首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bacteria have evolved a diverse potential to transform and even mineralize numerous organic compounds of both natural and xenobiotic origin. This article describes the occurrence of N-heteroaromatic compounds and presents a review of the bacterial degradation of pyridine and its derivatives, indole, isoquinoline, and quinoline and its derivatives. The bacterial metabolism of these compounds under different redox conditions – by aerobic, nitrate-reducing, sulfate-reducing and methanogenic bacteria – is discussed. However, in natural habitats, various environmental factors, such as sorption phenomena, also influence bacterial conversion processes. Thus, both laboratory and field studies are necessary to aid our understanding of biodegradation in natural ecosystems and assist the development of strategies for bioremediation of polluted sites. Occurring predominantly near (former) wood-treatment facilities, creosote is a frequent contaminant of soil, subsoil, groundwater, and aquifer sediments. In situ as well as withdrawal-and-treatment techniques have been designed to remediate such sites, which are polluted with complex mixtures of aromatic and heterocyclic compounds. Received: 26 September 1997 / Received revision: 23 December 1997 / Accepted: 27 December 1997  相似文献   

2.
3.
4.
Microbial hydrocarbon degradation in soil was studied during periodical aerobic/anaerobic switching and under purely aerobic conditions by using a pilot-scale plant with diesel-fuel-contaminated sand. The system worked according to the percolation principle with controlled circulation of process water and aeration. Periodical switching between 4 h of aerobic and 2 h of anaerobic conditions was achieved by repeated saturation of the soil with water. Whatever the cultivation mode, less than 50% of the diesel was degraded after 650 h because the hydrocarbons were adsorbed. Contrary to expectations, aerobic/anaerobic changes neither accelerated the rate of degradation nor reduced the residual hydrocarbon content of the soil. Obviously the pollutant degradation rate was determined mainly by transport phenomena and less by the efficiency of microbial metabolism. The total mass of oxygen consumed and carbon dioxide produced was greater under aerobic/anaerobic changing than under aerobic conditions, although the mass of hydrocarbons degraded was nearly the same. As shown by an overall balance of microbial growth and by a carbon balance, the growth yield coefficient was smaller during aerobic/anaerobic changes than under aerobic conditions. Received: 25 November 1997 /  Received revision: 15 January 1998 / Accepted: 18 January 1998  相似文献   

5.
6.
7.
8.
Velocities of bovine spermatozoa in a medium containing glucose were similar under true anaerobic and aerobic conditions. Spermatozoa were not able to sustain motility under anaerobic conditions when glycolysis was inhibited, but regained motility when re-aerated. This demonstrates that immobilisation was due to lack of oxygen and that conditions under which motility was analysed were truly anaerobic. Sperm motility parameters were not significantly different in the presence and absence of 4 microM antimycin A and 4 microM rotenone when glucose was present in the medium. After each incubation, functionality of sperm mitochondria was assayed by washing sperm into the medium which supported respiration but not glycolysis, and motility was visually assessed. All sperm samples were highly motile in this medium indicating that their mitochondria were functional. When glycolysis was inhibited, antimycin and rotenone abolished sperm motility immediately after addition. Bovine sperm can maintain similar levels of motility aerobically and anaerobically if a glycolysable substrate is available. Available data on bovine sperm energetics support this view.  相似文献   

9.
10.
11.
When strains and mutants of the strictly aerobic hydrogen-oxidizing bacterium Alcaligenes eutrophus are grown heterotrophically on gluconate or fructose and are subsequently exposed to anaerobic conditions in the presence of the organic substrates, molecular hydrogen is evolved. Hydrogen evolution started immediately after the suspension was flushed with nitrogen, reached maximum rates of 70 to 100 mumol of H2 per h per g of protein, and continued with slowly decreasing rates for at least 18 h. The addition of oxygen to an H2-evolving culture, as well as the addition of nitrate to cells (which had formed the dissimilatory nitrate reductase system during the preceding growth), caused immediate cessation of hydrogen evolution. Formate is not the source of H2 evolution. The rates of H2 evolution with formate as the substrate were lower than those with gluconate. The formate hydrogenlyase system was not detectable in intact cells or crude cell extracts. Rather the cytoplasmic, NAD-reducing hydrogenase is involved by catalyzing the release of excessive reducing equivalents under anaerobic conditions in the absence of suitable electron acceptors. This conclusion is based on the following experimental results. H2 is formed only by cells which had synthesized the hydrogenases during growth. Mutants lacking the membrane-bound hydrogenase were still able to evolve H2. Mutants lacking the NAD-reducing or both hydrogenases were unable to evolve H2.  相似文献   

12.
The influence of physiological and environmental factors on the accumulation of oxindole during anaerobic indole metabolism was investigated by high-performance liquid chromatography. Under methanogenic conditions, indole was temporarily converted to oxindole in stoichiometric amounts in media inoculated with three freshwater sediments and an organic soil. In media inoculated with methanogenic sewage sludge, the modest amounts of oxindole detected at 35 degrees C reached higher concentrations and persisted longer when the incubation temperature was decreased from 35 to 15 degrees C. Also, decreasing the concentration of sewage sludge used as an inoculum from 50 to 1% caused an increase in the accumulation of oxindole from 10 to 75% of the indole added. Under denitrifying conditions, regardless of the concentration or source of the inoculum, oxindole appeared in trace amounts but did not accumulate during indole metabolism. In addition, denitrifying consortia which previously metabolized indole degraded oxindole with no lag period. Our data suggest that oxindole accumulation under methanogenic, but not under denitrifying conditions is caused by differences between relative rates of oxindole production and destruction.  相似文献   

13.
14.
Nutrients have a pronounced effect on the growth and swarming behaviour of Proteus mirabilis 7002. Iron, zinc, amino acids, and dioxygen are important for rapid growth and normal swarming. Anaerobically grown cultures of P. mirabilis 7002 were unable to swarm on anaerobically maintained rich nutrient agar. Upon exposure to aerobic conditions, P. mirabilis 7002 resumed swarming behaviour. Scanning electron microscopy was used to demonstrate the presence of community organization and mature rafts during normal swarming. These results support the importance of dioxygen and redox status in cell differentiation.  相似文献   

15.
16.
The siderophore production of the facultative anaerobe Pseudomonas stutzeri, strain CCUG 36651, grown under both aerobic and anaerobic conditions, was investigated by liquid chromatography and mass spectrometry. The bacterial strain has been isolated at a 626-m depth at the Äspö Hard Rock Laboratory, where experiments concerning the geological disposal of nuclear waste are performed. In bacterial culture extracts, the iron in the siderophore complexes was replaced by gallium to facilitate siderophore identification by mass spectrometry. P. stutzeri was shown to produce ferrioxamine E (nocardamine) as the main siderophore together with ferrioxamine G and two cyclic ferrioxamines having molecular masses 14 and 28 atomic mass units lower than that of ferrioxamine E, suggested to be ferrioxamine D2 and ferrioxamine X1, respectively. In contrast, no siderophores were observed from anaerobically grown P. stutzeri. None of the siderophores produced by aerobically grown P. stutzeri were found in anaerobic natural water samples from the Äspö Hard Rock Laboratory.In order to facilitate iron(III) acquisition, plants and microorganisms, such as fungi and bacteria, produce and excrete strong iron(III) chelators, i.e., siderophores (18, 22, 23, 33, 34). While fungal siderophores bind to iron(III) by hydroxamate ligands, bacterial siderophores are more structurally diverse, and common ligands are catecholates, hydroxamates, and carboxylates (21). The iron(III) stability constants for bacterial siderophores vary in the range of 1020 to 1052 (6). In addition to iron(III), other metals can be complexed by siderophores. For the trihydroxamate siderophore desferrioxamine B, sometimes called proferrioxamine B (10), some actinides have been shown to have stability constants in the same range as the ferric stability constant (1030.6), e.g., 1026.6 with thorium(IV) and 1030.8 with plutonium(VI) (32), while the stability constant for uranium(VI) was lower, i.e., 1018 (2).Concerning bacteria, there are several reports on siderophore production by Pseudomonas spp. (1, 3, 4, 19). More than 50 structurally related siderophores, i.e., pyoverdins, produced by the fluorescent Pseudomonas spp., especially Pseudomonas fluorescens and Pseudomonas aeruginosa, have been characterized (3). All pyoverdins emit yellow fluorescent light due to the presence of a 5-amino-2,3-dihydro-8,9-dihydroxy-1-H-pyrimido-quinoline-carboxylic chromophore, to which a peptide chain and a carboxyl chain are attached (1, 3). Nonfluorescent Pseudomonas has also been shown to produce siderophores, such as ferrioxamine E, also called nocardamine (Fig. (Fig.1),1), which was produced by one strain of Pseudomonas stutzeri (19). In addition to ferrioxamines, the P. stutzeri strain KC produced a smaller siderophore, i.e., pyridine-2,6-bis(thiocarboxylic acid) (35). Conversely, a catecholate-type siderophore was shown to be produced by another strain of P. stutzeri, which did not produce any hydroxamate siderophores (4).Open in a separate windowFIG. 1.Structures, molecular masses (mw), and stability constants (Ks) of ferric complexes of the three ferrioxamines: ferrioxamine B (B), ferrioxamine E (E), and ferrioxamine G (G) (5, 18).Most of the studies on bacterial siderophore production have been conducted on microorganisms growing under aerobic conditions. One field-based report, however, indicates the occurrence of putative siderophores in anaerobic environments also (29). In the present study, siderophore production has been studied with both aerobic and anaerobic cultures of P. stutzeri. This species is a facultative aerobe, able to grow with oxygen or nitrate as the electron acceptor, meaning that it can be active under both anaerobic and aerobic conditions. The P. stutzeri strain CCUG 36651, studied here, has been isolated from a depth of 626 m below ground at the Äspö Hard Rock Laboratory (16), where research concerning the geological disposal of nuclear waste is performed. The possibility of mobilizing radionuclides by complexing compounds from bacteria is an important research area in the context of nuclear waste disposal research. It is unknown if such compounds are produced in aquifers under conditions relevant to a disposal site, which would be approximately 500 m underground in granitic rock (27).A study from 2004 shows that P. stutzeri growing aerobically in the presence of uranium-containing shale leached Fe, Mo, V, and Cr from the shale material (17). More recently it was shown that the supernatant of aerobically and anaerobically cultured P. stutzeri was able to increase the partitioning of added Fe, Pm, Am, and Th into the aqueous phase in samples where quartz sand was used as a solid surface (16). Aerobic supernatants maintained 60% or more of the added metals in solution, while anaerobic supernatants were best at maintaining Am in solution, reaching a value of 40% in solution. The increased partitioning to the aqueous phase in the presence of the supernatants was ascribed to the production of organic ligands. Supernatants of both aerobically and anaerobically grown P. stutzeri strain CCUG 36651 yielded a positive response on the universal siderophore assay, the CAS assay (16). This assay is based on ligand competition for iron bound to the colored chrome azurol complex (25, 30).In this study, siderophore production by P. stutzeri strain CCUG 36651 was investigated using mass spectrometry (MS) and liquid chromatography (LC) followed by mass spectrometric detection. Electrospray ionization mass spectrometry (ESI-MS) and electrospray ionization tandem mass spectrometry (ESI-MS/MS) are useful tools in characterizing siderophores such as ferrioxamines (10, 13, 14, 28, 31). In order to detect iron(III)-chelating compounds, the ferric iron can be replaced by gallium(III) through ascorbate-mediated reduction of iron(III) (8, 20). In mass spectra, gallium-bound substances are easily recognized due to the characteristic isotope pattern of gallium, where the intensity of the 71Ga signal is about 66% of that of the 69Ga signal. The use of ESI provides so-called soft ionization; thus, information about the molecular weight is obtained. However, by employing MS/MS, fragmentation is achieved, providing more information about the compound structure.In order to verify the chemical difference between the siderophores found by ESI-MS, chromatographic separation was performed. In this case, one reversed-phase C18 column and one column containing a porous graphitic carbon (PGC) stationary phase were used. The separation mechanism of PGC is a combination of hydrophobic interactions, as in C18, and electrostatic interactions between π-electrons. In order to detect substances at low concentrations, column-switched capillary chromatography with MS detection was used. The detection limits of the combined LC-MS/MS system used in this study are in the range of 1 to 5 nM for hydroxamate siderophores of the ferrichrome and ferrioxamine families (9). In order to facilitate analysis of lower concentrations of ferrioxamines, natural water samples were preconcentrated by solid-phase extraction (SPE), resulting in minimum detectable concentrations in the range of 0.02 to 0.1 nM, depending on the initial sample volume.  相似文献   

17.
Summary Kodam et al. reported a 100% decolorization of the sulfonated azo dyes Reactive Red 2, Reactive Red 141, Reactive Orange 4, Reactive Orange 7 and Reactive Violet 5 by an unidentified bacterium, KMK 48. High effectiveness was attained within 36 h of incubation at room temperature and neutral pH. Optimum decolorization took place strictly under aerobic conditions, which is contrary to other well-documented reports. Thus, this microorganism seems to be potentially effective for bioremediation of textile-dyeing industry effluents.  相似文献   

18.
19.
A free-living aspartate-fermenting Campylobacter spec. was shown to utilize hydrogen produced in mixed culture by Clostridium cochlearium from glutamate. Resting cells of Campylobacter were shown to reduce aspartate, fumarate and malate as well as nitrate, nitrite, hydroxylamine, sulphite, thiosulphate and elemental sulphur with molecular hydrogen. Growth of Campylobacter spec. was demonstrated with formate as electron donor and nitrate, thiosulphate, elemental sulphur or oxygen as electron acceptor in the presence of acetate as carbon source.  相似文献   

20.
Anaerobic chitinolytic complex was studied in three soil types: chernozem, gray forest soil, and chestnut soil. The abundance and biomass of anaerobic chitinolytic microbial complex of fungi, bacteria, and actinomycetes were evaluated by luminescent microscopy. The dynamics of methane emission from soil during chitinolytic succession was studied by gas chromatography. All three studied microbial groups proved to participate in chitin transformation in soil under anaerobic conditions. The highest biomass growth was observed among prokaryotes, particularly actinomycetes, whose biomass doubled. The increase in methane emission during chitinolytic succession was most pronounced in soils with low organic matter content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号