catalytically active SPP provided the primary proteolytic step required for the extraction and subsequent proteasome-dependent degradation of HO-1, an ER-resident tail-anchored protein. SPP-mediated proteolysis was not limited to HO-1 but was required for the dislocation and degradation of additional tail-anchored ER-resident proteins. Our study identifies tail-anchored proteins as novel SPP substrates and a specific requirement for SPP-mediated intramembrane cleavage in protein turnover.  相似文献   

12.
Three recombinant apoE isoforms fused with an amino-terminal extension of 43 amino acids were produced in a heterologous expression system in E. coli. Their state of association in aqueous phase was analyzed by size-exclusion liquid chromatography, sedimentation velocity and sedimentation equilibrium experiments. By liquid chromatography, all three isoforms consisted of three major species with Stokes radii of 4.0, 5.0 and 6.6 nm. Sedimentation velocity confirmed the presence of monomers, dimers and tetramers as major species of each isoform. The association schemes established by sedimentation equilibrium experiments corresponded to monomer-dimer-tetramer-octamer for apoE2, monomer-dimer-tetramer for apoE3 and monomer-dimer-tetramer-octamer for apoE4. Each of the three isoforms exhibits a distinct self-association pattern. The apolipoprotein multi-domain structure was mapped by limited proteolysis with trypsin, chymotrypsin, elastase, subtilisin and Staphylococcus aureus V8 protease. All five enzymes produced stable intermediates during the degradation of the three apoE isoforms, as described for plasma apoE3. The recombinant apoE isoforms, thus, consist of N- and C-terminal domains. The presence of the fusion peptide did not appear to alter the apolipoprotein tertiary organization. However, a 30 kDa amino-terminal fragment appeared during the degradation of the recombinant apoE isoforms resulting from cleavage in the 273-278 region. This region, not accessible in plasma apoE3, results from a different conformation of the C-terminal domain in the recombinant isoforms. A specific pattern for the apoE4 C-terminal domain was observed during the proteolysis. The region 230-260 in apoE4, in contrast to that of apoE3 and apoE2, was not accessible to proteases, probably due to the existence of a longer helix in this region of apoE4 stabilized by an interdomain interaction.  相似文献   

13.
In contrast to the eucaryal 26S proteasome and the bacterial ATP-dependent proteases, little is known about the energy-dependent proteolysis in members of the third domain, Archae. We cloned a gene homologous to ATP-dependent Lon protease from a hyperthermophilic archaeon and observed the unique properties of the archaeal Lon. Lon from Thermococcus kodakaraensis KOD1 (Lon(Tk)) is a 70-kDa protein with an N-terminal ATPase domain belonging to the AAA(+) superfamily and a C-terminal protease domain including a putative catalytic triad. Interestingly, a secondary structure prediction suggested the presence of two transmembrane helices within the ATPase domain and Western blot analysis using specific antiserum against the recombinant protein clearly indicated that Lon(Tk) was actually a membrane-bound protein. The recombinant Lon(Tk) possessed thermostable ATPase activity and peptide cleavage activity toward fluorogenic peptides with optimum temperatures of 95 and 70 degrees C, respectively. Unlike the enzyme from Escherichia coli, we found that Lon(Tk) showed higher peptide cleavage activity in the absence of ATP than it did in the presence of ATP. When three kinds of proteins with different thermostabilities were examined as substrates, it was found that Lon(Tk) required ATP for degradation of folded proteins, probably due to a chaperone-like function of the ATPase domain, along with ATP hydrolysis. In contrast, Lon(Tk) degraded unfolded proteins in an ATP-independent manner, suggesting a mode of action in Lon(Tk) different from that of its bacterial counterpart.  相似文献   

14.
The proteasome is the main ATP-dependent protease in eukaryotic cells and controls the concentration of many regulatory proteins in the cytosol and nucleus. Proteins are targeted to the proteasome by the covalent attachment of polyubiquitin chains. The ubiquitin modification serves as the proteasome recognition element but by itself is not sufficient for efficient degradation of folded proteins. We report that proteolysis of tightly folded proteins is accelerated greatly when an unstructured region is attached to the substrate. The unstructured region serves as the initiation site for degradation and is hydrolyzed first, after which the rest of the protein is digested sequentially. These results identify the initiation site as a novel component of the targeting signal, which is required to engage the proteasome unfolding machinery efficiently. The proteasome degrades a substrate by first binding to its ubiquitin modification and then initiating unfolding at an unstructured region.  相似文献   

15.
FtsH, a membrane-bound metalloprotease, with cytoplasmic metalloprotease and AAA ATPase domains, degrades both soluble and integral membrane proteins in Escherichia coli. In this paper we investigated how membrane-embedded substrates are recognized by this enzyme. We showed previously that FtsH can initiate processive proteolysis at an N-terminal cytosolic tail of a membrane protein, by recognizing its length (more than 20 amino acid residues) but not exact sequence. Subsequent proteolysis should involve dislocation of the substrates into the cytosol. We now show that this enzyme can also initiate proteolysis at a C-terminal cytosolic tail and that the initiation efficiency depends on the length of the tail. This mode of degradation also appeared to be processive, which can be aborted by a tightly folded periplasmic domain. These results indicate that FtsH can exhibit processivity against membrane-embedded substrates in either the N-to-C or C-to-N direction. Our results also suggest that some membrane proteins receive bidirectional degradation simultaneously. These results raise intriguing questions about the molecular directionality of the dislocation and proteolysis catalyzed by FtsH.  相似文献   

16.
Cytoplasmic Lys-tRNA synthetase (LysRS) from Saccharomyces cerevisiae is a dimeric enzyme made up of identical subunits of 68 kDa. By limited proteolysis, this enzyme can be converted to a truncated dimer without loss of activity. Whereas the native enzyme strongly interacts with polyanionic carriers, the modified form displays reduced binding properties. KRS1 is the structural gene for yeast cytoplasmic LysRS. It encodes a polypeptide with an amino-terminal extension composed of about 60-70 amino acid residues, compared to its prokaryotic counterpart. This segment, containing 13 lysine residues, is removed upon proteolytic treatment of the native enzyme. The aim of the present study was to probe in vivo the significance of this amino-terminal extension. We have constructed derivatives of the KRS1 gene, encoding enzymes lacking 58 or 69 amino-terminal residues and, by site-directed mutagenesis, we have changed four or eight lysine residues from the amino-terminal segment of LysRS into glutamic acids. Engineered proteins were expressed in vivo after replacement of the wild-type KRS1 allele. The mutant enzymes displayed reduced specific activities (2-100-fold). A series of carboxy-terminal deletions, encompassing 3, 10 or 15 amino acids, were introduced into the LysRS mutants with modified amino-terminal extensions. The removal of three residues led to a 2-7-fold increase in the specific activity of the mutant enzymes. This partial compensatory effect suggests that interactions between the two extreme regions of yeast LysRS are required for a proper conformation of the native enzyme. All KRS1 derivatives were able to sustain growth of yeast cells, although the mutant cell lines displaying a low LysRS activity grew more slowly. The expression, as single-copy genes, of mutant enzymes with a complete deletion of the amino-terminal extension or with four Lys----Glu mutations, that displayed specific activities close to that of the wild-type LysRS, had no discernable effect on cell growth. We conclude that the polycationic extensions of eukaryotic aminoacyl-tRNA synthetases are dispensable, in vivo, for aminoacylation activities. The results are discussed in relation to the triggering role in in situ compartmentalization of protein synthesis that has been ascribed to the polypeptide-chain extensions that characterize most, if not all, eukaryotic aminoacyl-tRNA synthetases.  相似文献   

17.
Escherichia coli signal peptide peptidase A (SppA) is a serine protease which cleaves signal peptides after they have been proteolytically removed from exported proteins by signal peptidase processing. We present here results of site-directed mutagenesis studies of all the conserved serines of SppA in the carboxyl-terminal domain showing that only Ser 409 is essential for enzymatic activity. Also, we show that the serine hydrolase inhibitor FP-biotin inhibits SppA and modifies the protein but does not label the S409A mutant with an alanine substituted for the essential serine. These results are consistent with Ser 409 being directly involved in the proteolytic mechanism. Remarkably, additional site-directed mutagenesis studies showed that none of the lysines or histidine residues in the carboxyl-terminal protease domain (residues 326-549) is critical for activity, suggesting this domain lacks the general base residue required for proteolysis. In contrast, we found that E. coli SppA has a conserved lysine (K209) in the N-terminal domain (residues 56-316) that is essential for activity and important for activation of S409 for reactivity toward the FP-biotin inhibitor and is conserved in those other bacterial SppA proteins that have an N-terminal domain. We also performed alkaline phosphatase fusion experiments that establish that SppA has only one transmembrane segment (residues 29-45) with the C-terminal domain (residues 46-618) protruding into the periplasmic space. These results support the idea that E. coli SppA is a Ser-Lys dyad protease, with the Lys recruited to the amino-terminal domain that is itself not present in most known SppA sequences.  相似文献   

18.
The beta 2 subunit of tryptophan synthase is composed of two independently folding domains connected by a hinge segment of the polypeptide that is particularly susceptible to limited proteolysis by trypsin [H?gberg-Raibaud, A., & Goldberg, M. (1977) Biochemistry 16, 4014-4019]. Since tryptic cleavage in the hinge region inactivates the beta 2 subunit, the spatial relationship between the two domains is important for enzyme activity. However, it was not previously known whether inactivation results from cleavage of the chain or from the loss of internal fragment(s) subsequent to cleavage at two or more sites. We now report comparative studies of limited proteolysis by three proteinases: trypsin and endoproteinases Lys-C and Arg-C. Our key finding that endoproteinase Arg-C inactivates the beta 2 subunit by cleavage at a single site (Arg-275) demonstrates the important role of the hinge peptide for enzymatic activity. We have also identified the sites of cleavage and the time course of proteolysis by trypsin at Arg-275, Lys-283, and Lys-272 and by endoproteinase Lys-C at Lys-283 and Lys-272. Sodium dodecyl sulfate gel electrophoresis, Edman degradation, and carboxypeptidases B and Y have been used to identify the several fragments and peptides produced. Our finding that the beta 2 subunit and F1 fragments have a heterogeneous amino terminus (Met-1 or Thr-2) indicates that the amino-terminal methionine is incompletely removed during posttranslational modification. Our results show that Edman degradation can be effectively used with a protein of known sequence to analyze proteolytic digests that have at least four different amino-terminal sequences.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Two membrane-bound ATP-dependent AAA proteases conduct protein quality surveillance in the inner membrane of mitochondria and control crucial steps during mitochondrial biogenesis. AAA domains of proteolytic subunits are critical for the recognition of non-native membrane proteins which are extracted from the membrane bilayer for proteolysis. Here, we have analysed the role of the conserved loop motif YVG, which has been localized to the central pore in other hexameric AAA(+) ring complexes, for the degradation of membrane proteins by the i-AAA protease Yme1. Proteolytic activity was found to depend on the presence of hydrophobic amino acid residues at position 354 within the pore loop of Yme1. Mutations affected proteolysis in a substrate-specific manner: whereas the degradation of misfolded membrane proteins was impaired at a post-binding step, folded substrate proteins did not interact with mutant Yme1. This reflects most likely deficiencies in the ATP-dependent unfolding of substrate proteins, since we observed similar effects for ATPase-deficient Yme1 mutants. Our findings therefore suggest an essential function of the central pore loop for the ATP-dependent translocation of membrane proteins into a proteolytic cavity formed by AAA proteases.  相似文献   

20.
J M Betton  M Desmadril  J M Yon 《Biochemistry》1989,28(13):5421-5428
The accessibility of peptide bonds to cleavage by Staphylococcus aureus V8 protease bound on a Sepharose matrix was used as a conformational probe in the study of the unfolding-folding transition of phosphoglycerate kinase induced by guanidine hydrochloride. It was shown that the protein is resistant to proteolysis below a denaturant concentration of 0.4 M. The transition curve, determined by susceptibility toward proteolysis, was similar to that obtained following the enzyme activity [Betton et al. (1984) Biochemistry 23, 6654-6661]. Proteolysis under conditions where the folding intermediates are more populated, i.e., 0.7 M Gdn.HCl, gave two major fragments of Mr 25K and 11K, respectively. The 25K polypeptide fragment was identified as the carboxy-terminal domain. Its conformation was similar to that of a folding intermediate trapped at a critical concentration of denaturant, and in this form, it was not able to bind nucleotide substrates [Mitraki et al. (1987) Eur. J. Biochem. 163, 29-34]. From the present data and those previously reported, we concluded that the intermediate detected on the folding pathway of phosphoglycerate kinase has a partially folded carboxy-terminal domain and an unfolded amino-terminal domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号