首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucosamine-6-phosphate isomerase deaminase (2-amino-2-deoxy-d-glucose-6-phosphate ketol isomerase (deaminating), EC 5.3.1.10) from Escherichia coli is an hexameric homopolymer that contains five half-cystines per chain. The reaction of the native enzyme with 5′,5′-dithiobis-(2-nitrobenzoate) or methyl iodide revealed two reactive SH groups per subunit, whereas a third one reacted only in the presence of denaturants. Two more sulfhydryls appeared when denatured enzyme was treated with dithiothreitol, suggesting the presence of one disulfide bridge per chain. The enzyme having the exposed and reactive SH groups blocked with 5′-thio-2-nitrobenzoate groups was inactive, but the corresponding alkylated derivative was active and retained its homotropic cooperativity toward the substrate, d-glucosamine 6-phosphate, and the allosteric activation by N-acetyl-d-glucosamine 6-phosphate. Studies of SH reactivity in the presence of enzyme ligands showed that a change in the availability of these groups accompanies the allosteric conformational transition. The results obtained show that sulfhydryls are not essential for catalysis or allosteric behavior of glucosamine-6-phosphate deaminase.  相似文献   

2.
A d-glucosamine 6-phosphate N-acetyltransferase from Blastocladiella emersonii zoospores was partially purified to a specific activity of 2.41 IU per mg of protein. Its pH optimum was 8.05 and its K(m) values were 2.4 x 10(-4) M d-glucosamine 6-phosphate and 0.38 x 10(-4) M Na(3)S-acetyl coenzyme A.  相似文献   

3.
1. The deoxyfluoro-d-glucopyranose 6-phosphates are substrates for both yeast and rat liver glucose 6-phosphate dehydrogenase. 2. The V(max.) values (relative to d-glucose 6-phosphate) were determined for a series of d-glucose 6-phosphate derivatives substituted at C-2. The V(max.) values decreased with increasing electronegativity of the C-2 substituent. This is consistent with a mechanism involving hydride-ion transfer. 3. 2-Deoxy-d-arabino-hexose 6-phosphate (2-deoxy-d-glucose 6-phosphate) showed substrate inhibition with the yeast enzyme but not with the rat liver enzyme. 4. 2-Amino-2-deoxy-d-glucose 6-phosphate (d-glucosamine 6-phosphate) was a substrate for the yeast enzyme but a competitive inhibitor for the rat liver enzyme. 5. Lineweaver-Burk plots for the d-glucose 6-phosphate derivatives with yeast glucose 6-phosphate dehydrogenase were biphasic.  相似文献   

4.
1. Growth of Escherichia coli on glucosamine results in an induction of glucosamine 6-phosphate deaminase [2-amino-2-deoxy-d-glucose 6-phosphate ketol-isomerase (deaminating), EC 5.3.1.10] and a repression of glucosamine 6-phosphate synthetase (l-glutamine-d-fructose 6-phosphate aminotransferase, EC 2.6.1.16); glucose abolishes these control effects. 2. Growth of E. coli on N-acetylglucosamine results in an induction of N-acetylglucosamine 6-phosphate deacetylase and glucosamine 6-phosphate deaminase, and in a repression of glucosamine 6-phosphate synthetase; glucose diminishes these control effects. 3. The synthesis of amino sugar kinases (EC 2.7.1.8 and 2.7.1.9) is unaffected by growth on amino sugars. 4. Glucosamine 6-phosphate synthetase is inhibited by glucosamine 6-phosphate. 5. Mutants of E. coli that are unable to grow on N-acetylglucosamine have been isolated, and lack either N-acetylglucosamine 6-phosphate deacetylase (deacetylaseless) or glucosamine 6-phosphate deaminase (deaminaseless). Deacetylaseless mutants can grow on glucosamine but deaminaseless mutants cannot. 6. After growth on glucose, deacetylaseless mutants have a repressed glucosamine 6-phosphate synthetase and a super-induced glucosamine 6-phosphate deaminase; this may be related to an intracellular accumulation of acetylamino sugar that also occurs under these conditions. In one mutant the acetylamino sugar was shown to be partly as N-acetylglucosamine 6-phosphate. Deaminaseless mutants have no abnormal control effects after growth on glucose. 7. Addition of N-acetylglucosamine or glucosamine to cultures of a deaminaseless mutant caused inhibition of growth. Addition of N-acetylglucosamine to cultures of a deacetylaseless mutant caused lysis, and secondary mutants were isolated that did not lyse; most of these secondary mutants had lost glucosamine 6-phosphate deaminase and an uptake mechanism for N-acetylglucosamine. 8. Similar amounts of (14)C were incorporated from [1-(14)C]-glucosamine by cells of mutants and wild-type growing on broth. Cells of wild-type and a deaminaseless mutant incorporated (14)C from N-acetyl[1-(14)C]glucosamine more efficiently than from N[1-(14)C]-acetylglucosamine, incorporation from the latter being further decreased by acetate; cells of a deacetylaseless mutant showed a poor incorporation of both types of labelled N-acetylglucosamine.  相似文献   

5.
A mutant was isolated from Escherichia coli K-12 which requires glucosamine or N-acetylglucosamine for growth. Depriving the mutant of glucosamine resulted in a rapid loss of viability of the cells, followed by a decrease in the turbidity of the culture. When the mutant cells were resuspended in broth media containing 10% sucrose, the rod-shaped cells became spheroplasts. However, the presence of sucrose in the media did not prevent the cells from losing their viability. This mutant was shown to be deficient in the activity of l-glutamine:d-fructose-6-phosphate aminotransferase (EC 2.6.1.16). The activity of the deaminating enzyme, 2-amino-2-deoxy-d-glucose-6-phosphate ketol-isomerase (EC 5.3.1.10), appeared to be normal in this mutant. The position of the mutation has been determined to be at the 74th min of the Taylor and Trotter map, as shown by cotransduction with phoS (90%) and ilv (25%) by using bacteriophage P1.  相似文献   

6.
Phosphoglucose isomerase negative mutant of mucoid Pseudomonas aeruginosa accumulated relatively higher concentration of fructose 1,6-bisphosphate (Fru-1,6-P2) when mannitol induced cells were incubated with this sugar alcohol. Also the toluene-treated cells of fructose 1,6-bisphosphate aldolase negative mutant of this organism produced Fru-1,6-P2 from fructose 6-phosphate in presence of ATP, but not from 6-phosphogluconate. The results together suggested the presence of an ATP-dependent fructose 6-phosphate kinase (EC 2.7.1.11) in mucoid P. aeruginosa.Abbreviations ALD Fru-1,6-P2 aldolse - DHAP dihydroxyacetone phosphate - F6P fructose 6-phosphate - G6P glucose 6-phosphate - Gly3P glyceraldehyde 3-phosphate - KDPG 2-keto 3-deoxy 6-phosphogluconate - PFK fructose 6-phosphate kinase - PGI phosphoglucose isomerase - 6PG 6-phosphogluconate  相似文献   

7.
Mannitol metabolism in fungi is thought to occur through a mannitol cycle first described in 1978. In this cycle, mannitol 1-phosphate 5-dehydrogenase (EC 1.1.1.17) was proposed to reduce fructose 6-phosphate into mannitol 1-phosphate, followed by dephosphorylation by a mannitol 1-phosphatase (EC 3.1.3.22) resulting in inorganic phosphate and mannitol. Mannitol would be converted back to fructose by the enzyme mannitol dehydrogenase (EC 1.1.1.138). Although mannitol 1-phosphate 5-dehydrogenase was proposed as the major biosynthetic enzyme and mannitol dehydrogenase as a degradative enzyme, both enzymes catalyze their respective reverse reactions. To date the cycle has not been confirmed through genetic analysis. We conducted enzyme assays that confirmed the presence of these enzymes in a tobacco isolate of Alternaria alternata. Using a degenerate primer strategy, we isolated the genes encoding the enzymes and used targeted gene disruption to create mutants deficient in mannitol 1-phosphate 5-dehydrogenase, mannitol dehydrogenase, or both. PCR analysis confirmed gene disruption in the mutants, and enzyme assays demonstrated a lack of enzymatic activity for each enzyme. GC-MS experiments showed that a mutant deficient in both enzymes did not produce mannitol. Mutants deficient in mannitol 1-phosphate 5-dehydrogenase or mannitol dehydrogenase alone produced 11.5 and 65.7 %, respectively, of wild type levels. All mutants grew on mannitol as a sole carbon source, however, the double mutant and mutant deficient in mannitol 1-phosphate 5-dehydrogenase grew poorly. Our data demonstrate that mannitol 1-phosphate 5-dehydrogenase and mannitol dehydrogenase are essential enzymes in mannitol metabolism in A. alternata, but do not support mannitol metabolism operating as a cycle.  相似文献   

8.
A partially purified enzyme (120-fold) from Leuconostoc mesenteroides catalyzed the reversible N-acetylation of d-glucosamine-6-phosphate. Coenzyme A was not required and inhibited the reaction rate. Neither d-glucosamine nor N-acetyl-d-glucosamine served as a substrate for the reversible reaction. The enzyme preparation retained 50% of its original activity after 5 min at 100 C. The K(m) for acetate was 7.7 x 10(-2)m in the presence of 2 x 10(-2)md-glucosamine-6-phosphate. The K(m) for d-glucosamine-6-phosphate was 5.0 x 10(-3)m in the presence of 0.64 m acetate. The product of the reaction was characterized by comparison with N-acetyl-d-glucosamine-6-phosphate prepared by enzymatic phosphorylation of N-acetyl-d-glusamine. The characterization tests were: chromatographic migration, acid hydrolysis, enzymatic dephosphorylation, sodium borohydride reduction, and periodate oxidation. The equilibrium constant for the reaction was about 7.5 m for the expression K = (d-glucosamine-6-phosphate)(acetate)/N-acetyl-d-glucosamine-6-phosphate. The standard free energy of the reaction was approximately 1,200 cal per mole.  相似文献   

9.
Activities of the enzymes glutamine synthetase (EC 6.3.1.2.), glucosamine 6-phosphate acetyltransferase (EC 2.3.1.4.), uridine 5'-diphosphate (UDP)-N-acetylglucosamine pyrophosphorylase (EC 2.7.23.), UDP-N-acetylglucosamine 4-epimerase (EC 5.1.3.7.), fructose 1,6-diphosphate phosphatase (EC 3.13.11.), L-glutamine-fructose 6-phosphate transamidase (EC 5.3.1.19.), alkaline phosphatase (EC 3.1.3.1.), and malic dehydrogenase (EC 1.1.1.37) were assayed in partially purified extracts prepared at different stages of myxospore formation and germination in liquid cultures of Myxococcus xanthus. The specific activities of the first six of these enzymes increased 4.5- to 7.5-fold after 2 h of induction with 0.5 M glycerol or 0.2 M dimethyl sulfoxide. The increase in specific activities of these six enzymes was not observed in a mutant unable to be induced with glycerol. During the first 2 to 4 h of induction and during the first hour of germination, the level of these enzymes decreased to the level characteristic of vegetative cells. It is suggested that the six enzymes are responsible for the increased conversion of fructose 1,6-diphosphate to UDP-N-acetylgalactosamine, the major precursor of the myxospore coat.  相似文献   

10.
The second enzyme in the methylerythritol phosphate pathway to isoprenoids, 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR; EC 1.1.1.267) mediates the transformation of 1-deoxy-D-xylulose 5-phosphate (DXP) into 2-C-methyl-D-erythritol 4-phosphate. Several DXR mutants have been prepared to study amino acid residues important in binding or catalysis, but in-depth studies of many conserved residues in the flexible loop portion of the enzyme have not been conducted. In the course of our studies of this enzyme, an analog of DXP, 1,2-dideoxy-D-threo-3-hexulose 6-phosphate (1-methyl-DXP), was found to be a weak competitive inhibitor. Using the X-ray crystal structures of DXR as a guide, a highly conserved tryptophan residue in the flexible loop was identified that potentially blocks the use of this analog as a substrate. To test this hypothesis, four mutants of the Synechocystis sp. PCC6803 DXR were prepared and a W204F mutant was found to utilize the analog as a substrate.  相似文献   

11.
A mutant of Saccharomyces cerevisiae deficient in phosphoglucoisomerase (EC 5.3.1.9) is described. It does not grow on glucose or sucrose but does grow on galactose or maltose. Addition of glucose to cultures growing on fructose, mannose, or acetate arrests further growth without altering viability; removal of glucose permits resumption of growth. Glucose causes accumulation of nearly 30 mumoles of glucose-6-phosphate per g (wet weight) of cells and suppresses synthesis of ribonucleic acid. Inhibition of growth by glucose does not appear to be due to a loss of adenosine triphosphate or inorganic orthophosphate. The mutant, however, utilizes glucose-6-phosphate produced intracellularly. Release of carbon dioxide from specifically labeled glucose suggests a C-l preferential cleavage. The kinetics of glucose-6-phosphate accumulation during glucose utilization in the mutant is not consistent with the notion that the utilization of glucose is controlled by glucose-6-phosphate.  相似文献   

12.
Triethyloxonium tetrafluoroborate was used to O-alkylate nylon-tube thus producing the imidate salt of the nylon which was further made to react with 1,6-diaminohexane. 2. Hexokinase (EC 2.7.1.1) and glucose 6-phosphate dehydrogenase (EC 1.1.1.49) were immobilized on the amino-substituted nylon tube through glutaraldeyde and bisimidates. 3. The effect of varying the conditions of O-alkylation and the amount of enzyme immobilized on the activity of nylon tube-hexokinase derivatives was determined. 4. The effect of varying the amount of enzyme immobilized on the activity of nylon-tube-glucose 6-phosphate dehydrogenase derivatives was determined. 5. The thermal stability of nylon-tube-hexokinase and nylon-tube-glucose 6-phosphate dehydrogenase derivatives was studied. 6. Different ratios of hexokinase and glucose 6-phosphate dehydrogenase were co-immobilized on nylon tube, and the rate of conversion of glucose into 6-phosphogluconolactone was compared with the individual activities of the immobilized enzymes. 7. Hexokinase and glucose 6-phosphate dehydrogenase co-immobilized on nylon tube were used in the automated analysis of glucose.  相似文献   

13.
1. Sheep colonic mucin contains three types of sialic acids, separable from the macrostructure by mild acidic hydrolysis. These are composed chiefly of N-acetyl-and N-glycollyl-neuraminic acid in ratios between 1:1.2 and 1:3.5 for different preparations of the mucin. The third sialic acid appears to be a diacetylated neuraminic acid. 2. A particle-free enzyme preparation, obtained from sheep colonic mucosa by gentle homogenization and high-speed centrifugation, catalyses a series of reactions involving N-acylamino sugars and leading to the formation of sialic acids in vitro: (i) phosphorylation by ATP of d-glucosamine, N-acetyl-and N-glycollyl-d-glucosamine; (ii) conversion of N-acetylglucosamine 6-phosphate into N-acetyl-d-glucosamine 1-phosphate; (iii) formation of sialic acids from phosphoenolpyruvate and N-acetyl- or N-glycollyl-d-glucosamine; (iv) formation of N-acetylneuraminic acid from uridine diphospho-N-acetylglucosamine or from N-acetylmannosamine; (v) incorporation of l-[U-(14)C]serine into the mucin by whole mucosal preparations.  相似文献   

14.
ABSTRACT. The presence of 14 enzymes was investigated using purified spores of the microsporidian Nosema grylli from fat body of the crickets Gryllus bimaculatus . Glucose 6-phosphate dehydrogenase (EC 1.1.1.49), phosphoglucomutase (EC 5.4.2.2), phosphoglucose isomerase (EC 5.3.1.9), fructose 6-phosphate kinase (EC 2.7.1.11), aldolase (EC 4.1.2.13), 3-phosophoglycerate kinase (EC 2.7.2.3), pyruvate kinase (EC 2.7.1.40) and glycerol 3-phosphate dehydrogenase (EC 1.1.1.8) were detected with activities of 15 ± 1, 7 ± 1, 1,549 ± 255, 10 ± 1, 5 ± 1, 16 ± 4, 6 ± 1 and 16 ± 2 nmol/min. mg protein, respectively. Hexokinase (EC 2.7.1.1), NAD-dependent malate dehydrogenase (EC 1.1.1.37), malic enzyme (EC 1.1.1.40), lactate dehydrogenase (EC 1.1.1.27), alcohol dehydrogenase (EC 1.1.1.1) and succinate dehydrogenase (EC 1.3.99.1) were not detectable. These results suggest the catabolism of carbohydrates in microsporidia occurs via the Embden-Meyerhof pathway. Glycerol 3-phosphate dehydrogenase may reoxidize NADH which is produced by glyceraldehyde 3-phosphate dehydrogenase in glycolysis.  相似文献   

15.
1. N-Acetylglucosamine 6-phosphate deacetylase and 2-amino-2-deoxy-d-glucose 6-phosphate ketol-isomerase (deaminating) (EC 5.3.1.10, glucosamine 6-phosphate deaminase) of Escherichia coliK(12) have been separated by chromatography on DEAE-cellulose. 2. N-Acetylglucosamine 6-phosphate deacetylase has optimum pH8.5 and K(m) 0.8mm. Glucosamine 6-phosphate is a product of the reaction. There appear to be no essential cofactors. Glucosamine 6-phosphate and fructose 6-phosphate inhibit deacetylation. 3. Glucosamine 6-phosphate deaminase has optimum pH7.0 and K(m) 9.0mm. It is stimulated by N-acetylglucosamine 6-phosphate. 4. We propose that the deacetylase be termed 2-acetamido-2-deoxy-d-glucose 6-phosphate amidohydrolase (EC 3.5.1.-), with acetylglucosamine 6-phosphate deacetylase as a trivial name.  相似文献   

16.
The compositions of intracellular pentose phosphate pathway enzymes have been examined in mutants of Pachysolen tannophilus NRRL Y-2460 which possessed enhanced D-xylose fermentation rates. The levels of oxidoreductive enzymes involved in converting D-xylose to D-xylulose via xylitol were 1.5–14.7-fold higher in mutants than in the parent. These enzymes were still under inductive control by D-xylose in the mutants. The D-xylose reductase activity (EC 1.1.1.21) which catalyses the conversion of D-xylose to xylitol was supported with either NADPH or NADH as coenzyme in all the mutant strains. Other enzyme specific activities that generally increased were: xylitol dehydrogenase (EC 1.1.1.9), 1.2–1.6-fold; glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 1.9–2.6-fold; D-xylulose-5-phosphate phosphoketolase (EC 4.1.2.9), 1.2–2.6-fold; and alcohol dehydrogenase (EC 1.1.1.1), 1.5–2.7-fold. The increase of enzymatic activities, 5.3–10.3-fold, occurring in D-xylulokinase (EC 2.7.1.17), suggested a pivotal role for this enzyme in utilization of D-xylose by these mutants. The best ethanol-producing mutant showed the highest ratio of NADH- to NADPH-linked D-xylose reductase activity and high levels of all other pentose phosphate pathway enzymes assayed.  相似文献   

17.
Glucosamine-6-phosphate deaminase (EC 3.5.99.6) is an allosteric enzyme that catalyzes the reversible conversion of D-glucosamine-6-phosphate into D-fructose-6-phosphate and ammonium. Here we describe the existence of two mammalian glucosamine-6-phosphate deaminase enzymes. We present the crystallographic structure of one of them, the long human glucosamine-6-phosphate deaminase, at 1.75 A resolution. Crystals belong to the space group P2(1)2(1)2(1) and present a whole hexamer in the asymmetric unit. The active-site lid (residues 162-182) presented significant structural differences among monomers. Interestingly the region with the largest differences, when compared with the Escherichia coli homologue, was found to be close to the active site. These structural differences can be related to the kinetic and allosteric properties of both mammalian enzymes.  相似文献   

18.
Glucosamine- or N-acetylglucosamine-requiring mutants of Staphylococcus aureus 209P and Escherichia coli K12, which lack glucosamine-6-phosphate synthetase [2-amino-2-deoxy-D-glucose-6-phosphate ketol-isomerase (amino-transferring); EC 5.3.1.19], were isolated. Growth of these mutants on glucosamine was inhibited by glucose, but growth on N-acetylglucosamine was not. Addition of glucose to mutant cultures growing exponentially on glucosamine inhibited growth and caused death of bacteria, though chloramphenicol prevented death. Uptake of glucosamine by S. aureus and E. coli mutants was severely inhibited by glucose whereas uptake of N-acetylglucosamine was only slightly inhibited. Uptake of glucose was not inhibited by either glucosamine or N-acetylglucosamine. In glucosamine auxotrophs, glucose causes glucosamine deficiency which interrupts cell wall synthesis and results in some loss of viability in the presence of continued protein synthesis.  相似文献   

19.
ENZYMIC AND CEREBRAL METABOLIC EFFECTS OF 2-DEOXY-d-GLUCOSE   总被引:8,自引:6,他引:2  
—The time course of effects of 2-deoxy-d -glucose on cerebral glucose metabolism has been studied in vivo and the inhibitory actions of 2-deoxy-d -glucose and 2-deoxy-d -glucose-6-phosphate on cerebral glycolytic enzymes in vitro. Mice were given 2-deoxy-d -glucose 3 g/kg intraperitoneally. Blood 2-deoxy-d -glucose/glucose ratio was 2–3 from 5 to 30 min after injection, the hyperglycaemic response to 2-deoxy-d -glucose having been suppressed with propranolol. Maximal cerebral 2-deoxy-d -glucose uptake observed was 1μ11 μmol/g/min between 5 and 10 min after injection. At 10 min brain concentrations of 2-deoxy-d -glucose and 2-deoxy-d -glucose-6-phosphate were 5·82 and 3·12 μmol/g. Analysis of the fate of d -[U-14C] glucose given subcutaneously 5 min before death showed that glucose uptake was reduced to 40–60 per cent of control from 5 to 30 min after 2-deoxy-d -glucose. However brain glucose concentration rose three to five-fold 20–30 min after 2-deoxy-d -glucose. The majority of glucose entering the brain after 10 min of 2-deoxy-d -glucose treatment was recovered as glucose. Conversion of brain glucose to other acid soluble components was reduced to 1/3 at 10 min and 1/5 at 20–30 min. Glucose-6-phosphate concentration rose from 5 min onwards and was maintained at twice control concentration from 10–30 min. However, because of the rapid entry of 2-deoxy-d -glucose and its conversion to 2-deoxy-d -glucose-6-phosphate, the 2-deoxy-d -glucose 6-P/glucose 6-P ratio was between 19 and 32. Brain adenosine triphosphate concentration did not change, creatine phosphate concentration fell after 25 min. Measurement of enzyme activities in cerebral homogenates (using 1 mivs substrate concentration) showed that hexokinase (EC 2.7.1.1) was 40 per cent inhibited by 5 mm -deoxy-d -glucose (but not by 2-deoxy-d -glucose 6-P). Glucose 6-P dehydrogenase (EC 1.1.1.49), 6-phosphogluconate dehydrogenase (EC 1.1.1.43) and phosphoglucomutase (EC 2.7.5.1) were not affected by either 2-deoxy-d -glucose (5 mm ) or 2-deoxy-d -glucose 6-P (5 or 20 mm ). Hexose-phosphate isomerase (EC 5.3.1.9) was 70 per cent inhibited by 20 mm -d -deoxy-d -glucose 6-P. Phosphofructokinase (EC 2.7.1.11) was inhibited by 17 per cent by 2-deoxy-d -glucose 6-P (20 mm ). During the initial impairment of cerebral function by 2-deoxy-d -glucose there is competitive inhibition of glucose transport into the brain; later, glycolysis is more powerfully depressed by the inhibition of isomerase produced by the high intracerebral concentration of 2-deoxyglucose-6-phosphate.  相似文献   

20.
The specific activities of each of the enzymes of the classical pentose phosphate pathway have been determined in both cultured procyclic and bloodstream forms of Trypanosoma brucei. Both forms contained glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconolactonase (EC 3.1.1.31), 6-phosphogluconate dehydrogenase (EC 1.1.1.44), ribose-5-phosphate isomerase (EC 5.3.1.6) and transaldolase (EC 2.2.1.2). However, ribulose-5-phosphate 3'-epimerase (EC 5.1.3.1) and transketolase (EC 2.2.1.1) activities were detectable only in procyclic forms. These results clearly demonstrate that both forms of T. brucei can metabolize glucose via the oxidative segment of the classical pentose phosphate pathway in order to produce D-ribose-5-phosphate for the synthesis of nucleic acids and reduced NADP for other synthetic reactions. However, only procyclic forms are capable of using the non-oxidative segment of the classical pentose phosphate pathway to cycle carbon between pentose and hexose phosphates in order to produce D-glyceraldehyde 3-phosphate as a net product of the pathway. Both forms lack the key gluconeogenic enzyme, fructose-bisphosphatase (EC 3.1.3.11). Consequently, neither form should be able to engage in gluconeogenesis nor should procyclic forms be able to return any of the glyceraldehyde 3-phosphate produced in the pentose phosphate pathway to glucose 6-phosphate. This last specific metabolic arrangement and the restriction of all but the terminal steps of glycolysis to the glycosome may be the observations required to explain the presence of distinct cytosolic and glycosomal isoenzymes of glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase. These same observations also may provide the basis for explaining the presence of cytosolic hexokinase and phosphoglucose isomerase without the presence of any cytosolic phosphofructokinase activity. The key enzymes of the Entner-Doudoroff pathway, 6-phosphogluconate dehydratase (EC 4.2.1.12) and 2-keto-3-deoxy-6-phosphogluconate aldolase (EC 4.1.2.14) were not detected in either procyclic or bloodstream forms of T. brucei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号