首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Within the suprachiasmatic nucleus (SCN) of the mammalian hypothalamus is a circadian pacemaker that functions as a clock. Its endogenous period is adjusted to the external 24-h light-dark cycle, primarily by light-induced phase shifts that reset the pacemaker's oscillation. Evidence using a wide variety of neurobiological and molecular genetic tools has elucidated key elements that comprise the visual input pathway for SCN photoentrainment in rodents. Important questions remain regarding the intracellular signals that reset the autoregulatory molecular loop within photoresponsive cells in the SCN's retino-recipient subdivision, as well as the intercellular coupling mechanisms that enable SCN tissue to generate phase shifts of overt behavioral and physiological circadian rhythms such as locomotion and SCN neuronal firing rate. Multiple neurotransmitters, protein kinases, and photoinducible genes add to system complexity, and we still do not fully understand how dawn and dusk light pulses ultimately produce bidirectional, advancing and delaying phase shifts for pacemaker entrainment.  相似文献   

6.
7.
The molecular circadian clock mechanism is highly conserved between mammalian and avian species. Avian circadian timing is regulated at multiple oscillatory sites, including the retina, pineal, and hypothalamic suprachiasmatic nucleus (SCN). Based on the authors' previous studies on the rat ovary, it was hypothesized that ovarian clock timing is regulated by the luteinizing hormone (LH) surge. The authors used the chicken as a model to test this hypothesis, because the timing of the endogenous LH surge is accurately predicted from the time of oviposition. Therefore, tissues can be removed before and after the LH surge, allowing one to determine the effect of LH on specific clock genes. The authors first examined the 24-h expression patterns of the avian circadian clock genes of Bmal1, Cry1, and Per2 in primary oscillatory tissues (hypothalamus and pineal) as well as peripheral tissues (liver and ovary). Second, the authors determined changes in clock gene expression after the endogenous LH surge. Clock genes were rhythmically expressed in each tissue, but LH influenced expression of these clock genes only in the ovary. The data suggest that expression of ovarian circadian clock genes may be influenced by the LH surge in vivo and directly by LH in cultured granulosa cells. LH induced rhythmic expression of Per1 and Bmal1 in arrhythmic, cultured granulosa cells. Furthermore, LH altered the phase and amplitude of clock gene rhythms in serum-shocked granulosa cells. Thus, the LH surge may be a mechanistic link for communicating circadian timing information from the central pacemaker to the ovary.  相似文献   

8.
9.
10.
11.
Acute light exposure suppresses circadian rhythms in clock gene expression   总被引:1,自引:0,他引:1  
Light can induce arrhythmia in circadian systems by several weeks of constant light or by a brief light stimulus given at the transition point of the phase response curve. In the present study, a novel light treatment consisting of phase advance and phase delay photic stimuli given on 2 successive nights was used to induce circadian arrhythmia in the Siberian hamster ( Phodopus sungorus). We therefore investigated whether loss of rhythms in behavior was due to arrhythmia within the suprachiasmatic nucleus (SCN). SCN tissue samples were obtained at 6 time points across 24 h in constant darkness from entrained and arrhythmic hamsters, and per1, per2 , bmal1, and cry1 mRNA were measured by quantitative RT-PCR. The light treatment eliminated circadian expression of clock genes within the SCN, and the overall expression of these genes was reduced by 18% to 40% of entrained values. Arrhythmia in per1, per2, and bmal1 was due to reductions in the amplitudes of their oscillations. We suggest that these data are compatible with an amplitude suppression model in which light induces singularity in the molecular circadian pacemaker.  相似文献   

12.
Resetting mechanism of central and peripheral circadian clocks in mammals   总被引:15,自引:0,他引:15  
  相似文献   

13.
Circadian oscillations in biological variables in mammals are controlled by a central pacemaker in the suprachiasmatic nuclei (SCN) of the hypothalamus which coordinates circadian oscillators in peripheral tissues. The molecular clockwork responsible for this rhythmicity consists of several clock genes and their corresponding proteins that compose interactive feedback loops. In the SCN, two of the genes, Per1 and Per2, show circadian rhythmicity in their expression and protein production. This SCN rhythmicity is modified by the length of daylight, i.e. the photoperiod. The aim of the present study was to find out whether profiles of PER1 and PER2 proteins in peripheral organs are also affected by the photoperiod. Rats were maintained under a long photoperiod with 16 h of light and 8 h of darkness per day (LD 16:8) and under a short, LD 8:16, photoperiod. The PER1 and PER2 daily profiles were measured in peripheral organs by Western blotting. The photoperiod affected significantly the PER1 profile in livers and the PER2 profile in lungs and hearts. In lungs, PER2 in the cytoplasmic, but not in the nuclear fraction, was affected significantly. The effect of the photoperiod on PER1 profiles in peripheral organs appears to differ from that in the SCN.  相似文献   

14.
The molecular circadian clock mechanism is highly conserved between mammalian and avian species. Avian circadian timing is regulated at multiple oscillatory sites, including the retina, pineal, and hypothalamic suprachiasmatic nucleus (SCN). Based on the authors’ previous studies on the rat ovary, it was hypothesized that ovarian clock timing is regulated by the luteinizing hormone (LH) surge. The authors used the chicken as a model to test this hypothesis, because the timing of the endogenous LH surge is accurately predicted from the time of oviposition. Therefore, tissues can be removed before and after the LH surge, allowing one to determine the effect of LH on specific clock genes. The authors first examined the 24-h expression patterns of the avian circadian clock genes of Bmal1, Cry1, and Per2 in primary oscillatory tissues (hypothalamus and pineal) as well as peripheral tissues (liver and ovary). Second, the authors determined changes in clock gene expression after the endogenous LH surge. Clock genes were rhythmically expressed in each tissue, but LH influenced expression of these clock genes only in the ovary. The data suggest that expression of ovarian circadian clock genes may be influenced by the LH surge in vivo and directly by LH in cultured granulosa cells. LH induced rhythmic expression of Per1 and Bmal1 in arrhythmic, cultured granulosa cells. Furthermore, LH altered the phase and amplitude of clock gene rhythms in serum-shocked granulosa cells. Thus, the LH surge may be a mechanistic link for communicating circadian timing information from the central pacemaker to the ovary. (Author correspondence: stischkau@siumed.edu)  相似文献   

15.
16.
Most aspects of human physiology and behavior exhibit 24-h rhythms driven by a master circadian clock in the brain, which synchronizes peripheral clocks. Lung function and ventilation are subject to circadian regulation and exhibit circadian oscillations. Sleep disruption, which causes circadian disruption, is common in those with chronic lung disease, and in the general population; however, little is known about the effect on the lung of circadian disruption. We tested the hypothesis circadian disruption alters expression of clock genes in the lung and that this is associated with altered lung mechanics. Female and male mice were maintained on a 12:12-h light/dark cycle (control) or exposed for 4 wk to a shifting light regimen mimicking chronic jet lag (CJL). Airway resistance (Rn), tissue damping (G), and tissue elastance (H) did not differ between control and CJL females. Rn at positive end-expiratory pressure (PEEP) of 2 and 3 cmH(2)O was lower in CJL males compared with controls. G, H, and G/H did not differ between CJL and control males. Among CJL females, expression of clock genes, Bmal1 and Rev-erb alpha, was decreased; expression of their repressors, Per2 and Cry 2, was increased. Among CJL males, expression of Clock was decreased; Per 2 and Rev-erb alpha expression was increased. We conclude circadian disruption alters lung mechanics and clock gene expression and does so in a sexually dimorphic manner.  相似文献   

17.
The molecular clockwork in mammals involves various clock genes with specific temporal expression patterns. Synchronization of the master circadian clock located in the suprachiasmatic nucleus (SCN) is accomplished mainly via daily resetting of the phase of the clock by light stimuli. Phase shifting responses to light are correlated with induction of Per1, Per2 and Dec1 expression and a possible reduction of Cry2 expression within SCN cells. The timing of peripheral oscillators is controlled by the SCN when food is available ad libitum. Time of feeding, as modulated by temporal restricted feeding, is a potent 'Zeitgeber' (synchronizer) for peripheral oscillators with only weak synchronizing influence on the SCN clockwork. When restricted feeding is coupled with caloric restriction, however, timing of clock gene expression is altered within the SCN, indicating that the SCN function is sensitive to metabolic cues. The components of the circadian timing system can be differentially synchronized according to distinct, sometimes conflicting, temporal (time of light exposure and feeding) and homeostatic (metabolic) cues.  相似文献   

18.
19.
In mammals, the circadian oscillator within the suprachiasmatic nuclei (SCN) entrains circadian clocks in numerous peripheral tissues. Central and peripheral clocks share a molecular core clock mechanism governing daily time measurement. In the rat SCN, the molecular clockwork develops gradually during postnatal ontogenesis. The aim of the present work was to elucidate when during ontogenesis the expression of clock genes in the rat liver starts to be rhythmic. Daily profiles of mRNA expression of clock genes Per1, Per2, Cry1, Clock, Rev-Erbalpha, and Bmal1 were analyzed in the liver of fetuses at embryonic day 20 (E20) or pups at postnatal age 2 (P2), P10, P20, P30, and in adults by real-time RT-PCR. At E20, only a high-amplitude rhythm in Rev-Erbalpha and a low-amplitude variation in Cry1 but no clear circadian rhythms in expression of other clock genes were detectable. At P2, a high-amplitude rhythm in Rev-Erbalpha and a low-amplitude variation in Bmal1 but no rhythms in expression of other genes were detected. At P10, significant rhythms only in Per1 and Rev-Erbalpha expression were present. At P20, clear circadian rhythms in the expression of Per1, Per2, Rev-Erbalpha, and Bmal1, but not yet of Cry1 and Clock, were detected. At P30, all clock genes were expressed rhythmically. The phase of the rhythms shifted between all studied developmental periods until the adult stage was achieved. The data indicate that the development of the molecular clockwork in the rat liver proceeds gradually and is roughly completed by 30 days after birth.  相似文献   

20.
The neuropeptide vasoactive intestinal polypeptide (VIP) has emerged as a key candidate molecule mediating the synchronization of rhythms in clock gene expression within the suprachiasmatic nucleus (SCN). In addition, neurons expressing VIP are anatomically well positioned to mediate communication between the SCN and peripheral oscillators. In this study, we examined the temporal expression profile of 3 key circadian genes: Per1, Per2 , and Bmal1 in the SCN, the adrenal glands and the liver of mice deficient for the Vip gene (VIP KO), and their wild-type counterparts. We performed these measurements in mice held in a light/dark cycle as well as in constant darkness and found that rhythms in gene expression were greatly attenuated in the VIP-deficient SCN. In the periphery, the impact of the loss of VIP varied with the tissue and gene measured. In the adrenals, rhythms in Per1 were lost in VIP-deficient mice, while in the liver, the most dramatic impact was on the phase of the diurnal expression rhythms. Finally, we examined the effects of the loss of VIP on ex vivo explants of the same central and peripheral oscillators using the PER2::LUC reporter system. The VIP-deficient mice exhibited low amplitude rhythms in the SCN as well as altered phase relationships between the SCN and the peripheral oscillators. Together, these data suggest that VIP is critical for robust rhythms in clock gene expression in the SCN and some peripheral organs and that the absence of this peptide alters both the amplitude of circadian rhythms as well as the phase relationships between the rhythms in the SCN and periphery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号