首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions of cytochromes P450 IA1, IIB1, IIB2, and IIE1 with phenyldiazene yield complexes with absorption maxima at either 474 or 480 nm. Anaerobic extraction of the prosthetic group from the phenyldiazene-treated proteins followed by its exposure to oxygen and strong acid produces an equal mixture of the four possible N-phenylprotoporphyrin IX regioisomers. Exposure of the anaerobically extracted heme complexes to oxygen in the absence of strong acid results in their decomposition to heme and products other than N-phenylprotoporphyrin IX. These results show that the 474/480 nm absorption maxima are due to sigma phenyl-iron complexes. Treatment of the intact hepatic cytochrome P450 complexes with K3Fe(CN)6 results in disappearance of the 474/480 nm band. Extraction of the prosthetic group then yields only the two N-phenylprotoporphyrin IX regioisomers with the N-phenyl group on pyrrole rings A and D. The same regioisomer pattern is obtained if the cytochrome P450IA1 phenyl-iron complex is simply warmed to 37 degrees C, but this thermal rearrangement occurs much less readily, if at all, with the complexes of the other isozymes. The regioisomers with the N-phenyl on pyrrole rings A and D are obtained in a 2:1 ratio with isozyme IA1, 1:1 with IIB2, 1:1.7 with IIB1, and 1:2 with IIE1. These results establish that the active sites of these cytochrome P450 isozymes have a common architecture despite their gross differences in substrate specificity. In this architecture, the region directly above pyrrole rings A and D is relatively open whereas that above pyrrole rings B and C is occluded by protein residues.  相似文献   

2.
The reaction of phenyldiazene with purified, phenobarbital-inducible rabbit cytochrome P450IIB4, mouse cytochrome P450IIB10, and dog cytochrome P450IIB11 yields complexes with absorbance maxima at 480 nm. Treatment of the cytochrome P450 complexes with K3Fe(CN)6 results in disappearance of the 480-nm absorption. Extraction of the prosthetic group from the proteins after these reactions yields the two isomers of N-phenylprotoporphyrin IX with the N-phenyl group on pyrrole rings A and D as the major products and the regioisomer with the N-phenyl on pyrrole ring C as a minor product. The A:C:D arylated pyrrole ring ratio is 3:2:3 for rabbit P450IIB4, 3:1:3 for mouse P450IIB10, and 4:1:2 for dog P450IIB11. Formation of the A and D regioisomers is consistent with the results obtained previously for rat isozymes IA1, IIB1, IIB2, and IIE1, but the rabbit, mouse, and dog P450IIB enzymes differ from the four rat enzymes in that a substantial amount of the isomer with the N-phenyl on pyrrole ring C is also formed. The results indicate that the region over pyrrole ring B is masked by protein residues in all the active sites and suggest that the region over pyrrole ring C is more hindered by protein residues in the rat than in the rabbit, mouse, or dog enzymes so far examined.  相似文献   

3.
Cocaine N-demethylation by microsomal cytochrome P450s is the principal pathway in cocaine bioactivation and hepatotoxicity. P450 isozymes involved in N-demethylation of cocaine have not been elucidated yet and they differ from species to species. In humans and mice, P4503A contributes to cocaine N-demethylase activity, whereas in rats, both P4503A and P4502B participate. In the present study, contribution of different P450 isozymes to cocaine N-demethylase activity was studied in vitro with fish liver microsomes. The specific cocaine N-demethylase activity was found to be 0.672 +/- 0.22 nmol formaldehyde formed/min/mg protein (mean +/- SD, n = 6). Cocaine N-demethylase exhibited biphasic kinetics, and from the Lineweaver-Burk plot, two K(m) values were calculated as 0.085 and 0.205 mM for the high- and low-affinity enzyme. These results indicate that N-demethylation of cocaine in mullet liver microsomes is catalyzed by at least two cytochrome P450 isozymes. Inhibitory effects of cytochrome P450 isozyme-selective chemical inhibitors, ketoconazole, cimetidine, SKF-525A, and quinidine, on cocaine N-demethylase activity were studied at 50, 100, and 500 micro M concentrations of these inhibitors. At 100 micro M final concentrations, ketoconazole (P4503A inhibitor), SKF-525A (inhibitor of both P4502B and P4503A), and cimetidine (P4503A inhibitor) inhibited N-demethylation activity by 73, 69, and 63%, respectively. Quinidine, P4502D-specific inhibitor, at 100 micro M final concentration, reduced N-demethylation activity down to 64%. Aniline, a model substrate for P4502E1, did not alter N-demethylase activity in the final concentration of 100 micro M. IC(50) values were calculated to be 20 micro M for ketoconazole, 48 micro M for cimetidine (both specific P4503A inhibitors), 164 micro M for quinidine (P4502D inhibitor), and 59 micro M for SKF-525A (inhibitor of both P4503A and P4502B). The contribution of P4502B to cocaine N-demethylase activity in mullet liver microsomes was further explored by the use of purified mullet cytochrome P4502B in the reconstituted system containing purified mullet P450 reductase and lipid. The turnover number was calculated as 4.2 nmol HCOH/(min nmol P450). Overall, these results show that P4503A and P4502B are the major P450s responsible for N-demethylation of cocaine, whereas contribution of P4502D is a minor one, and P4502E1 is not involved in the N-demethylation of cocaine in mullet liver microsomes.  相似文献   

4.
The final steps of the biosynthesis of glucocorticoids and mineralocorticoids in the adrenal cortex require the action of two different cytochromes P450--CYP11B1 and CYP11B2. Homology modelling of the three-dimensional structures of these cytochromes was performed based on crystallographic coordinates of two bacterial P450s, CYP102 (P450BM-3) and CYP108 (P450terp). Principal attention was given to the modelling of the active sites and a comparison of the active site structures of CYP11B1 and CYP11B2 was performed. It can be demonstrated that key residue contacts within the active site appear to depend on the orientation of the heme. The obtained 3D structures of CYP11B1 and CYP11B2 were used for investigation of structure-function relationships of these enzymes. Previously obtained results on naturally occurring mutants and on mutants obtained by site-directed mutagenesis are discussed.  相似文献   

5.
Spectroscopic methods reveal differences in flexibility and stability of P450 forms. Among microsomal P450s, the most flexible active site has been found in the CYP3A4 enzyme as it is compressible and the heme vinyl side chains may adopt two different conformations. On the other hand, active site of this enzyme denatures quite easily upon hydrostatic pressure. The most rigid active site able to withstand the effect of high pressure has CYP1A2. The bacterial CYP102 (BM3) flavocytochrome has also a rather stable, but flexible active site. The differences between CYP3A4 and CYP1A2 active sites apparently reflect their ability to bind various substrates: whereas the CYP3A4 binds a vast variety of structures, the CYP1A2 preferentially binds planar, aromatic structures and its substrate specificity is relatively narrow.  相似文献   

6.
The inactivations of P450 2B4 and the T302A mutant of 2B4 by tert-butyl acetylene (tBA) and the inactivation of 2B4 T302A by tert-butyl 1-methyl-2-propynyl ether (tBMP) have been investigated. tBA and tBMP inactivated both enzymes in a mechanism-based manner with the losses in enzymatic activity corresponding closely to losses in P450 heme. HPLC and ESI-LC-MS analysis detected two different tBA- or tBMP-modified heme products with masses of 661 and 705 Da, respectively. Interestingly, the inactivations of the P450s 2B4 by tBA and tBMP were partially reversible by dialysis, and the tBA- or tBMP-modified heme products could only be observed with ESI-LC-MS/MS when the inactivated samples were acidified prior to analysis, indicating a requirement for protons in the formation of stable heme adducts in both the wild-type and mutant 2B4 enzymes. Results of studies using artificial oxidants to support enzyme inactivation suggest that the oxenoid-iron activated oxygen species is preferentially utilized during the inactivation of the P450s 2B4 by tBA. These results argue against the use of a peroxo-iron species by P450 2B4 T302A. Molecular dynamics studies of wild-type P450 2B4 reveal that contiguous hydrogen bond networks, including structural waters, link a conserved glutamate (E301) to the distal oxygen of the peroxo-heme species via threonine 302. Interestingly, models of 2B4 T302A reveal that a compensatory, ordered hydrogen bond network forms despite the removal of T302. These results indicate that while T302 may play a role in proton delivery in the formation of the oxenoid-iron complex and in the stabilization of acetylene heme adducts in 2B4, it is not essential for proton delivery given the presence of E301 in the binding site.  相似文献   

7.
Cytochromes P450 2E1 of human and minipig origin were examined by absorption spectroscopy under high hydrostatic pressure and by resonance Raman spectroscopy. Human enzyme tends to denature to the P420 form more easily than the minipig form; moreover, the apparent compressibility of the heme active site (as judged from a redshift of the absorption maximum with pressure) is greater than that of the minipig counterpart. Relative compactness of the minipig enzyme is also seen in the Raman spectra, where the presence of planar heme conformation was inferred from band positions characteristic of the low-spin heme with high degree of symmetry. In this respect, the CYP2E1 seems to be another example of P450 conformational heterogeneity as shown, e.g., by Davydov et al. for CYP3A4 [Biochem. Biophys. Res. Commun. 312 (2003) 121-130]. The results indicate that the flexibility of the CYP active site is likely one of its basic structural characteristics.  相似文献   

8.
The reactions of cytochromes P450101 (P450cam), P450108 (P450terp), and P450102 (P450BM-3) with phenyldiazene result in the formation of phenyl-iron complexes with absorption maxima at 474-478 nm. Treatment of the cytochrome P450 complexes with K3Fe(CN)6 decreases the 474-478 nm absorbance and shifts the phenyl group from the iron to the porphyrin nitrogens. Acidification and extraction of the prosthetic group from each of the ferricyanide-treated enzymes yields a different mixture of the four possible N-phenylprotoporphyrin IX regioisomers. The ratios of the regioisomers with the phenyl ring on pyrrole rings B, A, C, and D (in order of elution from the high performance liquid chromatography column) are, respectively: cytochrome P450cam, 0:0:1:4; P450terp, 0:0:0:1; and P450BM-3, 2:10:2:1. The isomer ratio for recombinant cytochrome P450BM-3 without the cytochrome P450 reductase domain (2:9:2:1) shows that the reductase domain does not detectably perturb the active site topology of cytochrome P450BM-3. Potassium ions modulate the intensity of the spectrum of the phenyl-iron complex of cytochrome P450cam, but do not alter the N-phenyl isomer ratio. Computer graphics analysis of the crystal structure of the cytochrome P450cam phenyl-iron complex indicates that the active site of cytochrome P450cam is open above pyrrole ring D and, to a small extent, pyrrole ring C, in complete agreement with the observed N-phenylprotoporphyrin IX regioisomer pattern. The regioisomer ratios indicate that the active site of cytochrome P450terp is only open above pyrrole ring D, whereas that of cytochrome P450BM-3 is open to some extent above all the pyrrole rings but particularly above pyrrole ring A. The bacterial enzymes thus have topologies distinct from each other and from those of the mammalian enzymes so far investigated, which have active sites that are open to a comparable extent above pyrrole rings A and D.  相似文献   

9.
Gerber JG  Rhodes RJ  Gal J 《Chirality》2004,16(1):36-44
Methadone is a clinically used opioid agonist that is oxidatively metabolized by cytochrome P450 (CYP) isoforms to a stable metabolite, EDDP. Methadone is a chiral drug administered as the racemic mixture of (R)-(-)- and (S)-(+)-methadone, but (R)-methadone is the active isomer. The cytochrome P450 (CYP) isoform involved in methadone's metabolism is thought to be CYP3A4, but human drug-drug interaction studies are not consistent with this. The ability of the common human drug-metabolizing CYPs (obtained from baculovirus-infected insect cell supersomes) to generate 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrilidine (EDDP) from racemic methadone was examined and then determined if the CYP isoforms metabolized methadone stereoselectively. Only CYP2B6, 2C19, and 3A4 generated measurable EDDP from 1 microg/ml of racemic methadone. The hierarchy of EDDP generation was CYP2B6 > CYP2C19 >/= CYP3A4. At 10 microg/ml of methadone, CYP2C9 and CYP2D6 also generated EDDP, but in at least 10-fold lower quantities than CYP2B6. Michaelis-Menten kinetic data demonstrated that CYP2B6 had the highest V(max) (44 ng/min/10pmol) and the lowest K(m) (12.6 microg/ml) for EDDP formation of all the CYP isoforms. In human liver microsomes with high and low CYP2B6 expression but equivalent CYP3A4 expression, high CYP2B6 expression microsomes generated twice the amount of EDDP from 10 microg/ml of methadone than low CYP2B6 expression microsomes. When stereoselective metabolism of racemic methadone by CYP2B6, 2C19, and 3A4 was examined using an enantiospecific methadone assay, CYP2B6 preferentially metabolized (S)-methadone, CYP2C19 preferentially metabolized (R)-methadone, and CYP3A4 showed no preference. These data suggest that multiple CYPs metabolized methadone but CYP2B6 had the highest V(max)/K(m). In addition, only CYP2B6 and 2C19 showed stereoselective metabolism. Our data could explain why the plasma concentration ratio of R/S methadone is variable and why drugs that induce CYP2B6 such as nevirapine and efavirenz also induce methadone metabolism, while the CYP3A4 inducer rifabutin has no effect on methadone pharmacokinetics.  相似文献   

10.
In Rhodobacter sphaeroides chromatophores, cytochromes (cyt) c(1) and c(2) have closely overlapping spectra, and their spectral deconvolution provides a challenging task. As a result, analyses of the kinetics of different cytochrome components of the bc(1) complex in purple bacteria usually report only the sum cyt c(1) + cyt c(2) kinetics. Here we used newly determined difference spectra of individual components to resolve the kinetics of cyt c(1) and c(2) in situ via a least-squares (LS) deconvolution. We found that the kinetics of cyt c(1) and c(2) are significantly different from those measured using the traditional difference wavelength (DW) approach, based on the difference in the absorbance at two different wavelengths specific for each component. In particular, with the wavelength pairs previously recommended, differences in instrumental calibration led to kinetics of flash-induced cyt c(1) oxidation measured with the DW method which were faster than those determined by the LS method (half-time of approximately 120 micros vs half-time of approximately 235 micros, in the presence of antimycin). In addition, the LS approach revealed a delay of approximately 50 micros in the kinetics of cyt c(1) oxidation, which was masked when the DW approach was used. We attribute this delay to all processes leading to the oxidation of cyt c(1) after light activation of the photosynthetic reaction center, especially the dissociation of cyt c(2) from the reaction center. We also found that kinetics of both cyt c(1) and c(2) measured by the DW approach were significantly distorted at times longer than 1 ms, due to spectral contamination from changes in the b hemes. The successful spectral deconvolution of cyt c(1) and c(2), and inclusion of both cytochromes in the kinetic analysis, significantly increase the data available for mechanistic understanding of bc(1) turnover in situ.  相似文献   

11.
Five adherence-inhibiting monoclonal antibodies (mAbs) were used for topological mapping of the binding sites of the 169 kDa membrane-integrated adhesin of Mycoplasma pneumoniae. Antibody binding sites were characterized using overlapping synthetic octapeptides. Three regions of the protein seem to be involved in adherence: the N-terminal region [N-reg, epitopes beginning at amino acid (aa) 1 to aa 14 and aa 231 to aa 238, respectively]; a domain (D1) approximately in the middle of the molecule (beginning at aa 851 to aa 858 and aa 921 to aa 928); and a domain (D2) closer to the C-terminus (beginning at aa 1303 to aa 1310, aa 1391 to aa 1398 and aa 1407 to aa 1414). Each of the mAbs P1.26 and P1.62 reacted with two primary amino acid sequences. Both antibodies bound to the D1 region, but mAb P1.62 showed additional binding to a sequence (aa 231 to aa 238) near the N-terminus, and mAb P1.26 reacted with a second epitope in the D2 domain (aa 1303 to aa 1310). Such dual binding by the two antibodies suggests that in the native protein the epitopes are composed of two sequences which are located on two different sites of the molecule (D1/N-reg and D1/D2, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A comparison of the oxidations of diclofenac with microsomes of yeasts expressing various human liver cytochromes P450 showed that P450 2C9 regioselectively led to 4'-hydroxy diclofenac (4'-OHD) whereas P450 3A4 only led to 5-hydroxy diclofenac (5-OHD). P450 2C19, 2C18, and 2C8 led to the simultaneous formation of 4'-OHD and 5-OHD (respective molar ratios of 1.3, 0.37, and 0.17), and P450 1A1, 1A2, 2D6, and 2E1 failed to give any detectable hydroxylated metabolite under identical conditions. P450 2C9 was found to be much more efficient for diclofenac hydroxylation than all the other P450s tested (k(cat)/K(M) of 1.6 min(-1) microM(-1) instead of 0.025 for the second more active P450), mainly because of markedly lower K(M) values (15 +/- 8 instead of values between 170 and 630 microM). Oxidation of diclofenac with chemical model systems of cytochrome P450 based on iron porphyrin catalysts exclusively led to the quinone imine derived from two-electron oxidation of 5-OHD, in an almost quantitative yield. Two derivatives of diclofenac lacking its COO(-) function were then synthesized; their oxidation by recombinant human P450 2Cs always led to a major product coming from their 5-hydroxylation. Substrate 2, which derives from reduction of the COO(-) function of diclofenac to the CH(2)OH function, was studied in more detail. All the P450s tested (1A1, 1A2, 2C8, 2C9, 2C18, 2C19, 2D6, and 3A4) almost exclusively led to its 5-hydroxylation. P450s of the 2C subfamily were found to be the most efficient catalysts for this reaction, with k(cat)/K(M) values between 0.2 and 1.6 min(-1) microM(-1). Oxidation of 2 with an iron porphyrin-based chemical model of cytochrome P450 also led to a product derived from the oxidation of 2 at position 5. These results show that oxidation of diclofenac and its derivative 2, either with chemical model systems of cytochrome P450 or with recombinant human P450s, generally occurs at position 5. This position, para to the NH group on the more electron-rich aromatic ring of diclofenac derivatives, is thus, as expected, the privileged site of reaction of electrophilic, oxidant species. The most spectacular exception to this chemoselective 5-oxidation of diclofenac derivatives was found for oxidation of diclofenac itself with P450 2C9 (and P450 2C19 and 2C18 to a lesser extent), which only led to 4'-OHD. A likely explanation for this result is a strict positioning of diclofenac in the P450 2C9 active site, via its COO(-) function, to completely orientate its hydroxylation toward position 4', which is not chemically preferred. P450 2C19, 2C18, and 2C8 would not lead to such a strict positioning as they give mixtures of 4'-OHD and 5-OHD. The above results show that diclofenac derivatives are interesting tools to compare the active site topologies of human P450 2Cs.  相似文献   

13.
Acetaminophen activation by human liver cytochromes P450IIE1 and P450IA2   总被引:7,自引:0,他引:7  
Acetaminophen (APAP), a widely used over-the-counter analgesic, is known to cause hepatotoxicity when ingested in large quantities in both animals and man, especially when administered after chronic ethanol consumption. Hepatotoxicity stems from APAP activation by microsomal P450 monooxygenases to a reactive metabolite that binds to tissue macromolecules, thereby initiating cellular necrosis. Alcohol consumption also causes the induction of P450IIE1, a liver microsomal enzyme that in reconstitution studies has proven to be an effective catalyst of APAP oxidation. Thus, elevated microsomal P450IIE1 levels could explain not only the known increase in APAP bioactivating activity of liver microsomes after prolonged ethanol ingestion but also the enhanced susceptibility to APAP toxicity. We therefore examined the role of P450IIE1 in human liver microsomal APAP activation. Liver microsomes from seven non-alcoholic subjects were found to convert 1 mM APAP to a reactive intermediate (detected as an APAP-cysteine conjugate by high-pressure liquid chromatography) at a rate of 0.25 +/- 0.1 nmol conjugate formed/min/nmol microsomal P450 (mean +/- SD), whereas at 10 mM, this rate increased to 0.73 +/- 0.2 nmol product/min/nmol P450. In a reconstituted system, purified human liver P450IIE1 catalyzed APAP activation at rates threefold higher than those obtained with microsomes whereas two other human P450s, P450IIC8 and P450IIC9, exhibited negligible APAP-oxidizing activity. Monospecific antibodies (IgG) directed against human P450IIE1 inhibited APAP activation in each of the human samples, with anti-P450IIE1 IgG-mediated inhibition averaging 52% (range = 30-78%) of the rates determined in the presence of control IgG. The ability of anti-P450IIE1 IgG to inhibit only one-half of the total APAP activation by microsomes suggests, however, that other P450 isozymes besides P450IIE1 contribute to bioactivation of this compound in human liver. Of the other purified P450 isozymes examined, a beta-naphthoflavone (BNF)-inducible hamster liver P450 promoted APAP activation at rates even higher than those obtained with human P450IIE1. The extensive APAP-oxidizing capacity of this hamster P450, designated P450IA2 based upon its similarity to rat P450d and rabbit form 4 in terms of NH2-terminal amino acid sequence, spectral characteristics, immunochemical properties, and inducibility by BNF, agrees with previous reports concerning the APAP substrate specificity of the rat and rabbit P450IA2 proteins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The regulation of CYP2E1 and 2B1 was studied by following mRNA levels, catalytic activities and the subcellular distribution of the apoproteins in rat liver 0, 6, 12, 24, 48 and 96 h after a single intragastric dose of acetone. No changes were observed in hepatic CYP2E1 mRNA levels at any time after acetone treatment, whereas rapid rises were observed in the microsomal amount of CYP2E1 protein and CYP2E1-catalyzed 4-nitrophenol hydroxylase and carbon-tetrachloride-initiated lipid-peroxidation activities. However, CYP2E1-dependent catalytic activities declined much faster than the immunodetectable CYP2E1 protein, suggesting that this cytochrome P-450 is inactivated prior to degradation. Similar results were seen in primary hepatocyte cultures. By contrast, concomitant changes in levels of CYP2B1 and CYP2B1-dependent O-depentylation of pentoxyresorufin were observed in the same microsomal preparations. Investigation of the degradative mechanism of both CYP2E1 and CYP2B1 by immunoquantitation of the proteins in lysosomes and by immunohistochemistry indicated their degradation via an autophagic-lysosomal pathway. The data suggest that CYP2E1 is acutely inactivated in the endoplasmic reticulum and that degradation of this isozyme occurs, at least in part, by the lysosomal route. By contrast, CYP2B1 is principally controlled at the level of synthesis.  相似文献   

15.
Five reciprocal active site mutants of P450 1A1 and 1A2 and an additional mutant, Val/Leu-382 --> Ala, were constructed, expressed in Escherichia coli, and purified by Ni-NTA affinity chromatography. In nearly every case, the residue replacement led to loss of 7-methoxy- and 7-ethoxyresorufin O-dealkylase activity compared to the wild-type enzymes, except for the P450 1A1 S122T mutation which increased both activities. Mutations at position 382 in both P450 1A1 and 1A2 shifted substrate specificity from one enzyme to another, confirming the importance of this residue. Changes in activity of P450 1A enzymes upon amino acid replacement were, in general, consistent with molecular dynamics analyses of substrate motion in the active site of homology models.  相似文献   

16.
The distances between the heme of cytochrome P-450 and the substrate, aflatoxin B1, in the complex of aflatoxin B1 and each of two species of cytochrome P-450 were determined by fluorescence energy transfer measurements. Cytochromes P-450 used were cytochrome P-450 I-d and cytochrome P-450 II-a prepared from hepatic microsomes of polychlorinated biphenyl-treated rats; the main metabolic products of aflatoxin B1 were aflatoxin Q1 and aflatoxin M1, respectively. The distances between the heme and the substrate were calculated to be 6.9nm and 4.7nm in cytochrome P-450 I-d and cytochrome P-450 II-a, respectively. The results suggest that the difference in the metabolic products of aflatoxin B1 is due to the difference in the conformation of the enzyme-substrate complexes.  相似文献   

17.
We have previously produced 12 monoclonal antibodies (MAbs) against rat cytochrome P450(CYP)2B1, and 8 of these inhibit CYP2B1 catalytic activity to varying extents. Using competitive binding studies we showed that this collection of 12 MAbs recognize at least 6 spatially distinct epitopes. The complete coding sequence of CYP2B1 DNA in plasmid pSR-P450 was inserted into a glutathione S-transferase (GST) expression vector pGEX-1lambdaT so that it was in frame with the GST gene. Expression of GST-CYP2B1 was detected with most of the MAbs in Western blots except those which were conformation-specific. Fourteen different constructs were then made using PCR with oligonucleotide primers having EcoRI sites at their ends and were introduced into the GST expression vector at the EcoRI site. Each fusion construct was expressed in Escherichia coli, subjected to SDS-PAGE, blotted, and probed individually with each MAb. MAbs, which inhibited catalytic activity and were mutually competitive in binding to CYP2B1 (viz. BEA33, BE44, BE45, and BE28), recognized several fusion constructs and by deduction recognized amino acids 250-261 in CYP2B1. Other antibodies inhibiting catalytic activity recognized amino acids 262-272 (BEF29) and 306-491 (BE46, B50, and BE49) on CYP2B1. Non-inhibitory MAbs BE26 and BE32 were mapped to region 380-398 in CYP2B1. It was interesting to note that MAbs BEA33 and BE26, which also recognize spatially distinct epitopes on human CYP2E1 but not rat CYP2E1, had corresponding regions of high homology in human CYP2E1 but not rat CYP2E1. Identifying the epitopes recognized by this collection of MAbs will add to our understanding the sequences that may be important for producing inhibitory and specific antibodies to closely related antigens.  相似文献   

18.
The positions of the 18S-5.8S-26S and 5S rRNA genes have been physically mapped on the chromosomes of diploid, tetraploid, and hexaploid Festuca species by in situ hybridization. The number and position of the rDNA sites in the species were compared. The results confirm some of the earlier phylogenetic studies of these species but suggest that some structural rearrangements have occurred and that sites have been lost during polyploidization. Keywords: Festuca, in situ hybridization, phylogeny, physical mapping, rDNA.  相似文献   

19.
20.
Gene mapping by in situ hybridization.   总被引:1,自引:0,他引:1  
Genome maps with a resolution of approximately 50kb can now be produced by applying the technique of two-color fluorescence in situ hybridization to chromatin targets in varying stages of condensation, such as metaphase chromosomes, interphase nuclei and sperm pronuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号